Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1860,3,Mod(1549,1860)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1860, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1860.1549");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1860.e (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(50.6813291710\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1549.1 | 0 | −1.73205 | 0 | −4.72048 | − | 1.64836i | 0 | − | 11.3695i | 0 | 3.00000 | 0 | |||||||||||||||
1549.2 | 0 | −1.73205 | 0 | −4.72048 | + | 1.64836i | 0 | 11.3695i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.3 | 0 | −1.73205 | 0 | −4.70035 | − | 1.70490i | 0 | 7.69740i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.4 | 0 | −1.73205 | 0 | −4.70035 | + | 1.70490i | 0 | − | 7.69740i | 0 | 3.00000 | 0 | |||||||||||||||
1549.5 | 0 | −1.73205 | 0 | −4.41328 | − | 2.35009i | 0 | 6.38134i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.6 | 0 | −1.73205 | 0 | −4.41328 | + | 2.35009i | 0 | − | 6.38134i | 0 | 3.00000 | 0 | |||||||||||||||
1549.7 | 0 | −1.73205 | 0 | −4.40643 | − | 2.36291i | 0 | − | 0.138944i | 0 | 3.00000 | 0 | |||||||||||||||
1549.8 | 0 | −1.73205 | 0 | −4.40643 | + | 2.36291i | 0 | 0.138944i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.9 | 0 | −1.73205 | 0 | −3.53306 | − | 3.53801i | 0 | 1.83950i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.10 | 0 | −1.73205 | 0 | −3.53306 | + | 3.53801i | 0 | − | 1.83950i | 0 | 3.00000 | 0 | |||||||||||||||
1549.11 | 0 | −1.73205 | 0 | −2.07885 | − | 4.54735i | 0 | − | 6.86029i | 0 | 3.00000 | 0 | |||||||||||||||
1549.12 | 0 | −1.73205 | 0 | −2.07885 | + | 4.54735i | 0 | 6.86029i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.13 | 0 | −1.73205 | 0 | −1.49788 | − | 4.77036i | 0 | − | 7.41663i | 0 | 3.00000 | 0 | |||||||||||||||
1549.14 | 0 | −1.73205 | 0 | −1.49788 | + | 4.77036i | 0 | 7.41663i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.15 | 0 | −1.73205 | 0 | −0.0667084 | − | 4.99955i | 0 | 12.5178i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.16 | 0 | −1.73205 | 0 | −0.0667084 | + | 4.99955i | 0 | − | 12.5178i | 0 | 3.00000 | 0 | |||||||||||||||
1549.17 | 0 | −1.73205 | 0 | 1.11186 | − | 4.87481i | 0 | 3.53605i | 0 | 3.00000 | 0 | ||||||||||||||||
1549.18 | 0 | −1.73205 | 0 | 1.11186 | + | 4.87481i | 0 | − | 3.53605i | 0 | 3.00000 | 0 | |||||||||||||||
1549.19 | 0 | −1.73205 | 0 | 1.83089 | − | 4.65272i | 0 | − | 1.95219i | 0 | 3.00000 | 0 | |||||||||||||||
1549.20 | 0 | −1.73205 | 0 | 1.83089 | + | 4.65272i | 0 | 1.95219i | 0 | 3.00000 | 0 | ||||||||||||||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
31.b | odd | 2 | 1 | inner |
155.c | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1860.3.e.a | ✓ | 64 |
5.b | even | 2 | 1 | inner | 1860.3.e.a | ✓ | 64 |
31.b | odd | 2 | 1 | inner | 1860.3.e.a | ✓ | 64 |
155.c | odd | 2 | 1 | inner | 1860.3.e.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1860.3.e.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
1860.3.e.a | ✓ | 64 | 5.b | even | 2 | 1 | inner |
1860.3.e.a | ✓ | 64 | 31.b | odd | 2 | 1 | inner |
1860.3.e.a | ✓ | 64 | 155.c | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(1860, [\chi])\).