Newspace parameters
| Level: | \( N \) | \(=\) | \( 187 = 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 187.s (of order \(80\), degree \(32\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(5.09538094354\) |
| Analytic rank: | \(0\) |
| Dimension: | \(1088\) |
| Relative dimension: | \(34\) over \(\Q(\zeta_{80})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{80}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.1 | −1.96295 | + | 3.20325i | −0.276503 | − | 2.33616i | −4.59166 | − | 9.01164i | −0.300077 | + | 7.63747i | 8.02608 | + | 3.70008i | −5.93333 | − | 7.52639i | 22.8986 | + | 1.80216i | 3.37012 | − | 0.809094i | −23.8757 | − | 15.9532i |
| 3.2 | −1.90176 | + | 3.10340i | 0.280815 | + | 2.37260i | −4.19840 | − | 8.23982i | 0.168607 | − | 4.29133i | −7.89715 | − | 3.64064i | −4.85649 | − | 6.16043i | 19.0417 | + | 1.49861i | 3.20097 | − | 0.768486i | 12.9970 | + | 8.68435i |
| 3.3 | −1.85912 | + | 3.03382i | −0.0796775 | − | 0.673192i | −3.93173 | − | 7.71645i | 0.0162409 | − | 0.413358i | 2.19047 | + | 1.00982i | 5.67410 | + | 7.19757i | 16.5312 | + | 1.30103i | 8.30449 | − | 1.99373i | 1.22386 | + | 0.817755i |
| 3.4 | −1.84103 | + | 3.00428i | −0.678183 | − | 5.72994i | −3.82038 | − | 7.49792i | 0.265647 | − | 6.76116i | 18.4629 | + | 8.51153i | 0.562533 | + | 0.713570i | 15.5087 | + | 1.22056i | −23.6210 | + | 5.67089i | 19.8234 | + | 13.2456i |
| 3.5 | −1.78514 | + | 2.91308i | 0.592058 | + | 5.00227i | −3.48336 | − | 6.83647i | −0.124830 | + | 3.17714i | −15.6289 | − | 7.20503i | 3.94234 | + | 5.00084i | 12.5094 | + | 0.984513i | −15.9209 | + | 3.82226i | −9.03242 | − | 6.03527i |
| 3.6 | −1.42017 | + | 2.31750i | 0.204124 | + | 1.72464i | −1.53798 | − | 3.01846i | 0.375968 | − | 9.56903i | −4.28674 | − | 1.97622i | 4.37900 | + | 5.55474i | −1.65913 | − | 0.130577i | 5.81862 | − | 1.39693i | 21.6423 | + | 14.4609i |
| 3.7 | −1.41704 | + | 2.31239i | −0.354174 | − | 2.99240i | −1.52320 | − | 2.98946i | −0.0337247 | + | 0.858350i | 7.42149 | + | 3.42135i | −0.0696112 | − | 0.0883014i | −1.74347 | − | 0.137214i | −0.0777044 | + | 0.0186552i | −1.93705 | − | 1.29430i |
| 3.8 | −1.24072 | + | 2.02467i | 0.105228 | + | 0.889063i | −0.743947 | − | 1.46008i | −0.344120 | + | 8.75844i | −1.93062 | − | 0.890027i | 4.39533 | + | 5.57544i | −5.58988 | − | 0.439933i | 7.97197 | − | 1.91390i | −17.3060 | − | 11.5635i |
| 3.9 | −1.16906 | + | 1.90774i | −0.281713 | − | 2.38018i | −0.456793 | − | 0.896507i | 0.0198603 | − | 0.505478i | 4.87010 | + | 2.24515i | −0.00883067 | − | 0.0112016i | −6.67788 | − | 0.525561i | 3.16543 | − | 0.759952i | 0.941102 | + | 0.628824i |
| 3.10 | −1.05916 | + | 1.72839i | 0.199385 | + | 1.68459i | −0.0495482 | − | 0.0972439i | 0.128367 | − | 3.26716i | −3.12281 | − | 1.43963i | −7.23020 | − | 9.17146i | −7.86285 | − | 0.618820i | 5.95323 | − | 1.42925i | 5.51097 | + | 3.68231i |
| 3.11 | −1.05760 | + | 1.72584i | 0.427270 | + | 3.60999i | −0.0440575 | − | 0.0864677i | −0.202821 | + | 5.16214i | −6.68215 | − | 3.08051i | −4.39210 | − | 5.57135i | −7.87568 | − | 0.619829i | −4.09810 | + | 0.983868i | −8.69453 | − | 5.80950i |
| 3.12 | −0.881751 | + | 1.43889i | 0.676582 | + | 5.71641i | 0.523052 | + | 1.02655i | 0.194023 | − | 4.93823i | −8.82185 | − | 4.06693i | 0.375553 | + | 0.476387i | −8.66774 | − | 0.682166i | −23.4683 | + | 5.63424i | 6.93447 | + | 4.63346i |
| 3.13 | −0.647755 | + | 1.05704i | −0.616836 | − | 5.21162i | 1.11822 | + | 2.19462i | −0.278676 | + | 7.09277i | 5.90845 | + | 2.72383i | −7.03699 | − | 8.92637i | −7.98775 | − | 0.628649i | −18.0292 | + | 4.32842i | −7.31683 | − | 4.88895i |
| 3.14 | −0.592575 | + | 0.966994i | −0.576717 | − | 4.87266i | 1.23203 | + | 2.41799i | −0.0804210 | + | 2.04685i | 5.05358 | + | 2.32973i | 8.01783 | + | 10.1706i | −7.59074 | − | 0.597404i | −14.6588 | + | 3.51928i | −1.93164 | − | 1.29068i |
| 3.15 | −0.400743 | + | 0.653953i | −0.440503 | − | 3.72179i | 1.54890 | + | 3.03989i | 0.348897 | − | 8.88002i | 2.61041 | + | 1.20341i | −1.81000 | − | 2.29597i | −5.66709 | − | 0.446010i | −4.90638 | + | 1.17792i | 5.66729 | + | 3.78677i |
| 3.16 | −0.276611 | + | 0.451388i | 0.0904024 | + | 0.763806i | 1.68872 | + | 3.31431i | 0.133991 | − | 3.41029i | −0.369779 | − | 0.170471i | 2.36738 | + | 3.00301i | −4.07423 | − | 0.320649i | 8.17610 | − | 1.96291i | 1.50230 | + | 1.00380i |
| 3.17 | −0.215376 | + | 0.351462i | 0.435183 | + | 3.67684i | 1.73882 | + | 3.41263i | −0.0424735 | + | 1.08102i | −1.38600 | − | 0.638953i | 5.03097 | + | 6.38176i | −3.21765 | − | 0.253234i | −4.57845 | + | 1.09919i | −0.370790 | − | 0.247754i |
| 3.18 | −0.0865527 | + | 0.141241i | 0.0768910 | + | 0.649649i | 1.80350 | + | 3.53958i | −0.217601 | + | 5.53833i | −0.0984123 | − | 0.0453687i | 0.171889 | + | 0.218040i | −1.31660 | − | 0.103618i | 8.33520 | − | 2.00110i | −0.763406 | − | 0.510091i |
| 3.19 | 0.0700640 | − | 0.114334i | −0.130069 | − | 1.09894i | 1.80780 | + | 3.54800i | 0.0660040 | − | 1.67992i | −0.134760 | − | 0.0621251i | −5.88909 | − | 7.47028i | 1.06704 | + | 0.0839781i | 7.56057 | − | 1.81513i | −0.187447 | − | 0.125248i |
| 3.20 | 0.511749 | − | 0.835099i | 0.519863 | + | 4.39230i | 1.38046 | + | 2.70930i | −0.281909 | + | 7.17507i | 3.93404 | + | 1.81362i | −6.91546 | − | 8.77222i | 6.87462 | + | 0.541044i | −10.2707 | + | 2.46577i | 5.84763 | + | 3.90726i |
| See next 80 embeddings (of 1088 total) | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 11.c | even | 5 | 1 | inner |
| 17.e | odd | 16 | 1 | inner |
| 187.s | odd | 80 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 187.3.s.a | ✓ | 1088 |
| 11.c | even | 5 | 1 | inner | 187.3.s.a | ✓ | 1088 |
| 17.e | odd | 16 | 1 | inner | 187.3.s.a | ✓ | 1088 |
| 187.s | odd | 80 | 1 | inner | 187.3.s.a | ✓ | 1088 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 187.3.s.a | ✓ | 1088 | 1.a | even | 1 | 1 | trivial |
| 187.3.s.a | ✓ | 1088 | 11.c | even | 5 | 1 | inner |
| 187.3.s.a | ✓ | 1088 | 17.e | odd | 16 | 1 | inner |
| 187.3.s.a | ✓ | 1088 | 187.s | odd | 80 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(187, [\chi])\).