Defining parameters
| Level: | \( N \) | \(=\) | \( 187 = 11 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 187.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 6 \) | ||
| Sturm bound: | \(36\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(187))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 20 | 13 | 7 |
| Cusp forms | 17 | 13 | 4 |
| Eisenstein series | 3 | 0 | 3 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(11\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(3\) | \(3\) | \(0\) | \(3\) | \(3\) | \(0\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(-\) | \(-\) | \(7\) | \(5\) | \(2\) | \(6\) | \(5\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(5\) | \(3\) | \(2\) | \(4\) | \(3\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(5\) | \(2\) | \(3\) | \(4\) | \(2\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(8\) | \(5\) | \(3\) | \(7\) | \(5\) | \(2\) | \(1\) | \(0\) | \(1\) | ||||
| Minus space | \(-\) | \(12\) | \(8\) | \(4\) | \(10\) | \(8\) | \(2\) | \(2\) | \(0\) | \(2\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(187))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 11 | 17 | |||||||
| 187.2.a.a | $1$ | $1.493$ | \(\Q\) | None | \(0\) | \(1\) | \(3\) | \(2\) | $-$ | $+$ | \(q+q^{3}-2q^{4}+3q^{5}+2q^{7}-2q^{9}+\cdots\) | |
| 187.2.a.b | $1$ | $1.493$ | \(\Q\) | None | \(2\) | \(0\) | \(4\) | \(-5\) | $+$ | $-$ | \(q+2q^{2}+2q^{4}+4q^{5}-5q^{7}-3q^{9}+\cdots\) | |
| 187.2.a.c | $2$ | $1.493$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(0\) | \(-4\) | \(-4\) | $-$ | $-$ | \(q+(-1+\beta )q^{2}-\beta q^{3}+(2-2\beta )q^{4}+\cdots\) | |
| 187.2.a.d | $2$ | $1.493$ | \(\Q(\sqrt{17}) \) | None | \(4\) | \(-1\) | \(1\) | \(3\) | $-$ | $+$ | \(q+2q^{2}+(-1+\beta )q^{3}+2q^{4}+(1-\beta )q^{5}+\cdots\) | |
| 187.2.a.e | $3$ | $1.493$ | 3.3.148.1 | None | \(-2\) | \(-3\) | \(-7\) | \(0\) | $+$ | $+$ | \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\) | |
| 187.2.a.f | $4$ | $1.493$ | 4.4.33844.1 | None | \(1\) | \(1\) | \(3\) | \(0\) | $+$ | $-$ | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(187))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(187)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)