Properties

Label 1860.4.a.h
Level $1860$
Weight $4$
Character orbit 1860.a
Self dual yes
Analytic conductor $109.744$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,4,Mod(1,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1860.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,0,-27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.743552611\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 1602 x^{7} - 3024 x^{6} + 832872 x^{5} + 2239848 x^{4} - 157824556 x^{3} + \cdots - 36448841472 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{7}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{8}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 3 q^{3} + 5 q^{5} + (\beta_1 - 4) q^{7} + 9 q^{9} + (\beta_{4} - 5) q^{11} - \beta_{3} q^{13} - 15 q^{15} + ( - \beta_{5} - 5) q^{17} + ( - \beta_{8} + \beta_{4} - 1) q^{19} + ( - 3 \beta_1 + 12) q^{21}+ \cdots + (9 \beta_{4} - 45) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - 27 q^{3} + 45 q^{5} - 35 q^{7} + 81 q^{9} - 45 q^{11} - 4 q^{13} - 135 q^{15} - 42 q^{17} - 11 q^{19} + 105 q^{21} - q^{23} + 225 q^{25} - 243 q^{27} + 280 q^{29} - 279 q^{31} + 135 q^{33} - 175 q^{35}+ \cdots - 405 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{9} - x^{8} - 1602 x^{7} - 3024 x^{6} + 832872 x^{5} + 2239848 x^{4} - 157824556 x^{3} + \cdots - 36448841472 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 14\!\cdots\!87 \nu^{8} + \cdots + 15\!\cdots\!04 ) / 95\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 12\!\cdots\!47 \nu^{8} + \cdots + 42\!\cdots\!24 ) / 47\!\cdots\!62 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 16\!\cdots\!03 \nu^{8} + \cdots + 50\!\cdots\!80 ) / 19\!\cdots\!48 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 71\!\cdots\!73 \nu^{8} + \cdots + 50\!\cdots\!20 ) / 63\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 98\!\cdots\!53 \nu^{8} + \cdots - 85\!\cdots\!60 ) / 63\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 47\!\cdots\!46 \nu^{8} + \cdots + 53\!\cdots\!60 ) / 15\!\cdots\!54 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 22\!\cdots\!37 \nu^{8} + \cdots - 42\!\cdots\!32 ) / 63\!\cdots\!16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{7} - \beta_{6} + 2\beta_{5} - 3\beta_{4} - 2\beta_{3} + \beta_{2} + 5\beta _1 + 358 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -19\beta_{8} + 13\beta_{7} - 13\beta_{6} + 32\beta_{5} - 58\beta_{4} - 27\beta_{3} + 38\beta_{2} + 576\beta _1 + 1508 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 177 \beta_{8} + 1596 \beta_{7} - 1121 \beta_{6} + 1271 \beta_{5} - 2933 \beta_{4} - 1950 \beta_{3} + \cdots + 203398 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 20148 \beta_{8} + 16973 \beta_{7} - 23257 \beta_{6} + 28266 \beta_{5} - 66069 \beta_{4} + \cdots + 2406059 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( - 331120 \beta_{8} + 1201741 \beta_{7} - 1133836 \beta_{6} + 839719 \beta_{5} - 2687149 \beta_{4} + \cdots + 140212240 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 18801726 \beta_{8} + 18869163 \beta_{7} - 28915796 \beta_{6} + 22456965 \beta_{5} - 66798305 \beta_{4} + \cdots + 2605952876 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 415674150 \beta_{8} + 944557133 \beta_{7} - 1108375216 \beta_{6} + 613174643 \beta_{5} + \cdots + 108679843804 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−22.7141
−20.3712
−18.8062
−14.7458
5.30615
6.28625
11.7195
23.8209
30.5044
0 −3.00000 0 5.00000 0 −26.7141 0 9.00000 0
1.2 0 −3.00000 0 5.00000 0 −24.3712 0 9.00000 0
1.3 0 −3.00000 0 5.00000 0 −22.8062 0 9.00000 0
1.4 0 −3.00000 0 5.00000 0 −18.7458 0 9.00000 0
1.5 0 −3.00000 0 5.00000 0 1.30615 0 9.00000 0
1.6 0 −3.00000 0 5.00000 0 2.28625 0 9.00000 0
1.7 0 −3.00000 0 5.00000 0 7.71954 0 9.00000 0
1.8 0 −3.00000 0 5.00000 0 19.8209 0 9.00000 0
1.9 0 −3.00000 0 5.00000 0 26.5044 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.9
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(31\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1860.4.a.h 9
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1860.4.a.h 9 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{9} + 35 T_{7}^{8} - 1058 T_{7}^{7} - 42952 T_{7}^{6} + 250696 T_{7}^{5} + 14694152 T_{7}^{4} + \cdots - 3370741632 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1860))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{9} \) Copy content Toggle raw display
$3$ \( (T + 3)^{9} \) Copy content Toggle raw display
$5$ \( (T - 5)^{9} \) Copy content Toggle raw display
$7$ \( T^{9} + \cdots - 3370741632 \) Copy content Toggle raw display
$11$ \( T^{9} + \cdots + 5967992733184 \) Copy content Toggle raw display
$13$ \( T^{9} + \cdots - 15\!\cdots\!72 \) Copy content Toggle raw display
$17$ \( T^{9} + \cdots + 11\!\cdots\!08 \) Copy content Toggle raw display
$19$ \( T^{9} + \cdots - 30\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{9} + \cdots - 35\!\cdots\!16 \) Copy content Toggle raw display
$29$ \( T^{9} + \cdots - 33\!\cdots\!24 \) Copy content Toggle raw display
$31$ \( (T + 31)^{9} \) Copy content Toggle raw display
$37$ \( T^{9} + \cdots - 30\!\cdots\!76 \) Copy content Toggle raw display
$41$ \( T^{9} + \cdots + 18\!\cdots\!68 \) Copy content Toggle raw display
$43$ \( T^{9} + \cdots - 15\!\cdots\!76 \) Copy content Toggle raw display
$47$ \( T^{9} + \cdots + 21\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{9} + \cdots - 30\!\cdots\!16 \) Copy content Toggle raw display
$59$ \( T^{9} + \cdots + 23\!\cdots\!88 \) Copy content Toggle raw display
$61$ \( T^{9} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$67$ \( T^{9} + \cdots + 23\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T^{9} + \cdots - 65\!\cdots\!96 \) Copy content Toggle raw display
$73$ \( T^{9} + \cdots - 81\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{9} + \cdots - 76\!\cdots\!08 \) Copy content Toggle raw display
$83$ \( T^{9} + \cdots - 33\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{9} + \cdots - 18\!\cdots\!92 \) Copy content Toggle raw display
$97$ \( T^{9} + \cdots - 28\!\cdots\!00 \) Copy content Toggle raw display
show more
show less