Properties

Label 1860.3.e.a
Level $1860$
Weight $3$
Character orbit 1860.e
Analytic conductor $50.681$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1860,3,Mod(1549,1860)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1860, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1860.1549");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1860.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.6813291710\)
Analytic rank: \(0\)
Dimension: \(64\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 64 q + 192 q^{9} - 8 q^{19} - 16 q^{25} + 48 q^{31} + 36 q^{35} - 24 q^{39} - 64 q^{41} - 384 q^{49} - 408 q^{59} + 584 q^{71} + 576 q^{81} - 68 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1549.1 0 −1.73205 0 −4.72048 1.64836i 0 11.3695i 0 3.00000 0
1549.2 0 −1.73205 0 −4.72048 + 1.64836i 0 11.3695i 0 3.00000 0
1549.3 0 −1.73205 0 −4.70035 1.70490i 0 7.69740i 0 3.00000 0
1549.4 0 −1.73205 0 −4.70035 + 1.70490i 0 7.69740i 0 3.00000 0
1549.5 0 −1.73205 0 −4.41328 2.35009i 0 6.38134i 0 3.00000 0
1549.6 0 −1.73205 0 −4.41328 + 2.35009i 0 6.38134i 0 3.00000 0
1549.7 0 −1.73205 0 −4.40643 2.36291i 0 0.138944i 0 3.00000 0
1549.8 0 −1.73205 0 −4.40643 + 2.36291i 0 0.138944i 0 3.00000 0
1549.9 0 −1.73205 0 −3.53306 3.53801i 0 1.83950i 0 3.00000 0
1549.10 0 −1.73205 0 −3.53306 + 3.53801i 0 1.83950i 0 3.00000 0
1549.11 0 −1.73205 0 −2.07885 4.54735i 0 6.86029i 0 3.00000 0
1549.12 0 −1.73205 0 −2.07885 + 4.54735i 0 6.86029i 0 3.00000 0
1549.13 0 −1.73205 0 −1.49788 4.77036i 0 7.41663i 0 3.00000 0
1549.14 0 −1.73205 0 −1.49788 + 4.77036i 0 7.41663i 0 3.00000 0
1549.15 0 −1.73205 0 −0.0667084 4.99955i 0 12.5178i 0 3.00000 0
1549.16 0 −1.73205 0 −0.0667084 + 4.99955i 0 12.5178i 0 3.00000 0
1549.17 0 −1.73205 0 1.11186 4.87481i 0 3.53605i 0 3.00000 0
1549.18 0 −1.73205 0 1.11186 + 4.87481i 0 3.53605i 0 3.00000 0
1549.19 0 −1.73205 0 1.83089 4.65272i 0 1.95219i 0 3.00000 0
1549.20 0 −1.73205 0 1.83089 + 4.65272i 0 1.95219i 0 3.00000 0
See all 64 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1549.64
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
31.b odd 2 1 inner
155.c odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1860.3.e.a 64
5.b even 2 1 inner 1860.3.e.a 64
31.b odd 2 1 inner 1860.3.e.a 64
155.c odd 2 1 inner 1860.3.e.a 64
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1860.3.e.a 64 1.a even 1 1 trivial
1860.3.e.a 64 5.b even 2 1 inner
1860.3.e.a 64 31.b odd 2 1 inner
1860.3.e.a 64 155.c odd 2 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(1860, [\chi])\).