Properties

Label 187.2.a
Level $187$
Weight $2$
Character orbit 187.a
Rep. character $\chi_{187}(1,\cdot)$
Character field $\Q$
Dimension $13$
Newform subspaces $6$
Sturm bound $36$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 187 = 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 187.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 6 \)
Sturm bound: \(36\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(187))\).

Total New Old
Modular forms 20 13 7
Cusp forms 17 13 4
Eisenstein series 3 0 3

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(11\)\(17\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(3\)\(3\)\(0\)\(3\)\(3\)\(0\)\(0\)\(0\)\(0\)
\(+\)\(-\)\(-\)\(7\)\(5\)\(2\)\(6\)\(5\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(5\)\(3\)\(2\)\(4\)\(3\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(5\)\(2\)\(3\)\(4\)\(2\)\(2\)\(1\)\(0\)\(1\)
Plus space\(+\)\(8\)\(5\)\(3\)\(7\)\(5\)\(2\)\(1\)\(0\)\(1\)
Minus space\(-\)\(12\)\(8\)\(4\)\(10\)\(8\)\(2\)\(2\)\(0\)\(2\)

Trace form

\( 13 q + 3 q^{2} - 2 q^{3} + 15 q^{4} - 8 q^{6} - 4 q^{7} - 9 q^{8} + 11 q^{9} + 6 q^{10} - 3 q^{11} - 4 q^{12} - 6 q^{13} - 4 q^{14} - 2 q^{15} + 31 q^{16} + q^{17} - 17 q^{18} - 18 q^{20} - 24 q^{21} + q^{22}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(187))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 11 17
187.2.a.a 187.a 1.a $1$ $1.493$ \(\Q\) None 187.2.a.a \(0\) \(1\) \(3\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+3q^{5}+2q^{7}-2q^{9}+\cdots\)
187.2.a.b 187.a 1.a $1$ $1.493$ \(\Q\) None 187.2.a.b \(2\) \(0\) \(4\) \(-5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+2q^{4}+4q^{5}-5q^{7}-3q^{9}+\cdots\)
187.2.a.c 187.a 1.a $2$ $1.493$ \(\Q(\sqrt{3}) \) None 187.2.a.c \(-2\) \(0\) \(-4\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-1+\beta )q^{2}-\beta q^{3}+(2-2\beta )q^{4}+\cdots\)
187.2.a.d 187.a 1.a $2$ $1.493$ \(\Q(\sqrt{17}) \) None 187.2.a.d \(4\) \(-1\) \(1\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-1+\beta )q^{3}+2q^{4}+(1-\beta )q^{5}+\cdots\)
187.2.a.e 187.a 1.a $3$ $1.493$ 3.3.148.1 None 187.2.a.e \(-2\) \(-3\) \(-7\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-1+\beta _{1})q^{2}+(-1-\beta _{2})q^{3}+(1+\cdots)q^{4}+\cdots\)
187.2.a.f 187.a 1.a $4$ $1.493$ 4.4.33844.1 None 187.2.a.f \(1\) \(1\) \(3\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(1+\beta _{1}+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(187))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(187)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 2}\)