Defining parameters
| Level: | \( N \) | \(=\) | \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1860.f (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 124 \) |
| Character field: | \(\Q\) | ||
| Sturm bound: | \(1536\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(1860, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1160 | 384 | 776 |
| Cusp forms | 1144 | 384 | 760 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(1860, [\chi])\) into newform subspaces
The newforms in this space have not yet been added to the LMFDB.
Decomposition of \(S_{4}^{\mathrm{old}}(1860, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(1860, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(124, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(372, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(620, [\chi])\)\(^{\oplus 2}\)