Defining parameters
| Level: | \( N \) | \(=\) | \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1860.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(1536\) | ||
| Trace bound: | \(3\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1860))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1164 | 60 | 1104 |
| Cusp forms | 1140 | 60 | 1080 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(31\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(78\) | \(0\) | \(78\) | \(76\) | \(0\) | \(76\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(70\) | \(0\) | \(70\) | \(68\) | \(0\) | \(68\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(68\) | \(0\) | \(68\) | \(66\) | \(0\) | \(66\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(76\) | \(0\) | \(76\) | \(74\) | \(0\) | \(74\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(74\) | \(0\) | \(74\) | \(72\) | \(0\) | \(72\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(70\) | \(0\) | \(70\) | \(68\) | \(0\) | \(68\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(72\) | \(0\) | \(72\) | \(70\) | \(0\) | \(70\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(76\) | \(0\) | \(76\) | \(74\) | \(0\) | \(74\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(72\) | \(7\) | \(65\) | \(71\) | \(7\) | \(64\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(74\) | \(8\) | \(66\) | \(73\) | \(8\) | \(65\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(73\) | \(9\) | \(64\) | \(72\) | \(9\) | \(63\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(71\) | \(6\) | \(65\) | \(70\) | \(6\) | \(64\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(73\) | \(8\) | \(65\) | \(72\) | \(8\) | \(64\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(71\) | \(7\) | \(64\) | \(70\) | \(7\) | \(63\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(72\) | \(6\) | \(66\) | \(71\) | \(6\) | \(65\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(74\) | \(9\) | \(65\) | \(73\) | \(9\) | \(64\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(590\) | \(34\) | \(556\) | \(578\) | \(34\) | \(544\) | \(12\) | \(0\) | \(12\) | ||||||
| Minus space | \(-\) | \(574\) | \(26\) | \(548\) | \(562\) | \(26\) | \(536\) | \(12\) | \(0\) | \(12\) | ||||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1860))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1860))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1860)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(31))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(62))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(93))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(124))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(155))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(186))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(310))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(372))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(465))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(620))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(930))\)\(^{\oplus 2}\)