Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1872,2,Mod(1,1872)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1872, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1872.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1872 = 2^{4} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1872.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(14.9479952584\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 312) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 1872.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 6.00000 | 1.80907 | 0.904534 | − | 0.426401i | \(-0.140219\pi\) | ||||
0.904534 | + | 0.426401i | \(0.140219\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | −1.00000 | −0.277350 | ||||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | −2.00000 | −0.485071 | −0.242536 | − | 0.970143i | \(-0.577979\pi\) | ||||
−0.242536 | + | 0.970143i | \(0.577979\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −5.00000 | −1.00000 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 4.00000 | 0.718421 | 0.359211 | − | 0.933257i | \(-0.383046\pi\) | ||||
0.359211 | + | 0.933257i | \(0.383046\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −2.00000 | −0.328798 | −0.164399 | − | 0.986394i | \(-0.552568\pi\) | ||||
−0.164399 | + | 0.986394i | \(0.552568\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 10.0000 | 1.45865 | 0.729325 | − | 0.684167i | \(-0.239834\pi\) | ||||
0.729325 | + | 0.684167i | \(0.239834\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | −7.00000 | −1.00000 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 10.0000 | 1.37361 | 0.686803 | − | 0.726844i | \(-0.259014\pi\) | ||||
0.686803 | + | 0.726844i | \(0.259014\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −6.00000 | −0.781133 | −0.390567 | − | 0.920575i | \(-0.627721\pi\) | ||||
−0.390567 | + | 0.920575i | \(0.627721\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −6.00000 | −0.768221 | −0.384111 | − | 0.923287i | \(-0.625492\pi\) | ||||
−0.384111 | + | 0.923287i | \(0.625492\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 12.0000 | 1.46603 | 0.733017 | − | 0.680211i | \(-0.238112\pi\) | ||||
0.733017 | + | 0.680211i | \(0.238112\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | 2.00000 | 0.237356 | 0.118678 | − | 0.992933i | \(-0.462134\pi\) | ||||
0.118678 | + | 0.992933i | \(0.462134\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 6.00000 | 0.702247 | 0.351123 | − | 0.936329i | \(-0.385800\pi\) | ||||
0.351123 | + | 0.936329i | \(0.385800\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 16.0000 | 1.80014 | 0.900070 | − | 0.435745i | \(-0.143515\pi\) | ||||
0.900070 | + | 0.435745i | \(0.143515\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | 6.00000 | 0.658586 | 0.329293 | − | 0.944228i | \(-0.393190\pi\) | ||||
0.329293 | + | 0.944228i | \(0.393190\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −4.00000 | −0.423999 | −0.212000 | − | 0.977270i | \(-0.567998\pi\) | ||||
−0.212000 | + | 0.977270i | \(0.567998\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 14.0000 | 1.42148 | 0.710742 | − | 0.703452i | \(-0.248359\pi\) | ||||
0.710742 | + | 0.703452i | \(0.248359\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 6.00000 | 0.597022 | 0.298511 | − | 0.954406i | \(-0.403510\pi\) | ||||
0.298511 | + | 0.954406i | \(0.403510\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 8.00000 | 0.788263 | 0.394132 | − | 0.919054i | \(-0.371045\pi\) | ||||
0.394132 | + | 0.919054i | \(0.371045\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | −8.00000 | −0.773389 | −0.386695 | − | 0.922208i | \(-0.626383\pi\) | ||||
−0.386695 | + | 0.922208i | \(0.626383\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −6.00000 | −0.574696 | −0.287348 | − | 0.957826i | \(-0.592774\pi\) | ||||
−0.287348 | + | 0.957826i | \(0.592774\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 10.0000 | 0.940721 | 0.470360 | − | 0.882474i | \(-0.344124\pi\) | ||||
0.470360 | + | 0.882474i | \(0.344124\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | 25.0000 | 2.27273 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −16.0000 | −1.36697 | −0.683486 | − | 0.729964i | \(-0.739537\pi\) | ||||
−0.683486 | + | 0.729964i | \(0.739537\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −20.0000 | −1.69638 | −0.848189 | − | 0.529694i | \(-0.822307\pi\) | ||||
−0.848189 | + | 0.529694i | \(0.822307\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −6.00000 | −0.501745 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −4.00000 | −0.327693 | −0.163846 | − | 0.986486i | \(-0.552390\pi\) | ||||
−0.163846 | + | 0.986486i | \(0.552390\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −20.0000 | −1.62758 | −0.813788 | − | 0.581161i | \(-0.802599\pi\) | ||||
−0.813788 | + | 0.581161i | \(0.802599\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 14.0000 | 1.11732 | 0.558661 | − | 0.829396i | \(-0.311315\pi\) | ||||
0.558661 | + | 0.829396i | \(0.311315\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 16.0000 | 1.25322 | 0.626608 | − | 0.779334i | \(-0.284443\pi\) | ||||
0.626608 | + | 0.779334i | \(0.284443\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 18.0000 | 1.39288 | 0.696441 | − | 0.717614i | \(-0.254766\pi\) | ||||
0.696441 | + | 0.717614i | \(0.254766\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 1.00000 | 0.0769231 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −18.0000 | −1.36851 | −0.684257 | − | 0.729241i | \(-0.739873\pi\) | ||||
−0.684257 | + | 0.729241i | \(0.739873\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −20.0000 | −1.49487 | −0.747435 | − | 0.664335i | \(-0.768715\pi\) | ||||
−0.747435 | + | 0.664335i | \(0.768715\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | −10.0000 | −0.743294 | −0.371647 | − | 0.928374i | \(-0.621207\pi\) | ||||
−0.371647 | + | 0.928374i | \(0.621207\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −12.0000 | −0.877527 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.0000 | 1.15772 | 0.578860 | − | 0.815427i | \(-0.303498\pi\) | ||||
0.578860 | + | 0.815427i | \(0.303498\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 26.0000 | 1.87152 | 0.935760 | − | 0.352636i | \(-0.114715\pi\) | ||||
0.935760 | + | 0.352636i | \(0.114715\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 24.0000 | 1.70993 | 0.854965 | − | 0.518686i | \(-0.173579\pi\) | ||||
0.854965 | + | 0.518686i | \(0.173579\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −16.0000 | −1.13421 | −0.567105 | − | 0.823646i | \(-0.691937\pi\) | ||||
−0.567105 | + | 0.823646i | \(0.691937\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −4.00000 | −0.275371 | −0.137686 | − | 0.990476i | \(-0.543966\pi\) | ||||
−0.137686 | + | 0.990476i | \(0.543966\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 2.00000 | 0.134535 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | 4.00000 | 0.267860 | 0.133930 | − | 0.990991i | \(-0.457240\pi\) | ||||
0.133930 | + | 0.990991i | \(0.457240\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −14.0000 | −0.929213 | −0.464606 | − | 0.885517i | \(-0.653804\pi\) | ||||
−0.464606 | + | 0.885517i | \(0.653804\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −22.0000 | −1.45380 | −0.726900 | − | 0.686743i | \(-0.759040\pi\) | ||||
−0.726900 | + | 0.686743i | \(0.759040\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −6.00000 | −0.393073 | −0.196537 | − | 0.980497i | \(-0.562969\pi\) | ||||
−0.196537 | + | 0.980497i | \(0.562969\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −14.0000 | −0.905585 | −0.452792 | − | 0.891616i | \(-0.649572\pi\) | ||||
−0.452792 | + | 0.891616i | \(0.649572\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −10.0000 | −0.644157 | −0.322078 | − | 0.946713i | \(-0.604381\pi\) | ||||
−0.322078 | + | 0.946713i | \(0.604381\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 0 | 0 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 24.0000 | 1.50887 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 26.0000 | 1.62184 | 0.810918 | − | 0.585160i | \(-0.198968\pi\) | ||||
0.810918 | + | 0.585160i | \(0.198968\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 12.0000 | 0.739952 | 0.369976 | − | 0.929041i | \(-0.379366\pi\) | ||||
0.369976 | + | 0.929041i | \(0.379366\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 22.0000 | 1.34136 | 0.670682 | − | 0.741745i | \(-0.266002\pi\) | ||||
0.670682 | + | 0.741745i | \(0.266002\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 8.00000 | 0.485965 | 0.242983 | − | 0.970031i | \(-0.421874\pi\) | ||||
0.242983 | + | 0.970031i | \(0.421874\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | −30.0000 | −1.80907 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 14.0000 | 0.841178 | 0.420589 | − | 0.907251i | \(-0.361823\pi\) | ||||
0.420589 | + | 0.907251i | \(0.361823\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000 | 0.237775 | 0.118888 | − | 0.992908i | \(-0.462067\pi\) | ||||
0.118888 | + | 0.992908i | \(0.462067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −13.0000 | −0.764706 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | −20.0000 | −1.16841 | −0.584206 | − | 0.811605i | \(-0.698594\pi\) | ||||
−0.584206 | + | 0.811605i | \(0.698594\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | −4.00000 | −0.231326 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −28.0000 | −1.59804 | −0.799022 | − | 0.601302i | \(-0.794649\pi\) | ||||
−0.799022 | + | 0.601302i | \(0.794649\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 20.0000 | 1.13410 | 0.567048 | − | 0.823685i | \(-0.308085\pi\) | ||||
0.567048 | + | 0.823685i | \(0.308085\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −26.0000 | −1.46961 | −0.734803 | − | 0.678280i | \(-0.762726\pi\) | ||||
−0.734803 | + | 0.678280i | \(0.762726\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −16.0000 | −0.898650 | −0.449325 | − | 0.893368i | \(-0.648335\pi\) | ||||
−0.449325 | + | 0.893368i | \(0.648335\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 36.0000 | 2.01561 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 5.00000 | 0.277350 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −34.0000 | −1.85210 | −0.926049 | − | 0.377403i | \(-0.876817\pi\) | ||||
−0.926049 | + | 0.377403i | \(0.876817\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 24.0000 | 1.29967 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −4.00000 | −0.214731 | −0.107366 | − | 0.994220i | \(-0.534242\pi\) | ||||
−0.107366 | + | 0.994220i | \(0.534242\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −34.0000 | −1.81998 | −0.909989 | − | 0.414632i | \(-0.863910\pi\) | ||||
−0.909989 | + | 0.414632i | \(0.863910\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −32.0000 | −1.70319 | −0.851594 | − | 0.524202i | \(-0.824364\pi\) | ||||
−0.851594 | + | 0.524202i | \(0.824364\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 2.00000 | 0.105556 | 0.0527780 | − | 0.998606i | \(-0.483192\pi\) | ||||
0.0527780 | + | 0.998606i | \(0.483192\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | −19.0000 | −1.00000 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −24.0000 | −1.25279 | −0.626395 | − | 0.779506i | \(-0.715470\pi\) | ||||
−0.626395 | + | 0.779506i | \(0.715470\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 26.0000 | 1.34623 | 0.673114 | − | 0.739538i | \(-0.264956\pi\) | ||||
0.673114 | + | 0.739538i | \(0.264956\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −6.00000 | −0.309016 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 8.00000 | 0.410932 | 0.205466 | − | 0.978664i | \(-0.434129\pi\) | ||||
0.205466 | + | 0.978664i | \(0.434129\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −18.0000 | −0.919757 | −0.459879 | − | 0.887982i | \(-0.652107\pi\) | ||||
−0.459879 | + | 0.887982i | \(0.652107\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −8.00000 | −0.404577 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −2.00000 | −0.100377 | −0.0501886 | − | 0.998740i | \(-0.515982\pi\) | ||||
−0.0501886 | + | 0.998740i | \(0.515982\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 12.0000 | 0.599251 | 0.299626 | − | 0.954057i | \(-0.403138\pi\) | ||||
0.299626 | + | 0.954057i | \(0.403138\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | −4.00000 | −0.199254 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −12.0000 | −0.594818 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −18.0000 | −0.890043 | −0.445021 | − | 0.895520i | \(-0.646804\pi\) | ||||
−0.445021 | + | 0.895520i | \(0.646804\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −6.00000 | −0.292422 | −0.146211 | − | 0.989253i | \(-0.546708\pi\) | ||||
−0.146211 | + | 0.989253i | \(0.546708\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 10.0000 | 0.485071 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −2.00000 | −0.0963366 | −0.0481683 | − | 0.998839i | \(-0.515338\pi\) | ||||
−0.0481683 | + | 0.998839i | \(0.515338\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 30.0000 | 1.44171 | 0.720854 | − | 0.693087i | \(-0.243750\pi\) | ||||
0.720854 | + | 0.693087i | \(0.243750\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 0 | 0 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 16.0000 | 0.763638 | 0.381819 | − | 0.924237i | \(-0.375298\pi\) | ||||
0.381819 | + | 0.924237i | \(0.375298\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 16.0000 | 0.760183 | 0.380091 | − | 0.924949i | \(-0.375893\pi\) | ||||
0.380091 | + | 0.924949i | \(0.375893\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 4.00000 | 0.188772 | 0.0943858 | − | 0.995536i | \(-0.469911\pi\) | ||||
0.0943858 | + | 0.995536i | \(0.469911\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −18.0000 | −0.842004 | −0.421002 | − | 0.907060i | \(-0.638322\pi\) | ||||
−0.421002 | + | 0.907060i | \(0.638322\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −40.0000 | −1.86299 | −0.931493 | − | 0.363760i | \(-0.881493\pi\) | ||||
−0.931493 | + | 0.363760i | \(0.881493\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 16.0000 | 0.743583 | 0.371792 | − | 0.928316i | \(-0.378744\pi\) | ||||
0.371792 | + | 0.928316i | \(0.378744\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −24.0000 | −1.11059 | −0.555294 | − | 0.831654i | \(-0.687394\pi\) | ||||
−0.555294 | + | 0.831654i | \(0.687394\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −24.0000 | −1.10352 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 30.0000 | 1.37073 | 0.685367 | − | 0.728197i | \(-0.259642\pi\) | ||||
0.685367 | + | 0.728197i | \(0.259642\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 2.00000 | 0.0911922 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | −12.0000 | −0.543772 | −0.271886 | − | 0.962329i | \(-0.587647\pi\) | ||||
−0.271886 | + | 0.962329i | \(0.587647\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 40.0000 | 1.80517 | 0.902587 | − | 0.430507i | \(-0.141665\pi\) | ||||
0.902587 | + | 0.430507i | \(0.141665\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −12.0000 | −0.540453 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 36.0000 | 1.61158 | 0.805791 | − | 0.592200i | \(-0.201741\pi\) | ||||
0.805791 | + | 0.592200i | \(0.201741\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 36.0000 | 1.60516 | 0.802580 | − | 0.596544i | \(-0.203460\pi\) | ||||
0.802580 | + | 0.596544i | \(0.203460\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | −40.0000 | −1.77297 | −0.886484 | − | 0.462758i | \(-0.846860\pi\) | ||||
−0.886484 | + | 0.462758i | \(0.846860\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 60.0000 | 2.63880 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 18.0000 | 0.788594 | 0.394297 | − | 0.918983i | \(-0.370988\pi\) | ||||
0.394297 | + | 0.918983i | \(0.370988\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | −28.0000 | −1.22435 | −0.612177 | − | 0.790721i | \(-0.709706\pi\) | ||||
−0.612177 | + | 0.790721i | \(0.709706\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | −8.00000 | −0.348485 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 0 | 0 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | −42.0000 | −1.80907 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −38.0000 | −1.63375 | −0.816874 | − | 0.576816i | \(-0.804295\pi\) | ||||
−0.816874 | + | 0.576816i | \(0.804295\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −12.0000 | −0.513083 | −0.256541 | − | 0.966533i | \(-0.582583\pi\) | ||||
−0.256541 | + | 0.966533i | \(0.582583\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 0 | 0 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | −28.0000 | −1.18640 | −0.593199 | − | 0.805056i | \(-0.702135\pi\) | ||||
−0.593199 | + | 0.805056i | \(0.702135\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 4.00000 | 0.169182 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −36.0000 | −1.51722 | −0.758610 | − | 0.651546i | \(-0.774121\pi\) | ||||
−0.758610 | + | 0.651546i | \(0.774121\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −22.0000 | −0.922288 | −0.461144 | − | 0.887325i | \(-0.652561\pi\) | ||||
−0.461144 | + | 0.887325i | \(0.652561\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 44.0000 | 1.84134 | 0.920671 | − | 0.390339i | \(-0.127642\pi\) | ||||
0.920671 | + | 0.390339i | \(0.127642\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −20.0000 | −0.834058 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −14.0000 | −0.582828 | −0.291414 | − | 0.956597i | \(-0.594126\pi\) | ||||
−0.291414 | + | 0.956597i | \(0.594126\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 60.0000 | 2.48495 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | −2.00000 | −0.0825488 | −0.0412744 | − | 0.999148i | \(-0.513142\pi\) | ||||
−0.0412744 | + | 0.999148i | \(0.513142\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 0 | 0 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | −12.0000 | −0.492781 | −0.246390 | − | 0.969171i | \(-0.579245\pi\) | ||||
−0.246390 | + | 0.969171i | \(0.579245\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 4.00000 | 0.163436 | 0.0817178 | − | 0.996656i | \(-0.473959\pi\) | ||||
0.0817178 | + | 0.996656i | \(0.473959\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 22.0000 | 0.897399 | 0.448699 | − | 0.893683i | \(-0.351887\pi\) | ||||
0.448699 | + | 0.893683i | \(0.351887\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −8.00000 | −0.324710 | −0.162355 | − | 0.986732i | \(-0.551909\pi\) | ||||
−0.162355 | + | 0.986732i | \(0.551909\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −10.0000 | −0.404557 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 6.00000 | 0.242338 | 0.121169 | − | 0.992632i | \(-0.461336\pi\) | ||||
0.121169 | + | 0.992632i | \(0.461336\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 24.0000 | 0.966204 | 0.483102 | − | 0.875564i | \(-0.339510\pi\) | ||||
0.483102 | + | 0.875564i | \(0.339510\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | −20.0000 | −0.803868 | −0.401934 | − | 0.915669i | \(-0.631662\pi\) | ||||
−0.401934 | + | 0.915669i | \(0.631662\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 25.0000 | 1.00000 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 4.00000 | 0.159490 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | 20.0000 | 0.796187 | 0.398094 | − | 0.917345i | \(-0.369672\pi\) | ||||
0.398094 | + | 0.917345i | \(0.369672\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 7.00000 | 0.277350 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 30.0000 | 1.18493 | 0.592464 | − | 0.805597i | \(-0.298155\pi\) | ||||
0.592464 | + | 0.805597i | \(0.298155\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | −4.00000 | −0.157745 | −0.0788723 | − | 0.996885i | \(-0.525132\pi\) | ||||
−0.0788723 | + | 0.996885i | \(0.525132\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −16.0000 | −0.629025 | −0.314512 | − | 0.949253i | \(-0.601841\pi\) | ||||
−0.314512 | + | 0.949253i | \(0.601841\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | −36.0000 | −1.41312 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 22.0000 | 0.860927 | 0.430463 | − | 0.902608i | \(-0.358350\pi\) | ||||
0.430463 | + | 0.902608i | \(0.358350\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | −4.00000 | −0.155818 | −0.0779089 | − | 0.996960i | \(-0.524824\pi\) | ||||
−0.0779089 | + | 0.996960i | \(0.524824\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −2.00000 | −0.0777910 | −0.0388955 | − | 0.999243i | \(-0.512384\pi\) | ||||
−0.0388955 | + | 0.999243i | \(0.512384\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 24.0000 | 0.929284 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | −36.0000 | −1.38976 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −14.0000 | −0.539660 | −0.269830 | − | 0.962908i | \(-0.586968\pi\) | ||||
−0.269830 | + | 0.962908i | \(0.586968\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 18.0000 | 0.691796 | 0.345898 | − | 0.938272i | \(-0.387574\pi\) | ||||
0.345898 | + | 0.938272i | \(0.387574\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 6.00000 | 0.229584 | 0.114792 | − | 0.993390i | \(-0.463380\pi\) | ||||
0.114792 | + | 0.993390i | \(0.463380\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −10.0000 | −0.380970 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −28.0000 | −1.06517 | −0.532585 | − | 0.846376i | \(-0.678779\pi\) | ||||
−0.532585 | + | 0.846376i | \(0.678779\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −30.0000 | −1.13308 | −0.566542 | − | 0.824033i | \(-0.691719\pi\) | ||||
−0.566542 | + | 0.824033i | \(0.691719\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 0 | 0 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −14.0000 | −0.525781 | −0.262891 | − | 0.964826i | \(-0.584676\pi\) | ||||
−0.262891 | + | 0.964826i | \(0.584676\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 16.0000 | 0.599205 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −4.00000 | −0.149175 | −0.0745874 | − | 0.997214i | \(-0.523764\pi\) | ||||
−0.0745874 | + | 0.997214i | \(0.523764\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | −30.0000 | −1.11417 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −32.0000 | −1.18681 | −0.593407 | − | 0.804902i | \(-0.702218\pi\) | ||||
−0.593407 | + | 0.804902i | \(0.702218\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 8.00000 | 0.295891 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −14.0000 | −0.517102 | −0.258551 | − | 0.965998i | \(-0.583245\pi\) | ||||
−0.258551 | + | 0.965998i | \(0.583245\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 72.0000 | 2.65215 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | 52.0000 | 1.91285 | 0.956425 | − | 0.291977i | \(-0.0943129\pi\) | ||||
0.956425 | + | 0.291977i | \(0.0943129\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | 34.0000 | 1.24734 | 0.623670 | − | 0.781688i | \(-0.285641\pi\) | ||||
0.623670 | + | 0.781688i | \(0.285641\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −16.0000 | −0.583848 | −0.291924 | − | 0.956441i | \(-0.594295\pi\) | ||||
−0.291924 | + | 0.956441i | \(0.594295\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 10.0000 | 0.363456 | 0.181728 | − | 0.983349i | \(-0.441831\pi\) | ||||
0.181728 | + | 0.983349i | \(0.441831\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −16.0000 | −0.580000 | −0.290000 | − | 0.957027i | \(-0.593655\pi\) | ||||
−0.290000 | + | 0.957027i | \(0.593655\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 6.00000 | 0.216647 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 42.0000 | 1.51456 | 0.757279 | − | 0.653091i | \(-0.226528\pi\) | ||||
0.757279 | + | 0.653091i | \(0.226528\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −20.0000 | −0.719350 | −0.359675 | − | 0.933078i | \(-0.617112\pi\) | ||||
−0.359675 | + | 0.933078i | \(0.617112\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −20.0000 | −0.718421 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 0 | 0 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 12.0000 | 0.429394 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −12.0000 | −0.427754 | −0.213877 | − | 0.976861i | \(-0.568609\pi\) | ||||
−0.213877 | + | 0.976861i | \(0.568609\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 6.00000 | 0.213066 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 42.0000 | 1.48772 | 0.743858 | − | 0.668338i | \(-0.232994\pi\) | ||||
0.743858 | + | 0.668338i | \(0.232994\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −20.0000 | −0.707549 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 36.0000 | 1.27041 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −30.0000 | −1.05474 | −0.527372 | − | 0.849635i | \(-0.676823\pi\) | ||||
−0.527372 | + | 0.849635i | \(0.676823\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −16.0000 | −0.561836 | −0.280918 | − | 0.959732i | \(-0.590639\pi\) | ||||
−0.280918 | + | 0.959732i | \(0.590639\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 0 | 0 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 36.0000 | 1.25641 | 0.628204 | − | 0.778048i | \(-0.283790\pi\) | ||||
0.628204 | + | 0.778048i | \(0.283790\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −2.00000 | −0.0695468 | −0.0347734 | − | 0.999395i | \(-0.511071\pi\) | ||||
−0.0347734 | + | 0.999395i | \(0.511071\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 34.0000 | 1.18087 | 0.590434 | − | 0.807086i | \(-0.298956\pi\) | ||||
0.590434 | + | 0.807086i | \(0.298956\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 14.0000 | 0.485071 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | 30.0000 | 1.03572 | 0.517858 | − | 0.855467i | \(-0.326730\pi\) | ||||
0.517858 | + | 0.855467i | \(0.326730\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −8.00000 | −0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −2.00000 | −0.0684787 | −0.0342393 | − | 0.999414i | \(-0.510901\pi\) | ||||
−0.0342393 | + | 0.999414i | \(0.510901\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −6.00000 | −0.204956 | −0.102478 | − | 0.994735i | \(-0.532677\pi\) | ||||
−0.102478 | + | 0.994735i | \(0.532677\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | 12.0000 | 0.409435 | 0.204717 | − | 0.978821i | \(-0.434372\pi\) | ||||
0.204717 | + | 0.978821i | \(0.434372\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −18.0000 | −0.612727 | −0.306364 | − | 0.951915i | \(-0.599112\pi\) | ||||
−0.306364 | + | 0.951915i | \(0.599112\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 96.0000 | 3.25658 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −12.0000 | −0.406604 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 46.0000 | 1.55331 | 0.776655 | − | 0.629926i | \(-0.216915\pi\) | ||||
0.776655 | + | 0.629926i | \(0.216915\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 18.0000 | 0.606435 | 0.303218 | − | 0.952921i | \(-0.401939\pi\) | ||||
0.303218 | + | 0.952921i | \(0.401939\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −4.00000 | −0.134611 | −0.0673054 | − | 0.997732i | \(-0.521440\pi\) | ||||
−0.0673054 | + | 0.997732i | \(0.521440\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 48.0000 | 1.61168 | 0.805841 | − | 0.592132i | \(-0.201714\pi\) | ||||
0.805841 | + | 0.592132i | \(0.201714\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | 0 | 0 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 24.0000 | 0.800445 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | −20.0000 | −0.666297 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | −36.0000 | −1.19536 | −0.597680 | − | 0.801735i | \(-0.703911\pi\) | ||||
−0.597680 | + | 0.801735i | \(0.703911\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | 48.0000 | 1.59031 | 0.795155 | − | 0.606406i | \(-0.207389\pi\) | ||||
0.795155 | + | 0.606406i | \(0.207389\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 36.0000 | 1.19143 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | −24.0000 | −0.791687 | −0.395843 | − | 0.918318i | \(-0.629548\pi\) | ||||
−0.395843 | + | 0.918318i | \(0.629548\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −2.00000 | −0.0658308 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 10.0000 | 0.328798 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 48.0000 | 1.57483 | 0.787414 | − | 0.616424i | \(-0.211419\pi\) | ||||
0.787414 | + | 0.616424i | \(0.211419\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 14.0000 | 0.457360 | 0.228680 | − | 0.973502i | \(-0.426559\pi\) | ||||
0.228680 | + | 0.973502i | \(0.426559\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −4.00000 | −0.130396 | −0.0651981 | − | 0.997872i | \(-0.520768\pi\) | ||||
−0.0651981 | + | 0.997872i | \(0.520768\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | 0 | 0 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 2.00000 | 0.0649913 | 0.0324956 | − | 0.999472i | \(-0.489654\pi\) | ||||
0.0324956 | + | 0.999472i | \(0.489654\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | −6.00000 | −0.194768 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 2.00000 | 0.0647864 | 0.0323932 | − | 0.999475i | \(-0.489687\pi\) | ||||
0.0323932 | + | 0.999475i | \(0.489687\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −15.0000 | −0.483871 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −4.00000 | −0.128631 | −0.0643157 | − | 0.997930i | \(-0.520486\pi\) | ||||
−0.0643157 | + | 0.997930i | \(0.520486\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 28.0000 | 0.898563 | 0.449281 | − | 0.893390i | \(-0.351680\pi\) | ||||
0.449281 | + | 0.893390i | \(0.351680\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −36.0000 | −1.15174 | −0.575871 | − | 0.817541i | \(-0.695337\pi\) | ||||
−0.575871 | + | 0.817541i | \(0.695337\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | −24.0000 | −0.767043 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −34.0000 | −1.08443 | −0.542216 | − | 0.840239i | \(-0.682414\pi\) | ||||
−0.542216 | + | 0.840239i | \(0.682414\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −16.0000 | −0.508770 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −32.0000 | −1.01651 | −0.508257 | − | 0.861206i | \(-0.669710\pi\) | ||||
−0.508257 | + | 0.861206i | \(0.669710\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 38.0000 | 1.20347 | 0.601736 | − | 0.798695i | \(-0.294476\pi\) | ||||
0.601736 | + | 0.798695i | \(0.294476\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 1872.2.a.j.1.1 | 1 | ||
3.2 | odd | 2 | 624.2.a.c.1.1 | 1 | |||
4.3 | odd | 2 | 936.2.a.e.1.1 | 1 | |||
8.3 | odd | 2 | 7488.2.a.bd.1.1 | 1 | |||
8.5 | even | 2 | 7488.2.a.bc.1.1 | 1 | |||
12.11 | even | 2 | 312.2.a.e.1.1 | ✓ | 1 | ||
24.5 | odd | 2 | 2496.2.a.x.1.1 | 1 | |||
24.11 | even | 2 | 2496.2.a.g.1.1 | 1 | |||
39.38 | odd | 2 | 8112.2.a.h.1.1 | 1 | |||
60.59 | even | 2 | 7800.2.a.f.1.1 | 1 | |||
156.47 | odd | 4 | 4056.2.c.g.337.1 | 2 | |||
156.83 | odd | 4 | 4056.2.c.g.337.2 | 2 | |||
156.155 | even | 2 | 4056.2.a.o.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
312.2.a.e.1.1 | ✓ | 1 | 12.11 | even | 2 | ||
624.2.a.c.1.1 | 1 | 3.2 | odd | 2 | |||
936.2.a.e.1.1 | 1 | 4.3 | odd | 2 | |||
1872.2.a.j.1.1 | 1 | 1.1 | even | 1 | trivial | ||
2496.2.a.g.1.1 | 1 | 24.11 | even | 2 | |||
2496.2.a.x.1.1 | 1 | 24.5 | odd | 2 | |||
4056.2.a.o.1.1 | 1 | 156.155 | even | 2 | |||
4056.2.c.g.337.1 | 2 | 156.47 | odd | 4 | |||
4056.2.c.g.337.2 | 2 | 156.83 | odd | 4 | |||
7488.2.a.bc.1.1 | 1 | 8.5 | even | 2 | |||
7488.2.a.bd.1.1 | 1 | 8.3 | odd | 2 | |||
7800.2.a.f.1.1 | 1 | 60.59 | even | 2 | |||
8112.2.a.h.1.1 | 1 | 39.38 | odd | 2 |