Properties

Label 1862.2.k
Level $1862$
Weight $2$
Character orbit 1862.k
Rep. character $\chi_{1862}(411,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $136$
Sturm bound $560$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1862 = 2 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1862.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 133 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(560\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1862, [\chi])\).

Total New Old
Modular forms 592 136 456
Cusp forms 528 136 392
Eisenstein series 64 0 64

Trace form

\( 136 q - 136 q^{4} - 72 q^{9} + 6 q^{13} - 42 q^{15} + 136 q^{16} - 24 q^{17} + 12 q^{19} - 30 q^{22} - 18 q^{23} - 148 q^{25} + 12 q^{26} + 30 q^{29} + 16 q^{30} + 6 q^{31} + 12 q^{34} + 72 q^{36} - 42 q^{37}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1862, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1862, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1862, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(931, [\chi])\)\(^{\oplus 2}\)