Properties

Label 1860.4.a
Level $1860$
Weight $4$
Character orbit 1860.a
Rep. character $\chi_{1860}(1,\cdot)$
Character field $\Q$
Dimension $60$
Newform subspaces $9$
Sturm bound $1536$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1860.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(1536\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1860))\).

Total New Old
Modular forms 1164 60 1104
Cusp forms 1140 60 1080
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(5\)\(31\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(+\)\(78\)\(0\)\(78\)\(76\)\(0\)\(76\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(+\)\(-\)\(-\)\(70\)\(0\)\(70\)\(68\)\(0\)\(68\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(+\)\(-\)\(68\)\(0\)\(68\)\(66\)\(0\)\(66\)\(2\)\(0\)\(2\)
\(+\)\(+\)\(-\)\(-\)\(+\)\(76\)\(0\)\(76\)\(74\)\(0\)\(74\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(+\)\(-\)\(74\)\(0\)\(74\)\(72\)\(0\)\(72\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(+\)\(70\)\(0\)\(70\)\(68\)\(0\)\(68\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(+\)\(72\)\(0\)\(72\)\(70\)\(0\)\(70\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(-\)\(-\)\(76\)\(0\)\(76\)\(74\)\(0\)\(74\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(+\)\(-\)\(72\)\(7\)\(65\)\(71\)\(7\)\(64\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(+\)\(74\)\(8\)\(66\)\(73\)\(8\)\(65\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(+\)\(73\)\(9\)\(64\)\(72\)\(9\)\(63\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(-\)\(-\)\(71\)\(6\)\(65\)\(70\)\(6\)\(64\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(+\)\(73\)\(8\)\(65\)\(72\)\(8\)\(64\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(-\)\(-\)\(71\)\(7\)\(64\)\(70\)\(7\)\(63\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(+\)\(-\)\(72\)\(6\)\(66\)\(71\)\(6\)\(65\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(+\)\(74\)\(9\)\(65\)\(73\)\(9\)\(64\)\(1\)\(0\)\(1\)
Plus space\(+\)\(590\)\(34\)\(556\)\(578\)\(34\)\(544\)\(12\)\(0\)\(12\)
Minus space\(-\)\(574\)\(26\)\(548\)\(562\)\(26\)\(536\)\(12\)\(0\)\(12\)

Trace form

\( 60 q + 540 q^{9} + 56 q^{11} - 128 q^{17} - 216 q^{19} + 16 q^{23} + 1500 q^{25} + 160 q^{29} + 264 q^{33} - 520 q^{35} + 688 q^{37} - 24 q^{41} - 272 q^{43} - 320 q^{47} + 1780 q^{49} - 336 q^{51} - 480 q^{53}+ \cdots + 504 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1860))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 5 31
1860.4.a.a 1860.a 1.a $1$ $109.744$ \(\Q\) None 1860.4.a.a \(0\) \(-3\) \(5\) \(-8\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}-8q^{7}+9q^{9}-20q^{11}+\cdots\)
1860.4.a.b 1860.a 1.a $5$ $109.744$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 1860.4.a.b \(0\) \(-15\) \(25\) \(1\) $-$ $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+(-\beta _{3}-\beta _{4})q^{7}+9q^{9}+\cdots\)
1860.4.a.c 1860.a 1.a $6$ $109.744$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1860.4.a.c \(0\) \(18\) \(30\) \(-19\) $-$ $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+(-3-\beta _{2}-\beta _{4})q^{7}+\cdots\)
1860.4.a.d 1860.a 1.a $7$ $109.744$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1860.4.a.d \(0\) \(-21\) \(-35\) \(7\) $-$ $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+(1-\beta _{5})q^{7}+9q^{9}+\cdots\)
1860.4.a.e 1860.a 1.a $7$ $109.744$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 1860.4.a.e \(0\) \(21\) \(-35\) \(19\) $-$ $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+(3+\beta _{2})q^{7}+9q^{9}+\cdots\)
1860.4.a.f 1860.a 1.a $8$ $109.744$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1860.4.a.f \(0\) \(-24\) \(-40\) \(35\) $-$ $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-3q^{3}-5q^{5}+(4-\beta _{1})q^{7}+9q^{9}+\cdots\)
1860.4.a.g 1860.a 1.a $8$ $109.744$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1860.4.a.g \(0\) \(24\) \(-40\) \(-9\) $-$ $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+3q^{3}-5q^{5}+(-1-\beta _{1})q^{7}+9q^{9}+\cdots\)
1860.4.a.h 1860.a 1.a $9$ $109.744$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1860.4.a.h \(0\) \(-27\) \(45\) \(-35\) $-$ $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-3q^{3}+5q^{5}+(-4+\beta _{1})q^{7}+9q^{9}+\cdots\)
1860.4.a.i 1860.a 1.a $9$ $109.744$ \(\mathbb{Q}[x]/(x^{9} - \cdots)\) None 1860.4.a.i \(0\) \(27\) \(45\) \(9\) $-$ $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+3q^{3}+5q^{5}+(1-\beta _{6})q^{7}+9q^{9}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1860))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1860)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(124))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(310))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(372))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(465))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(620))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(930))\)\(^{\oplus 2}\)