Properties

Label 1860.4.a.a.1.1
Level $1860$
Weight $4$
Character 1860.1
Self dual yes
Analytic conductor $109.744$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,4,Mod(1,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1860.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(109.743552611\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1860.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000 q^{3} +5.00000 q^{5} -8.00000 q^{7} +9.00000 q^{9} -20.0000 q^{11} -34.0000 q^{13} -15.0000 q^{15} -6.00000 q^{17} +12.0000 q^{19} +24.0000 q^{21} +120.000 q^{23} +25.0000 q^{25} -27.0000 q^{27} +246.000 q^{29} +31.0000 q^{31} +60.0000 q^{33} -40.0000 q^{35} +310.000 q^{37} +102.000 q^{39} -518.000 q^{41} +92.0000 q^{43} +45.0000 q^{45} -88.0000 q^{47} -279.000 q^{49} +18.0000 q^{51} -738.000 q^{53} -100.000 q^{55} -36.0000 q^{57} +268.000 q^{59} +366.000 q^{61} -72.0000 q^{63} -170.000 q^{65} +220.000 q^{67} -360.000 q^{69} -512.000 q^{71} -758.000 q^{73} -75.0000 q^{75} +160.000 q^{77} +160.000 q^{79} +81.0000 q^{81} +1348.00 q^{83} -30.0000 q^{85} -738.000 q^{87} +18.0000 q^{89} +272.000 q^{91} -93.0000 q^{93} +60.0000 q^{95} +1634.00 q^{97} -180.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.00000 −0.577350
\(4\) 0 0
\(5\) 5.00000 0.447214
\(6\) 0 0
\(7\) −8.00000 −0.431959 −0.215980 0.976398i \(-0.569295\pi\)
−0.215980 + 0.976398i \(0.569295\pi\)
\(8\) 0 0
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −20.0000 −0.548202 −0.274101 0.961701i \(-0.588380\pi\)
−0.274101 + 0.961701i \(0.588380\pi\)
\(12\) 0 0
\(13\) −34.0000 −0.725377 −0.362689 0.931910i \(-0.618141\pi\)
−0.362689 + 0.931910i \(0.618141\pi\)
\(14\) 0 0
\(15\) −15.0000 −0.258199
\(16\) 0 0
\(17\) −6.00000 −0.0856008 −0.0428004 0.999084i \(-0.513628\pi\)
−0.0428004 + 0.999084i \(0.513628\pi\)
\(18\) 0 0
\(19\) 12.0000 0.144894 0.0724471 0.997372i \(-0.476919\pi\)
0.0724471 + 0.997372i \(0.476919\pi\)
\(20\) 0 0
\(21\) 24.0000 0.249392
\(22\) 0 0
\(23\) 120.000 1.08790 0.543951 0.839117i \(-0.316928\pi\)
0.543951 + 0.839117i \(0.316928\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −27.0000 −0.192450
\(28\) 0 0
\(29\) 246.000 1.57521 0.787604 0.616181i \(-0.211321\pi\)
0.787604 + 0.616181i \(0.211321\pi\)
\(30\) 0 0
\(31\) 31.0000 0.179605
\(32\) 0 0
\(33\) 60.0000 0.316505
\(34\) 0 0
\(35\) −40.0000 −0.193178
\(36\) 0 0
\(37\) 310.000 1.37740 0.688698 0.725048i \(-0.258182\pi\)
0.688698 + 0.725048i \(0.258182\pi\)
\(38\) 0 0
\(39\) 102.000 0.418797
\(40\) 0 0
\(41\) −518.000 −1.97312 −0.986561 0.163393i \(-0.947756\pi\)
−0.986561 + 0.163393i \(0.947756\pi\)
\(42\) 0 0
\(43\) 92.0000 0.326276 0.163138 0.986603i \(-0.447838\pi\)
0.163138 + 0.986603i \(0.447838\pi\)
\(44\) 0 0
\(45\) 45.0000 0.149071
\(46\) 0 0
\(47\) −88.0000 −0.273109 −0.136554 0.990633i \(-0.543603\pi\)
−0.136554 + 0.990633i \(0.543603\pi\)
\(48\) 0 0
\(49\) −279.000 −0.813411
\(50\) 0 0
\(51\) 18.0000 0.0494217
\(52\) 0 0
\(53\) −738.000 −1.91268 −0.956341 0.292255i \(-0.905595\pi\)
−0.956341 + 0.292255i \(0.905595\pi\)
\(54\) 0 0
\(55\) −100.000 −0.245164
\(56\) 0 0
\(57\) −36.0000 −0.0836547
\(58\) 0 0
\(59\) 268.000 0.591367 0.295683 0.955286i \(-0.404453\pi\)
0.295683 + 0.955286i \(0.404453\pi\)
\(60\) 0 0
\(61\) 366.000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) −72.0000 −0.143986
\(64\) 0 0
\(65\) −170.000 −0.324399
\(66\) 0 0
\(67\) 220.000 0.401153 0.200577 0.979678i \(-0.435718\pi\)
0.200577 + 0.979678i \(0.435718\pi\)
\(68\) 0 0
\(69\) −360.000 −0.628100
\(70\) 0 0
\(71\) −512.000 −0.855820 −0.427910 0.903821i \(-0.640750\pi\)
−0.427910 + 0.903821i \(0.640750\pi\)
\(72\) 0 0
\(73\) −758.000 −1.21530 −0.607652 0.794203i \(-0.707888\pi\)
−0.607652 + 0.794203i \(0.707888\pi\)
\(74\) 0 0
\(75\) −75.0000 −0.115470
\(76\) 0 0
\(77\) 160.000 0.236801
\(78\) 0 0
\(79\) 160.000 0.227866 0.113933 0.993488i \(-0.463655\pi\)
0.113933 + 0.993488i \(0.463655\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 0 0
\(83\) 1348.00 1.78268 0.891339 0.453338i \(-0.149767\pi\)
0.891339 + 0.453338i \(0.149767\pi\)
\(84\) 0 0
\(85\) −30.0000 −0.0382818
\(86\) 0 0
\(87\) −738.000 −0.909447
\(88\) 0 0
\(89\) 18.0000 0.0214382 0.0107191 0.999943i \(-0.496588\pi\)
0.0107191 + 0.999943i \(0.496588\pi\)
\(90\) 0 0
\(91\) 272.000 0.313333
\(92\) 0 0
\(93\) −93.0000 −0.103695
\(94\) 0 0
\(95\) 60.0000 0.0647986
\(96\) 0 0
\(97\) 1634.00 1.71039 0.855194 0.518309i \(-0.173438\pi\)
0.855194 + 0.518309i \(0.173438\pi\)
\(98\) 0 0
\(99\) −180.000 −0.182734
\(100\) 0 0
\(101\) 382.000 0.376341 0.188170 0.982136i \(-0.439744\pi\)
0.188170 + 0.982136i \(0.439744\pi\)
\(102\) 0 0
\(103\) −936.000 −0.895406 −0.447703 0.894182i \(-0.647758\pi\)
−0.447703 + 0.894182i \(0.647758\pi\)
\(104\) 0 0
\(105\) 120.000 0.111531
\(106\) 0 0
\(107\) −84.0000 −0.0758933 −0.0379467 0.999280i \(-0.512082\pi\)
−0.0379467 + 0.999280i \(0.512082\pi\)
\(108\) 0 0
\(109\) −1226.00 −1.07733 −0.538667 0.842518i \(-0.681072\pi\)
−0.538667 + 0.842518i \(0.681072\pi\)
\(110\) 0 0
\(111\) −930.000 −0.795240
\(112\) 0 0
\(113\) 1090.00 0.907421 0.453711 0.891149i \(-0.350100\pi\)
0.453711 + 0.891149i \(0.350100\pi\)
\(114\) 0 0
\(115\) 600.000 0.486524
\(116\) 0 0
\(117\) −306.000 −0.241792
\(118\) 0 0
\(119\) 48.0000 0.0369761
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) 1554.00 1.13918
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) −672.000 −0.469530 −0.234765 0.972052i \(-0.575432\pi\)
−0.234765 + 0.972052i \(0.575432\pi\)
\(128\) 0 0
\(129\) −276.000 −0.188376
\(130\) 0 0
\(131\) −940.000 −0.626933 −0.313466 0.949599i \(-0.601490\pi\)
−0.313466 + 0.949599i \(0.601490\pi\)
\(132\) 0 0
\(133\) −96.0000 −0.0625884
\(134\) 0 0
\(135\) −135.000 −0.0860663
\(136\) 0 0
\(137\) −414.000 −0.258178 −0.129089 0.991633i \(-0.541205\pi\)
−0.129089 + 0.991633i \(0.541205\pi\)
\(138\) 0 0
\(139\) −468.000 −0.285577 −0.142789 0.989753i \(-0.545607\pi\)
−0.142789 + 0.989753i \(0.545607\pi\)
\(140\) 0 0
\(141\) 264.000 0.157680
\(142\) 0 0
\(143\) 680.000 0.397654
\(144\) 0 0
\(145\) 1230.00 0.704455
\(146\) 0 0
\(147\) 837.000 0.469623
\(148\) 0 0
\(149\) −1426.00 −0.784043 −0.392022 0.919956i \(-0.628224\pi\)
−0.392022 + 0.919956i \(0.628224\pi\)
\(150\) 0 0
\(151\) 1192.00 0.642408 0.321204 0.947010i \(-0.395913\pi\)
0.321204 + 0.947010i \(0.395913\pi\)
\(152\) 0 0
\(153\) −54.0000 −0.0285336
\(154\) 0 0
\(155\) 155.000 0.0803219
\(156\) 0 0
\(157\) −1338.00 −0.680153 −0.340077 0.940398i \(-0.610453\pi\)
−0.340077 + 0.940398i \(0.610453\pi\)
\(158\) 0 0
\(159\) 2214.00 1.10429
\(160\) 0 0
\(161\) −960.000 −0.469929
\(162\) 0 0
\(163\) 924.000 0.444008 0.222004 0.975046i \(-0.428740\pi\)
0.222004 + 0.975046i \(0.428740\pi\)
\(164\) 0 0
\(165\) 300.000 0.141545
\(166\) 0 0
\(167\) −1064.00 −0.493023 −0.246511 0.969140i \(-0.579284\pi\)
−0.246511 + 0.969140i \(0.579284\pi\)
\(168\) 0 0
\(169\) −1041.00 −0.473828
\(170\) 0 0
\(171\) 108.000 0.0482980
\(172\) 0 0
\(173\) −2698.00 −1.18569 −0.592847 0.805315i \(-0.701996\pi\)
−0.592847 + 0.805315i \(0.701996\pi\)
\(174\) 0 0
\(175\) −200.000 −0.0863919
\(176\) 0 0
\(177\) −804.000 −0.341426
\(178\) 0 0
\(179\) −796.000 −0.332379 −0.166189 0.986094i \(-0.553146\pi\)
−0.166189 + 0.986094i \(0.553146\pi\)
\(180\) 0 0
\(181\) −2810.00 −1.15395 −0.576977 0.816760i \(-0.695768\pi\)
−0.576977 + 0.816760i \(0.695768\pi\)
\(182\) 0 0
\(183\) −1098.00 −0.443533
\(184\) 0 0
\(185\) 1550.00 0.615991
\(186\) 0 0
\(187\) 120.000 0.0469266
\(188\) 0 0
\(189\) 216.000 0.0831306
\(190\) 0 0
\(191\) −3912.00 −1.48200 −0.741001 0.671504i \(-0.765649\pi\)
−0.741001 + 0.671504i \(0.765649\pi\)
\(192\) 0 0
\(193\) 290.000 0.108159 0.0540794 0.998537i \(-0.482778\pi\)
0.0540794 + 0.998537i \(0.482778\pi\)
\(194\) 0 0
\(195\) 510.000 0.187292
\(196\) 0 0
\(197\) −4434.00 −1.60360 −0.801801 0.597592i \(-0.796124\pi\)
−0.801801 + 0.597592i \(0.796124\pi\)
\(198\) 0 0
\(199\) 1064.00 0.379020 0.189510 0.981879i \(-0.439310\pi\)
0.189510 + 0.981879i \(0.439310\pi\)
\(200\) 0 0
\(201\) −660.000 −0.231606
\(202\) 0 0
\(203\) −1968.00 −0.680426
\(204\) 0 0
\(205\) −2590.00 −0.882407
\(206\) 0 0
\(207\) 1080.00 0.362634
\(208\) 0 0
\(209\) −240.000 −0.0794313
\(210\) 0 0
\(211\) 716.000 0.233609 0.116804 0.993155i \(-0.462735\pi\)
0.116804 + 0.993155i \(0.462735\pi\)
\(212\) 0 0
\(213\) 1536.00 0.494108
\(214\) 0 0
\(215\) 460.000 0.145915
\(216\) 0 0
\(217\) −248.000 −0.0775822
\(218\) 0 0
\(219\) 2274.00 0.701656
\(220\) 0 0
\(221\) 204.000 0.0620929
\(222\) 0 0
\(223\) 1328.00 0.398787 0.199393 0.979920i \(-0.436103\pi\)
0.199393 + 0.979920i \(0.436103\pi\)
\(224\) 0 0
\(225\) 225.000 0.0666667
\(226\) 0 0
\(227\) 692.000 0.202333 0.101167 0.994869i \(-0.467742\pi\)
0.101167 + 0.994869i \(0.467742\pi\)
\(228\) 0 0
\(229\) −5594.00 −1.61424 −0.807122 0.590385i \(-0.798976\pi\)
−0.807122 + 0.590385i \(0.798976\pi\)
\(230\) 0 0
\(231\) −480.000 −0.136717
\(232\) 0 0
\(233\) −2294.00 −0.645000 −0.322500 0.946570i \(-0.604523\pi\)
−0.322500 + 0.946570i \(0.604523\pi\)
\(234\) 0 0
\(235\) −440.000 −0.122138
\(236\) 0 0
\(237\) −480.000 −0.131558
\(238\) 0 0
\(239\) 4256.00 1.15187 0.575937 0.817494i \(-0.304637\pi\)
0.575937 + 0.817494i \(0.304637\pi\)
\(240\) 0 0
\(241\) −622.000 −0.166251 −0.0831256 0.996539i \(-0.526490\pi\)
−0.0831256 + 0.996539i \(0.526490\pi\)
\(242\) 0 0
\(243\) −243.000 −0.0641500
\(244\) 0 0
\(245\) −1395.00 −0.363768
\(246\) 0 0
\(247\) −408.000 −0.105103
\(248\) 0 0
\(249\) −4044.00 −1.02923
\(250\) 0 0
\(251\) −1604.00 −0.403361 −0.201680 0.979451i \(-0.564640\pi\)
−0.201680 + 0.979451i \(0.564640\pi\)
\(252\) 0 0
\(253\) −2400.00 −0.596390
\(254\) 0 0
\(255\) 90.0000 0.0221020
\(256\) 0 0
\(257\) 1842.00 0.447085 0.223542 0.974694i \(-0.428238\pi\)
0.223542 + 0.974694i \(0.428238\pi\)
\(258\) 0 0
\(259\) −2480.00 −0.594980
\(260\) 0 0
\(261\) 2214.00 0.525070
\(262\) 0 0
\(263\) −5224.00 −1.22481 −0.612406 0.790543i \(-0.709798\pi\)
−0.612406 + 0.790543i \(0.709798\pi\)
\(264\) 0 0
\(265\) −3690.00 −0.855377
\(266\) 0 0
\(267\) −54.0000 −0.0123773
\(268\) 0 0
\(269\) 2406.00 0.545340 0.272670 0.962108i \(-0.412093\pi\)
0.272670 + 0.962108i \(0.412093\pi\)
\(270\) 0 0
\(271\) −912.000 −0.204428 −0.102214 0.994762i \(-0.532593\pi\)
−0.102214 + 0.994762i \(0.532593\pi\)
\(272\) 0 0
\(273\) −816.000 −0.180903
\(274\) 0 0
\(275\) −500.000 −0.109640
\(276\) 0 0
\(277\) 982.000 0.213006 0.106503 0.994312i \(-0.466035\pi\)
0.106503 + 0.994312i \(0.466035\pi\)
\(278\) 0 0
\(279\) 279.000 0.0598684
\(280\) 0 0
\(281\) −5478.00 −1.16295 −0.581477 0.813563i \(-0.697525\pi\)
−0.581477 + 0.813563i \(0.697525\pi\)
\(282\) 0 0
\(283\) 4772.00 1.00235 0.501177 0.865345i \(-0.332901\pi\)
0.501177 + 0.865345i \(0.332901\pi\)
\(284\) 0 0
\(285\) −180.000 −0.0374115
\(286\) 0 0
\(287\) 4144.00 0.852309
\(288\) 0 0
\(289\) −4877.00 −0.992673
\(290\) 0 0
\(291\) −4902.00 −0.987493
\(292\) 0 0
\(293\) −418.000 −0.0833441 −0.0416720 0.999131i \(-0.513268\pi\)
−0.0416720 + 0.999131i \(0.513268\pi\)
\(294\) 0 0
\(295\) 1340.00 0.264467
\(296\) 0 0
\(297\) 540.000 0.105502
\(298\) 0 0
\(299\) −4080.00 −0.789139
\(300\) 0 0
\(301\) −736.000 −0.140938
\(302\) 0 0
\(303\) −1146.00 −0.217280
\(304\) 0 0
\(305\) 1830.00 0.343559
\(306\) 0 0
\(307\) −9412.00 −1.74974 −0.874872 0.484355i \(-0.839054\pi\)
−0.874872 + 0.484355i \(0.839054\pi\)
\(308\) 0 0
\(309\) 2808.00 0.516963
\(310\) 0 0
\(311\) 9744.00 1.77663 0.888314 0.459236i \(-0.151877\pi\)
0.888314 + 0.459236i \(0.151877\pi\)
\(312\) 0 0
\(313\) −1382.00 −0.249570 −0.124785 0.992184i \(-0.539824\pi\)
−0.124785 + 0.992184i \(0.539824\pi\)
\(314\) 0 0
\(315\) −360.000 −0.0643927
\(316\) 0 0
\(317\) 582.000 0.103118 0.0515590 0.998670i \(-0.483581\pi\)
0.0515590 + 0.998670i \(0.483581\pi\)
\(318\) 0 0
\(319\) −4920.00 −0.863533
\(320\) 0 0
\(321\) 252.000 0.0438170
\(322\) 0 0
\(323\) −72.0000 −0.0124031
\(324\) 0 0
\(325\) −850.000 −0.145075
\(326\) 0 0
\(327\) 3678.00 0.622000
\(328\) 0 0
\(329\) 704.000 0.117972
\(330\) 0 0
\(331\) −9204.00 −1.52839 −0.764196 0.644984i \(-0.776864\pi\)
−0.764196 + 0.644984i \(0.776864\pi\)
\(332\) 0 0
\(333\) 2790.00 0.459132
\(334\) 0 0
\(335\) 1100.00 0.179401
\(336\) 0 0
\(337\) 2242.00 0.362402 0.181201 0.983446i \(-0.442002\pi\)
0.181201 + 0.983446i \(0.442002\pi\)
\(338\) 0 0
\(339\) −3270.00 −0.523900
\(340\) 0 0
\(341\) −620.000 −0.0984601
\(342\) 0 0
\(343\) 4976.00 0.783320
\(344\) 0 0
\(345\) −1800.00 −0.280895
\(346\) 0 0
\(347\) −5412.00 −0.837266 −0.418633 0.908155i \(-0.637491\pi\)
−0.418633 + 0.908155i \(0.637491\pi\)
\(348\) 0 0
\(349\) −11690.0 −1.79298 −0.896492 0.443060i \(-0.853893\pi\)
−0.896492 + 0.443060i \(0.853893\pi\)
\(350\) 0 0
\(351\) 918.000 0.139599
\(352\) 0 0
\(353\) 7770.00 1.17154 0.585772 0.810476i \(-0.300791\pi\)
0.585772 + 0.810476i \(0.300791\pi\)
\(354\) 0 0
\(355\) −2560.00 −0.382734
\(356\) 0 0
\(357\) −144.000 −0.0213481
\(358\) 0 0
\(359\) −9936.00 −1.46073 −0.730365 0.683057i \(-0.760650\pi\)
−0.730365 + 0.683057i \(0.760650\pi\)
\(360\) 0 0
\(361\) −6715.00 −0.979006
\(362\) 0 0
\(363\) 2793.00 0.403842
\(364\) 0 0
\(365\) −3790.00 −0.543500
\(366\) 0 0
\(367\) −4480.00 −0.637205 −0.318602 0.947888i \(-0.603213\pi\)
−0.318602 + 0.947888i \(0.603213\pi\)
\(368\) 0 0
\(369\) −4662.00 −0.657707
\(370\) 0 0
\(371\) 5904.00 0.826201
\(372\) 0 0
\(373\) −786.000 −0.109109 −0.0545543 0.998511i \(-0.517374\pi\)
−0.0545543 + 0.998511i \(0.517374\pi\)
\(374\) 0 0
\(375\) −375.000 −0.0516398
\(376\) 0 0
\(377\) −8364.00 −1.14262
\(378\) 0 0
\(379\) −6844.00 −0.927580 −0.463790 0.885945i \(-0.653511\pi\)
−0.463790 + 0.885945i \(0.653511\pi\)
\(380\) 0 0
\(381\) 2016.00 0.271083
\(382\) 0 0
\(383\) −7776.00 −1.03743 −0.518714 0.854948i \(-0.673589\pi\)
−0.518714 + 0.854948i \(0.673589\pi\)
\(384\) 0 0
\(385\) 800.000 0.105901
\(386\) 0 0
\(387\) 828.000 0.108759
\(388\) 0 0
\(389\) −1634.00 −0.212975 −0.106487 0.994314i \(-0.533960\pi\)
−0.106487 + 0.994314i \(0.533960\pi\)
\(390\) 0 0
\(391\) −720.000 −0.0931252
\(392\) 0 0
\(393\) 2820.00 0.361960
\(394\) 0 0
\(395\) 800.000 0.101905
\(396\) 0 0
\(397\) 13542.0 1.71197 0.855987 0.516998i \(-0.172950\pi\)
0.855987 + 0.516998i \(0.172950\pi\)
\(398\) 0 0
\(399\) 288.000 0.0361354
\(400\) 0 0
\(401\) 7626.00 0.949686 0.474843 0.880070i \(-0.342505\pi\)
0.474843 + 0.880070i \(0.342505\pi\)
\(402\) 0 0
\(403\) −1054.00 −0.130282
\(404\) 0 0
\(405\) 405.000 0.0496904
\(406\) 0 0
\(407\) −6200.00 −0.755092
\(408\) 0 0
\(409\) 4362.00 0.527352 0.263676 0.964611i \(-0.415065\pi\)
0.263676 + 0.964611i \(0.415065\pi\)
\(410\) 0 0
\(411\) 1242.00 0.149059
\(412\) 0 0
\(413\) −2144.00 −0.255446
\(414\) 0 0
\(415\) 6740.00 0.797238
\(416\) 0 0
\(417\) 1404.00 0.164878
\(418\) 0 0
\(419\) 660.000 0.0769525 0.0384763 0.999260i \(-0.487750\pi\)
0.0384763 + 0.999260i \(0.487750\pi\)
\(420\) 0 0
\(421\) −5970.00 −0.691116 −0.345558 0.938397i \(-0.612310\pi\)
−0.345558 + 0.938397i \(0.612310\pi\)
\(422\) 0 0
\(423\) −792.000 −0.0910363
\(424\) 0 0
\(425\) −150.000 −0.0171202
\(426\) 0 0
\(427\) −2928.00 −0.331840
\(428\) 0 0
\(429\) −2040.00 −0.229585
\(430\) 0 0
\(431\) 9176.00 1.02550 0.512752 0.858537i \(-0.328626\pi\)
0.512752 + 0.858537i \(0.328626\pi\)
\(432\) 0 0
\(433\) −4382.00 −0.486341 −0.243170 0.969984i \(-0.578187\pi\)
−0.243170 + 0.969984i \(0.578187\pi\)
\(434\) 0 0
\(435\) −3690.00 −0.406717
\(436\) 0 0
\(437\) 1440.00 0.157631
\(438\) 0 0
\(439\) 13176.0 1.43247 0.716237 0.697857i \(-0.245863\pi\)
0.716237 + 0.697857i \(0.245863\pi\)
\(440\) 0 0
\(441\) −2511.00 −0.271137
\(442\) 0 0
\(443\) 10860.0 1.16473 0.582364 0.812928i \(-0.302128\pi\)
0.582364 + 0.812928i \(0.302128\pi\)
\(444\) 0 0
\(445\) 90.0000 0.00958744
\(446\) 0 0
\(447\) 4278.00 0.452668
\(448\) 0 0
\(449\) −14502.0 −1.52426 −0.762129 0.647425i \(-0.775846\pi\)
−0.762129 + 0.647425i \(0.775846\pi\)
\(450\) 0 0
\(451\) 10360.0 1.08167
\(452\) 0 0
\(453\) −3576.00 −0.370894
\(454\) 0 0
\(455\) 1360.00 0.140127
\(456\) 0 0
\(457\) −8998.00 −0.921026 −0.460513 0.887653i \(-0.652334\pi\)
−0.460513 + 0.887653i \(0.652334\pi\)
\(458\) 0 0
\(459\) 162.000 0.0164739
\(460\) 0 0
\(461\) −16650.0 −1.68214 −0.841071 0.540924i \(-0.818075\pi\)
−0.841071 + 0.540924i \(0.818075\pi\)
\(462\) 0 0
\(463\) −15600.0 −1.56586 −0.782930 0.622109i \(-0.786276\pi\)
−0.782930 + 0.622109i \(0.786276\pi\)
\(464\) 0 0
\(465\) −465.000 −0.0463739
\(466\) 0 0
\(467\) −6076.00 −0.602064 −0.301032 0.953614i \(-0.597331\pi\)
−0.301032 + 0.953614i \(0.597331\pi\)
\(468\) 0 0
\(469\) −1760.00 −0.173282
\(470\) 0 0
\(471\) 4014.00 0.392687
\(472\) 0 0
\(473\) −1840.00 −0.178865
\(474\) 0 0
\(475\) 300.000 0.0289788
\(476\) 0 0
\(477\) −6642.00 −0.637560
\(478\) 0 0
\(479\) 9800.00 0.934809 0.467404 0.884044i \(-0.345189\pi\)
0.467404 + 0.884044i \(0.345189\pi\)
\(480\) 0 0
\(481\) −10540.0 −0.999132
\(482\) 0 0
\(483\) 2880.00 0.271314
\(484\) 0 0
\(485\) 8170.00 0.764908
\(486\) 0 0
\(487\) −8840.00 −0.822543 −0.411272 0.911513i \(-0.634915\pi\)
−0.411272 + 0.911513i \(0.634915\pi\)
\(488\) 0 0
\(489\) −2772.00 −0.256348
\(490\) 0 0
\(491\) 4716.00 0.433463 0.216731 0.976231i \(-0.430460\pi\)
0.216731 + 0.976231i \(0.430460\pi\)
\(492\) 0 0
\(493\) −1476.00 −0.134839
\(494\) 0 0
\(495\) −900.000 −0.0817212
\(496\) 0 0
\(497\) 4096.00 0.369679
\(498\) 0 0
\(499\) −4748.00 −0.425951 −0.212976 0.977058i \(-0.568315\pi\)
−0.212976 + 0.977058i \(0.568315\pi\)
\(500\) 0 0
\(501\) 3192.00 0.284647
\(502\) 0 0
\(503\) 16160.0 1.43248 0.716241 0.697853i \(-0.245861\pi\)
0.716241 + 0.697853i \(0.245861\pi\)
\(504\) 0 0
\(505\) 1910.00 0.168305
\(506\) 0 0
\(507\) 3123.00 0.273565
\(508\) 0 0
\(509\) 12886.0 1.12213 0.561063 0.827773i \(-0.310393\pi\)
0.561063 + 0.827773i \(0.310393\pi\)
\(510\) 0 0
\(511\) 6064.00 0.524962
\(512\) 0 0
\(513\) −324.000 −0.0278849
\(514\) 0 0
\(515\) −4680.00 −0.400438
\(516\) 0 0
\(517\) 1760.00 0.149719
\(518\) 0 0
\(519\) 8094.00 0.684561
\(520\) 0 0
\(521\) 20058.0 1.68667 0.843337 0.537385i \(-0.180588\pi\)
0.843337 + 0.537385i \(0.180588\pi\)
\(522\) 0 0
\(523\) 8188.00 0.684582 0.342291 0.939594i \(-0.388797\pi\)
0.342291 + 0.939594i \(0.388797\pi\)
\(524\) 0 0
\(525\) 600.000 0.0498784
\(526\) 0 0
\(527\) −186.000 −0.0153744
\(528\) 0 0
\(529\) 2233.00 0.183529
\(530\) 0 0
\(531\) 2412.00 0.197122
\(532\) 0 0
\(533\) 17612.0 1.43126
\(534\) 0 0
\(535\) −420.000 −0.0339405
\(536\) 0 0
\(537\) 2388.00 0.191899
\(538\) 0 0
\(539\) 5580.00 0.445914
\(540\) 0 0
\(541\) −10362.0 −0.823470 −0.411735 0.911304i \(-0.635077\pi\)
−0.411735 + 0.911304i \(0.635077\pi\)
\(542\) 0 0
\(543\) 8430.00 0.666236
\(544\) 0 0
\(545\) −6130.00 −0.481799
\(546\) 0 0
\(547\) −16020.0 −1.25222 −0.626111 0.779734i \(-0.715354\pi\)
−0.626111 + 0.779734i \(0.715354\pi\)
\(548\) 0 0
\(549\) 3294.00 0.256074
\(550\) 0 0
\(551\) 2952.00 0.228239
\(552\) 0 0
\(553\) −1280.00 −0.0984288
\(554\) 0 0
\(555\) −4650.00 −0.355642
\(556\) 0 0
\(557\) −10410.0 −0.791896 −0.395948 0.918273i \(-0.629584\pi\)
−0.395948 + 0.918273i \(0.629584\pi\)
\(558\) 0 0
\(559\) −3128.00 −0.236673
\(560\) 0 0
\(561\) −360.000 −0.0270931
\(562\) 0 0
\(563\) 20724.0 1.55135 0.775677 0.631130i \(-0.217409\pi\)
0.775677 + 0.631130i \(0.217409\pi\)
\(564\) 0 0
\(565\) 5450.00 0.405811
\(566\) 0 0
\(567\) −648.000 −0.0479955
\(568\) 0 0
\(569\) 6594.00 0.485826 0.242913 0.970048i \(-0.421897\pi\)
0.242913 + 0.970048i \(0.421897\pi\)
\(570\) 0 0
\(571\) −18596.0 −1.36290 −0.681452 0.731863i \(-0.738651\pi\)
−0.681452 + 0.731863i \(0.738651\pi\)
\(572\) 0 0
\(573\) 11736.0 0.855634
\(574\) 0 0
\(575\) 3000.00 0.217580
\(576\) 0 0
\(577\) 1218.00 0.0878787 0.0439393 0.999034i \(-0.486009\pi\)
0.0439393 + 0.999034i \(0.486009\pi\)
\(578\) 0 0
\(579\) −870.000 −0.0624455
\(580\) 0 0
\(581\) −10784.0 −0.770044
\(582\) 0 0
\(583\) 14760.0 1.04854
\(584\) 0 0
\(585\) −1530.00 −0.108133
\(586\) 0 0
\(587\) 17868.0 1.25637 0.628187 0.778063i \(-0.283797\pi\)
0.628187 + 0.778063i \(0.283797\pi\)
\(588\) 0 0
\(589\) 372.000 0.0260238
\(590\) 0 0
\(591\) 13302.0 0.925840
\(592\) 0 0
\(593\) 21394.0 1.48153 0.740764 0.671765i \(-0.234464\pi\)
0.740764 + 0.671765i \(0.234464\pi\)
\(594\) 0 0
\(595\) 240.000 0.0165362
\(596\) 0 0
\(597\) −3192.00 −0.218827
\(598\) 0 0
\(599\) −20736.0 −1.41444 −0.707220 0.706993i \(-0.750051\pi\)
−0.707220 + 0.706993i \(0.750051\pi\)
\(600\) 0 0
\(601\) −14998.0 −1.01794 −0.508969 0.860785i \(-0.669973\pi\)
−0.508969 + 0.860785i \(0.669973\pi\)
\(602\) 0 0
\(603\) 1980.00 0.133718
\(604\) 0 0
\(605\) −4655.00 −0.312814
\(606\) 0 0
\(607\) −9664.00 −0.646210 −0.323105 0.946363i \(-0.604727\pi\)
−0.323105 + 0.946363i \(0.604727\pi\)
\(608\) 0 0
\(609\) 5904.00 0.392844
\(610\) 0 0
\(611\) 2992.00 0.198107
\(612\) 0 0
\(613\) 15654.0 1.03142 0.515709 0.856764i \(-0.327529\pi\)
0.515709 + 0.856764i \(0.327529\pi\)
\(614\) 0 0
\(615\) 7770.00 0.509458
\(616\) 0 0
\(617\) 14202.0 0.926663 0.463331 0.886185i \(-0.346654\pi\)
0.463331 + 0.886185i \(0.346654\pi\)
\(618\) 0 0
\(619\) −8132.00 −0.528033 −0.264017 0.964518i \(-0.585047\pi\)
−0.264017 + 0.964518i \(0.585047\pi\)
\(620\) 0 0
\(621\) −3240.00 −0.209367
\(622\) 0 0
\(623\) −144.000 −0.00926041
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 720.000 0.0458597
\(628\) 0 0
\(629\) −1860.00 −0.117906
\(630\) 0 0
\(631\) 28232.0 1.78114 0.890569 0.454848i \(-0.150306\pi\)
0.890569 + 0.454848i \(0.150306\pi\)
\(632\) 0 0
\(633\) −2148.00 −0.134874
\(634\) 0 0
\(635\) −3360.00 −0.209980
\(636\) 0 0
\(637\) 9486.00 0.590030
\(638\) 0 0
\(639\) −4608.00 −0.285273
\(640\) 0 0
\(641\) −11446.0 −0.705288 −0.352644 0.935757i \(-0.614717\pi\)
−0.352644 + 0.935757i \(0.614717\pi\)
\(642\) 0 0
\(643\) 8132.00 0.498748 0.249374 0.968407i \(-0.419775\pi\)
0.249374 + 0.968407i \(0.419775\pi\)
\(644\) 0 0
\(645\) −1380.00 −0.0842441
\(646\) 0 0
\(647\) 4536.00 0.275624 0.137812 0.990458i \(-0.455993\pi\)
0.137812 + 0.990458i \(0.455993\pi\)
\(648\) 0 0
\(649\) −5360.00 −0.324189
\(650\) 0 0
\(651\) 744.000 0.0447921
\(652\) 0 0
\(653\) 6582.00 0.394446 0.197223 0.980359i \(-0.436808\pi\)
0.197223 + 0.980359i \(0.436808\pi\)
\(654\) 0 0
\(655\) −4700.00 −0.280373
\(656\) 0 0
\(657\) −6822.00 −0.405101
\(658\) 0 0
\(659\) 15460.0 0.913864 0.456932 0.889502i \(-0.348948\pi\)
0.456932 + 0.889502i \(0.348948\pi\)
\(660\) 0 0
\(661\) 15662.0 0.921605 0.460803 0.887503i \(-0.347562\pi\)
0.460803 + 0.887503i \(0.347562\pi\)
\(662\) 0 0
\(663\) −612.000 −0.0358493
\(664\) 0 0
\(665\) −480.000 −0.0279904
\(666\) 0 0
\(667\) 29520.0 1.71367
\(668\) 0 0
\(669\) −3984.00 −0.230240
\(670\) 0 0
\(671\) −7320.00 −0.421141
\(672\) 0 0
\(673\) −29326.0 −1.67969 −0.839847 0.542823i \(-0.817355\pi\)
−0.839847 + 0.542823i \(0.817355\pi\)
\(674\) 0 0
\(675\) −675.000 −0.0384900
\(676\) 0 0
\(677\) 702.000 0.0398524 0.0199262 0.999801i \(-0.493657\pi\)
0.0199262 + 0.999801i \(0.493657\pi\)
\(678\) 0 0
\(679\) −13072.0 −0.738818
\(680\) 0 0
\(681\) −2076.00 −0.116817
\(682\) 0 0
\(683\) 28076.0 1.57291 0.786456 0.617647i \(-0.211914\pi\)
0.786456 + 0.617647i \(0.211914\pi\)
\(684\) 0 0
\(685\) −2070.00 −0.115461
\(686\) 0 0
\(687\) 16782.0 0.931984
\(688\) 0 0
\(689\) 25092.0 1.38742
\(690\) 0 0
\(691\) −29188.0 −1.60689 −0.803447 0.595376i \(-0.797003\pi\)
−0.803447 + 0.595376i \(0.797003\pi\)
\(692\) 0 0
\(693\) 1440.00 0.0789337
\(694\) 0 0
\(695\) −2340.00 −0.127714
\(696\) 0 0
\(697\) 3108.00 0.168901
\(698\) 0 0
\(699\) 6882.00 0.372391
\(700\) 0 0
\(701\) 8966.00 0.483083 0.241541 0.970390i \(-0.422347\pi\)
0.241541 + 0.970390i \(0.422347\pi\)
\(702\) 0 0
\(703\) 3720.00 0.199577
\(704\) 0 0
\(705\) 1320.00 0.0705164
\(706\) 0 0
\(707\) −3056.00 −0.162564
\(708\) 0 0
\(709\) −31178.0 −1.65150 −0.825751 0.564035i \(-0.809248\pi\)
−0.825751 + 0.564035i \(0.809248\pi\)
\(710\) 0 0
\(711\) 1440.00 0.0759553
\(712\) 0 0
\(713\) 3720.00 0.195393
\(714\) 0 0
\(715\) 3400.00 0.177836
\(716\) 0 0
\(717\) −12768.0 −0.665034
\(718\) 0 0
\(719\) −37632.0 −1.95193 −0.975964 0.217930i \(-0.930070\pi\)
−0.975964 + 0.217930i \(0.930070\pi\)
\(720\) 0 0
\(721\) 7488.00 0.386779
\(722\) 0 0
\(723\) 1866.00 0.0959852
\(724\) 0 0
\(725\) 6150.00 0.315042
\(726\) 0 0
\(727\) 26424.0 1.34802 0.674011 0.738721i \(-0.264570\pi\)
0.674011 + 0.738721i \(0.264570\pi\)
\(728\) 0 0
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −552.000 −0.0279295
\(732\) 0 0
\(733\) 35926.0 1.81031 0.905155 0.425082i \(-0.139755\pi\)
0.905155 + 0.425082i \(0.139755\pi\)
\(734\) 0 0
\(735\) 4185.00 0.210022
\(736\) 0 0
\(737\) −4400.00 −0.219913
\(738\) 0 0
\(739\) 4292.00 0.213645 0.106823 0.994278i \(-0.465932\pi\)
0.106823 + 0.994278i \(0.465932\pi\)
\(740\) 0 0
\(741\) 1224.00 0.0606812
\(742\) 0 0
\(743\) −20648.0 −1.01952 −0.509759 0.860317i \(-0.670265\pi\)
−0.509759 + 0.860317i \(0.670265\pi\)
\(744\) 0 0
\(745\) −7130.00 −0.350635
\(746\) 0 0
\(747\) 12132.0 0.594226
\(748\) 0 0
\(749\) 672.000 0.0327828
\(750\) 0 0
\(751\) −21920.0 −1.06508 −0.532538 0.846406i \(-0.678762\pi\)
−0.532538 + 0.846406i \(0.678762\pi\)
\(752\) 0 0
\(753\) 4812.00 0.232881
\(754\) 0 0
\(755\) 5960.00 0.287294
\(756\) 0 0
\(757\) −22842.0 −1.09671 −0.548353 0.836247i \(-0.684745\pi\)
−0.548353 + 0.836247i \(0.684745\pi\)
\(758\) 0 0
\(759\) 7200.00 0.344326
\(760\) 0 0
\(761\) 29666.0 1.41313 0.706565 0.707648i \(-0.250244\pi\)
0.706565 + 0.707648i \(0.250244\pi\)
\(762\) 0 0
\(763\) 9808.00 0.465365
\(764\) 0 0
\(765\) −270.000 −0.0127606
\(766\) 0 0
\(767\) −9112.00 −0.428964
\(768\) 0 0
\(769\) −18718.0 −0.877748 −0.438874 0.898549i \(-0.644623\pi\)
−0.438874 + 0.898549i \(0.644623\pi\)
\(770\) 0 0
\(771\) −5526.00 −0.258125
\(772\) 0 0
\(773\) −38290.0 −1.78162 −0.890812 0.454372i \(-0.849864\pi\)
−0.890812 + 0.454372i \(0.849864\pi\)
\(774\) 0 0
\(775\) 775.000 0.0359211
\(776\) 0 0
\(777\) 7440.00 0.343512
\(778\) 0 0
\(779\) −6216.00 −0.285894
\(780\) 0 0
\(781\) 10240.0 0.469163
\(782\) 0 0
\(783\) −6642.00 −0.303149
\(784\) 0 0
\(785\) −6690.00 −0.304174
\(786\) 0 0
\(787\) −30268.0 −1.37095 −0.685475 0.728096i \(-0.740405\pi\)
−0.685475 + 0.728096i \(0.740405\pi\)
\(788\) 0 0
\(789\) 15672.0 0.707146
\(790\) 0 0
\(791\) −8720.00 −0.391969
\(792\) 0 0
\(793\) −12444.0 −0.557250
\(794\) 0 0
\(795\) 11070.0 0.493852
\(796\) 0 0
\(797\) −27386.0 −1.21714 −0.608571 0.793500i \(-0.708257\pi\)
−0.608571 + 0.793500i \(0.708257\pi\)
\(798\) 0 0
\(799\) 528.000 0.0233783
\(800\) 0 0
\(801\) 162.000 0.00714605
\(802\) 0 0
\(803\) 15160.0 0.666233
\(804\) 0 0
\(805\) −4800.00 −0.210159
\(806\) 0 0
\(807\) −7218.00 −0.314852
\(808\) 0 0
\(809\) 6498.00 0.282395 0.141197 0.989981i \(-0.454905\pi\)
0.141197 + 0.989981i \(0.454905\pi\)
\(810\) 0 0
\(811\) 5636.00 0.244028 0.122014 0.992528i \(-0.461065\pi\)
0.122014 + 0.992528i \(0.461065\pi\)
\(812\) 0 0
\(813\) 2736.00 0.118027
\(814\) 0 0
\(815\) 4620.00 0.198566
\(816\) 0 0
\(817\) 1104.00 0.0472755
\(818\) 0 0
\(819\) 2448.00 0.104444
\(820\) 0 0
\(821\) −31266.0 −1.32910 −0.664550 0.747244i \(-0.731377\pi\)
−0.664550 + 0.747244i \(0.731377\pi\)
\(822\) 0 0
\(823\) −19560.0 −0.828455 −0.414228 0.910173i \(-0.635948\pi\)
−0.414228 + 0.910173i \(0.635948\pi\)
\(824\) 0 0
\(825\) 1500.00 0.0633010
\(826\) 0 0
\(827\) 908.000 0.0381793 0.0190896 0.999818i \(-0.493923\pi\)
0.0190896 + 0.999818i \(0.493923\pi\)
\(828\) 0 0
\(829\) 190.000 0.00796016 0.00398008 0.999992i \(-0.498733\pi\)
0.00398008 + 0.999992i \(0.498733\pi\)
\(830\) 0 0
\(831\) −2946.00 −0.122979
\(832\) 0 0
\(833\) 1674.00 0.0696286
\(834\) 0 0
\(835\) −5320.00 −0.220486
\(836\) 0 0
\(837\) −837.000 −0.0345651
\(838\) 0 0
\(839\) 32048.0 1.31874 0.659368 0.751820i \(-0.270824\pi\)
0.659368 + 0.751820i \(0.270824\pi\)
\(840\) 0 0
\(841\) 36127.0 1.48128
\(842\) 0 0
\(843\) 16434.0 0.671432
\(844\) 0 0
\(845\) −5205.00 −0.211902
\(846\) 0 0
\(847\) 7448.00 0.302144
\(848\) 0 0
\(849\) −14316.0 −0.578709
\(850\) 0 0
\(851\) 37200.0 1.49847
\(852\) 0 0
\(853\) −9666.00 −0.387992 −0.193996 0.981002i \(-0.562145\pi\)
−0.193996 + 0.981002i \(0.562145\pi\)
\(854\) 0 0
\(855\) 540.000 0.0215995
\(856\) 0 0
\(857\) −11270.0 −0.449213 −0.224607 0.974450i \(-0.572110\pi\)
−0.224607 + 0.974450i \(0.572110\pi\)
\(858\) 0 0
\(859\) 11116.0 0.441529 0.220764 0.975327i \(-0.429145\pi\)
0.220764 + 0.975327i \(0.429145\pi\)
\(860\) 0 0
\(861\) −12432.0 −0.492081
\(862\) 0 0
\(863\) 26352.0 1.03944 0.519718 0.854338i \(-0.326037\pi\)
0.519718 + 0.854338i \(0.326037\pi\)
\(864\) 0 0
\(865\) −13490.0 −0.530259
\(866\) 0 0
\(867\) 14631.0 0.573120
\(868\) 0 0
\(869\) −3200.00 −0.124917
\(870\) 0 0
\(871\) −7480.00 −0.290988
\(872\) 0 0
\(873\) 14706.0 0.570129
\(874\) 0 0
\(875\) −1000.00 −0.0386356
\(876\) 0 0
\(877\) 16326.0 0.628609 0.314304 0.949322i \(-0.398229\pi\)
0.314304 + 0.949322i \(0.398229\pi\)
\(878\) 0 0
\(879\) 1254.00 0.0481187
\(880\) 0 0
\(881\) 38714.0 1.48049 0.740243 0.672340i \(-0.234711\pi\)
0.740243 + 0.672340i \(0.234711\pi\)
\(882\) 0 0
\(883\) 36228.0 1.38071 0.690356 0.723470i \(-0.257454\pi\)
0.690356 + 0.723470i \(0.257454\pi\)
\(884\) 0 0
\(885\) −4020.00 −0.152690
\(886\) 0 0
\(887\) 43600.0 1.65045 0.825223 0.564808i \(-0.191050\pi\)
0.825223 + 0.564808i \(0.191050\pi\)
\(888\) 0 0
\(889\) 5376.00 0.202818
\(890\) 0 0
\(891\) −1620.00 −0.0609114
\(892\) 0 0
\(893\) −1056.00 −0.0395719
\(894\) 0 0
\(895\) −3980.00 −0.148644
\(896\) 0 0
\(897\) 12240.0 0.455609
\(898\) 0 0
\(899\) 7626.00 0.282916
\(900\) 0 0
\(901\) 4428.00 0.163727
\(902\) 0 0
\(903\) 2208.00 0.0813706
\(904\) 0 0
\(905\) −14050.0 −0.516064
\(906\) 0 0
\(907\) 19204.0 0.703041 0.351521 0.936180i \(-0.385665\pi\)
0.351521 + 0.936180i \(0.385665\pi\)
\(908\) 0 0
\(909\) 3438.00 0.125447
\(910\) 0 0
\(911\) 7168.00 0.260688 0.130344 0.991469i \(-0.458392\pi\)
0.130344 + 0.991469i \(0.458392\pi\)
\(912\) 0 0
\(913\) −26960.0 −0.977268
\(914\) 0 0
\(915\) −5490.00 −0.198354
\(916\) 0 0
\(917\) 7520.00 0.270809
\(918\) 0 0
\(919\) −26264.0 −0.942731 −0.471365 0.881938i \(-0.656239\pi\)
−0.471365 + 0.881938i \(0.656239\pi\)
\(920\) 0 0
\(921\) 28236.0 1.01021
\(922\) 0 0
\(923\) 17408.0 0.620792
\(924\) 0 0
\(925\) 7750.00 0.275479
\(926\) 0 0
\(927\) −8424.00 −0.298469
\(928\) 0 0
\(929\) −51990.0 −1.83610 −0.918050 0.396465i \(-0.870237\pi\)
−0.918050 + 0.396465i \(0.870237\pi\)
\(930\) 0 0
\(931\) −3348.00 −0.117859
\(932\) 0 0
\(933\) −29232.0 −1.02574
\(934\) 0 0
\(935\) 600.000 0.0209862
\(936\) 0 0
\(937\) −1926.00 −0.0671501 −0.0335751 0.999436i \(-0.510689\pi\)
−0.0335751 + 0.999436i \(0.510689\pi\)
\(938\) 0 0
\(939\) 4146.00 0.144089
\(940\) 0 0
\(941\) 34550.0 1.19692 0.598458 0.801154i \(-0.295780\pi\)
0.598458 + 0.801154i \(0.295780\pi\)
\(942\) 0 0
\(943\) −62160.0 −2.14656
\(944\) 0 0
\(945\) 1080.00 0.0371771
\(946\) 0 0
\(947\) 43716.0 1.50008 0.750042 0.661390i \(-0.230033\pi\)
0.750042 + 0.661390i \(0.230033\pi\)
\(948\) 0 0
\(949\) 25772.0 0.881554
\(950\) 0 0
\(951\) −1746.00 −0.0595352
\(952\) 0 0
\(953\) −25134.0 −0.854323 −0.427162 0.904175i \(-0.640486\pi\)
−0.427162 + 0.904175i \(0.640486\pi\)
\(954\) 0 0
\(955\) −19560.0 −0.662771
\(956\) 0 0
\(957\) 14760.0 0.498561
\(958\) 0 0
\(959\) 3312.00 0.111522
\(960\) 0 0
\(961\) 961.000 0.0322581
\(962\) 0 0
\(963\) −756.000 −0.0252978
\(964\) 0 0
\(965\) 1450.00 0.0483701
\(966\) 0 0
\(967\) −1336.00 −0.0444290 −0.0222145 0.999753i \(-0.507072\pi\)
−0.0222145 + 0.999753i \(0.507072\pi\)
\(968\) 0 0
\(969\) 216.000 0.00716091
\(970\) 0 0
\(971\) −23508.0 −0.776939 −0.388469 0.921462i \(-0.626996\pi\)
−0.388469 + 0.921462i \(0.626996\pi\)
\(972\) 0 0
\(973\) 3744.00 0.123358
\(974\) 0 0
\(975\) 2550.00 0.0837593
\(976\) 0 0
\(977\) −22254.0 −0.728729 −0.364365 0.931256i \(-0.618714\pi\)
−0.364365 + 0.931256i \(0.618714\pi\)
\(978\) 0 0
\(979\) −360.000 −0.0117525
\(980\) 0 0
\(981\) −11034.0 −0.359112
\(982\) 0 0
\(983\) 35816.0 1.16211 0.581054 0.813865i \(-0.302640\pi\)
0.581054 + 0.813865i \(0.302640\pi\)
\(984\) 0 0
\(985\) −22170.0 −0.717152
\(986\) 0 0
\(987\) −2112.00 −0.0681111
\(988\) 0 0
\(989\) 11040.0 0.354956
\(990\) 0 0
\(991\) 51760.0 1.65914 0.829571 0.558401i \(-0.188585\pi\)
0.829571 + 0.558401i \(0.188585\pi\)
\(992\) 0 0
\(993\) 27612.0 0.882417
\(994\) 0 0
\(995\) 5320.00 0.169503
\(996\) 0 0
\(997\) −21666.0 −0.688234 −0.344117 0.938927i \(-0.611822\pi\)
−0.344117 + 0.938927i \(0.611822\pi\)
\(998\) 0 0
\(999\) −8370.00 −0.265080
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.4.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.4.a.a.1.1 1 1.1 even 1 trivial