Properties

Label 187.2.m
Level $187$
Weight $2$
Character orbit 187.m
Rep. character $\chi_{187}(10,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $128$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 187 = 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 187.m (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 187 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(187, [\chi])\).

Total New Old
Modular forms 160 160 0
Cusp forms 128 128 0
Eisenstein series 32 32 0

Trace form

\( 128 q - 16 q^{3} - 16 q^{4} - 16 q^{5} - 16 q^{9} - 64 q^{12} + 16 q^{14} - 16 q^{15} - 16 q^{20} + 8 q^{22} - 32 q^{23} + 16 q^{26} + 32 q^{27} - 80 q^{31} - 16 q^{34} + 16 q^{36} + 16 q^{37} + 80 q^{38}+ \cdots - 112 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(187, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
187.2.m.a 187.m 187.m $128$ $1.493$ None 187.2.m.a \(0\) \(-16\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{16}]$