Properties

Label 1860.4
Level 1860
Weight 4
Dimension 110304
Nonzero newspaces 48
Sturm bound 737280
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(737280\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1860))\).

Total New Old
Modular forms 278880 111008 167872
Cusp forms 274080 110304 163776
Eisenstein series 4800 704 4096

Trace form

\( 110304 q + 20 q^{3} - 76 q^{4} + 40 q^{5} - 154 q^{6} - 32 q^{7} - 168 q^{8} - 92 q^{9} - 210 q^{10} + 32 q^{11} + 298 q^{12} + 32 q^{13} - 100 q^{15} - 308 q^{16} - 568 q^{17} - 542 q^{18} - 800 q^{19}+ \cdots - 8220 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1860))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1860.4.a \(\chi_{1860}(1, \cdot)\) 1860.4.a.a 1 1
1860.4.a.b 5
1860.4.a.c 6
1860.4.a.d 7
1860.4.a.e 7
1860.4.a.f 8
1860.4.a.g 8
1860.4.a.h 9
1860.4.a.i 9
1860.4.f \(\chi_{1860}(991, \cdot)\) n/a 384 1
1860.4.g \(\chi_{1860}(1489, \cdot)\) 1860.4.g.a 46 1
1860.4.g.b 46
1860.4.h \(\chi_{1860}(311, \cdot)\) n/a 720 1
1860.4.i \(\chi_{1860}(929, \cdot)\) n/a 192 1
1860.4.n \(\chi_{1860}(1799, \cdot)\) n/a 1080 1
1860.4.o \(\chi_{1860}(1301, \cdot)\) n/a 128 1
1860.4.p \(\chi_{1860}(619, \cdot)\) n/a 576 1
1860.4.q \(\chi_{1860}(1141, \cdot)\) n/a 128 2
1860.4.r \(\chi_{1860}(497, \cdot)\) n/a 360 2
1860.4.s \(\chi_{1860}(433, \cdot)\) n/a 192 2
1860.4.t \(\chi_{1860}(743, \cdot)\) n/a 2288 2
1860.4.u \(\chi_{1860}(187, \cdot)\) n/a 1080 2
1860.4.z \(\chi_{1860}(481, \cdot)\) n/a 256 4
1860.4.ba \(\chi_{1860}(739, \cdot)\) n/a 1152 2
1860.4.bb \(\chi_{1860}(161, \cdot)\) n/a 256 2
1860.4.bc \(\chi_{1860}(1079, \cdot)\) n/a 2288 2
1860.4.bh \(\chi_{1860}(1049, \cdot)\) n/a 384 2
1860.4.bi \(\chi_{1860}(191, \cdot)\) n/a 1536 2
1860.4.bj \(\chi_{1860}(769, \cdot)\) n/a 192 2
1860.4.bk \(\chi_{1860}(1111, \cdot)\) n/a 768 2
1860.4.bp \(\chi_{1860}(139, \cdot)\) n/a 2304 4
1860.4.bq \(\chi_{1860}(401, \cdot)\) n/a 512 4
1860.4.br \(\chi_{1860}(419, \cdot)\) n/a 4576 4
1860.4.bw \(\chi_{1860}(29, \cdot)\) n/a 768 4
1860.4.bx \(\chi_{1860}(791, \cdot)\) n/a 3072 4
1860.4.by \(\chi_{1860}(109, \cdot)\) n/a 384 4
1860.4.bz \(\chi_{1860}(91, \cdot)\) n/a 1536 4
1860.4.ci \(\chi_{1860}(67, \cdot)\) n/a 2304 4
1860.4.cj \(\chi_{1860}(347, \cdot)\) n/a 4576 4
1860.4.ck \(\chi_{1860}(37, \cdot)\) n/a 384 4
1860.4.cl \(\chi_{1860}(377, \cdot)\) n/a 768 4
1860.4.cm \(\chi_{1860}(121, \cdot)\) n/a 512 8
1860.4.cr \(\chi_{1860}(163, \cdot)\) n/a 4608 8
1860.4.cs \(\chi_{1860}(23, \cdot)\) n/a 9152 8
1860.4.ct \(\chi_{1860}(277, \cdot)\) n/a 768 8
1860.4.cu \(\chi_{1860}(233, \cdot)\) n/a 1536 8
1860.4.cz \(\chi_{1860}(331, \cdot)\) n/a 3072 8
1860.4.da \(\chi_{1860}(49, \cdot)\) n/a 768 8
1860.4.db \(\chi_{1860}(71, \cdot)\) n/a 6144 8
1860.4.dc \(\chi_{1860}(269, \cdot)\) n/a 1536 8
1860.4.dh \(\chi_{1860}(59, \cdot)\) n/a 9152 8
1860.4.di \(\chi_{1860}(641, \cdot)\) n/a 1024 8
1860.4.dj \(\chi_{1860}(79, \cdot)\) n/a 4608 8
1860.4.dk \(\chi_{1860}(113, \cdot)\) n/a 3072 16
1860.4.dl \(\chi_{1860}(13, \cdot)\) n/a 1536 16
1860.4.dm \(\chi_{1860}(83, \cdot)\) n/a 18304 16
1860.4.dn \(\chi_{1860}(7, \cdot)\) n/a 9216 16

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1860))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1860)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 24}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 16}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(60))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(93))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(124))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(186))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(310))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(372))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(465))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(620))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(930))\)\(^{\oplus 2}\)