Properties

Label 1860.2.s.a.433.9
Level $1860$
Weight $2$
Character 1860.433
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.9
Character \(\chi\) \(=\) 1860.433
Dual form 1860.2.s.a.1177.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(1.94432 + 1.10436i) q^{5} +(-1.30181 + 1.30181i) q^{7} -1.00000i q^{9} -0.348868i q^{11} +(3.81091 - 3.81091i) q^{13} +(-2.15575 + 0.593939i) q^{15} +(0.867057 + 0.867057i) q^{17} +3.13612i q^{19} -1.84104i q^{21} +(3.18948 - 3.18948i) q^{23} +(2.56076 + 4.29447i) q^{25} +(0.707107 + 0.707107i) q^{27} +3.05666 q^{29} +(1.80830 - 5.26593i) q^{31} +(0.246687 + 0.246687i) q^{33} +(-3.96880 + 1.09346i) q^{35} +(2.25742 + 2.25742i) q^{37} +5.38944i q^{39} +8.13560 q^{41} +(-1.78149 + 1.78149i) q^{43} +(1.10436 - 1.94432i) q^{45} +(-3.54328 + 3.54328i) q^{47} +3.61059i q^{49} -1.22620 q^{51} +(1.20645 - 1.20645i) q^{53} +(0.385277 - 0.678310i) q^{55} +(-2.21757 - 2.21757i) q^{57} +3.43227i q^{59} +0.764936i q^{61} +(1.30181 + 1.30181i) q^{63} +(11.6183 - 3.20099i) q^{65} +(-0.999024 + 0.999024i) q^{67} +4.51061i q^{69} -7.35363 q^{71} +(-6.15668 + 6.15668i) q^{73} +(-4.84738 - 1.22592i) q^{75} +(0.454159 + 0.454159i) q^{77} +10.7589 q^{79} -1.00000 q^{81} +(-5.99917 + 5.99917i) q^{83} +(0.728290 + 2.64338i) q^{85} +(-2.16139 + 2.16139i) q^{87} -7.46314 q^{89} +9.92214i q^{91} +(2.44491 + 5.00224i) q^{93} +(-3.46342 + 6.09762i) q^{95} +(-1.18994 + 1.18994i) q^{97} -0.348868 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 1.94432 + 1.10436i 0.869526 + 0.493887i
\(6\) 0 0
\(7\) −1.30181 + 1.30181i −0.492037 + 0.492037i −0.908948 0.416910i \(-0.863113\pi\)
0.416910 + 0.908948i \(0.363113\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 0.348868i 0.105188i −0.998616 0.0525938i \(-0.983251\pi\)
0.998616 0.0525938i \(-0.0167488\pi\)
\(12\) 0 0
\(13\) 3.81091 3.81091i 1.05696 1.05696i 0.0586785 0.998277i \(-0.481311\pi\)
0.998277 0.0586785i \(-0.0186887\pi\)
\(14\) 0 0
\(15\) −2.15575 + 0.593939i −0.556611 + 0.153354i
\(16\) 0 0
\(17\) 0.867057 + 0.867057i 0.210292 + 0.210292i 0.804392 0.594099i \(-0.202491\pi\)
−0.594099 + 0.804392i \(0.702491\pi\)
\(18\) 0 0
\(19\) 3.13612i 0.719475i 0.933054 + 0.359737i \(0.117134\pi\)
−0.933054 + 0.359737i \(0.882866\pi\)
\(20\) 0 0
\(21\) 1.84104i 0.401747i
\(22\) 0 0
\(23\) 3.18948 3.18948i 0.665054 0.665054i −0.291513 0.956567i \(-0.594159\pi\)
0.956567 + 0.291513i \(0.0941587\pi\)
\(24\) 0 0
\(25\) 2.56076 + 4.29447i 0.512152 + 0.858895i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 3.05666 0.567608 0.283804 0.958882i \(-0.408403\pi\)
0.283804 + 0.958882i \(0.408403\pi\)
\(30\) 0 0
\(31\) 1.80830 5.26593i 0.324781 0.945789i
\(32\) 0 0
\(33\) 0.246687 + 0.246687i 0.0429426 + 0.0429426i
\(34\) 0 0
\(35\) −3.96880 + 1.09346i −0.670850 + 0.184829i
\(36\) 0 0
\(37\) 2.25742 + 2.25742i 0.371117 + 0.371117i 0.867884 0.496767i \(-0.165480\pi\)
−0.496767 + 0.867884i \(0.665480\pi\)
\(38\) 0 0
\(39\) 5.38944i 0.863000i
\(40\) 0 0
\(41\) 8.13560 1.27057 0.635284 0.772279i \(-0.280883\pi\)
0.635284 + 0.772279i \(0.280883\pi\)
\(42\) 0 0
\(43\) −1.78149 + 1.78149i −0.271674 + 0.271674i −0.829774 0.558100i \(-0.811531\pi\)
0.558100 + 0.829774i \(0.311531\pi\)
\(44\) 0 0
\(45\) 1.10436 1.94432i 0.164629 0.289842i
\(46\) 0 0
\(47\) −3.54328 + 3.54328i −0.516840 + 0.516840i −0.916614 0.399774i \(-0.869089\pi\)
0.399774 + 0.916614i \(0.369089\pi\)
\(48\) 0 0
\(49\) 3.61059i 0.515798i
\(50\) 0 0
\(51\) −1.22620 −0.171703
\(52\) 0 0
\(53\) 1.20645 1.20645i 0.165719 0.165719i −0.619376 0.785095i \(-0.712614\pi\)
0.785095 + 0.619376i \(0.212614\pi\)
\(54\) 0 0
\(55\) 0.385277 0.678310i 0.0519507 0.0914633i
\(56\) 0 0
\(57\) −2.21757 2.21757i −0.293724 0.293724i
\(58\) 0 0
\(59\) 3.43227i 0.446844i 0.974722 + 0.223422i \(0.0717228\pi\)
−0.974722 + 0.223422i \(0.928277\pi\)
\(60\) 0 0
\(61\) 0.764936i 0.0979400i 0.998800 + 0.0489700i \(0.0155939\pi\)
−0.998800 + 0.0489700i \(0.984406\pi\)
\(62\) 0 0
\(63\) 1.30181 + 1.30181i 0.164012 + 0.164012i
\(64\) 0 0
\(65\) 11.6183 3.20099i 1.44107 0.397035i
\(66\) 0 0
\(67\) −0.999024 + 0.999024i −0.122050 + 0.122050i −0.765494 0.643443i \(-0.777505\pi\)
0.643443 + 0.765494i \(0.277505\pi\)
\(68\) 0 0
\(69\) 4.51061i 0.543014i
\(70\) 0 0
\(71\) −7.35363 −0.872716 −0.436358 0.899773i \(-0.643732\pi\)
−0.436358 + 0.899773i \(0.643732\pi\)
\(72\) 0 0
\(73\) −6.15668 + 6.15668i −0.720585 + 0.720585i −0.968724 0.248139i \(-0.920181\pi\)
0.248139 + 0.968724i \(0.420181\pi\)
\(74\) 0 0
\(75\) −4.84738 1.22592i −0.559728 0.141557i
\(76\) 0 0
\(77\) 0.454159 + 0.454159i 0.0517562 + 0.0517562i
\(78\) 0 0
\(79\) 10.7589 1.21047 0.605234 0.796048i \(-0.293080\pi\)
0.605234 + 0.796048i \(0.293080\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −5.99917 + 5.99917i −0.658494 + 0.658494i −0.955024 0.296530i \(-0.904171\pi\)
0.296530 + 0.955024i \(0.404171\pi\)
\(84\) 0 0
\(85\) 0.728290 + 2.64338i 0.0789941 + 0.286715i
\(86\) 0 0
\(87\) −2.16139 + 2.16139i −0.231725 + 0.231725i
\(88\) 0 0
\(89\) −7.46314 −0.791091 −0.395546 0.918446i \(-0.629445\pi\)
−0.395546 + 0.918446i \(0.629445\pi\)
\(90\) 0 0
\(91\) 9.92214i 1.04012i
\(92\) 0 0
\(93\) 2.44491 + 5.00224i 0.253526 + 0.518708i
\(94\) 0 0
\(95\) −3.46342 + 6.09762i −0.355339 + 0.625602i
\(96\) 0 0
\(97\) −1.18994 + 1.18994i −0.120820 + 0.120820i −0.764932 0.644111i \(-0.777227\pi\)
0.644111 + 0.764932i \(0.277227\pi\)
\(98\) 0 0
\(99\) −0.348868 −0.0350625
\(100\) 0 0
\(101\) 19.4720 1.93753 0.968766 0.247975i \(-0.0797650\pi\)
0.968766 + 0.247975i \(0.0797650\pi\)
\(102\) 0 0
\(103\) −3.31073 3.31073i −0.326216 0.326216i 0.524930 0.851146i \(-0.324092\pi\)
−0.851146 + 0.524930i \(0.824092\pi\)
\(104\) 0 0
\(105\) 2.03317 3.57956i 0.198417 0.349330i
\(106\) 0 0
\(107\) −11.6067 + 11.6067i −1.12206 + 1.12206i −0.130631 + 0.991431i \(0.541700\pi\)
−0.991431 + 0.130631i \(0.958300\pi\)
\(108\) 0 0
\(109\) 6.18632i 0.592542i −0.955104 0.296271i \(-0.904257\pi\)
0.955104 0.296271i \(-0.0957432\pi\)
\(110\) 0 0
\(111\) −3.19247 −0.303016
\(112\) 0 0
\(113\) −3.20541 3.20541i −0.301539 0.301539i 0.540077 0.841616i \(-0.318395\pi\)
−0.841616 + 0.540077i \(0.818395\pi\)
\(114\) 0 0
\(115\) 9.72373 2.67903i 0.906743 0.249821i
\(116\) 0 0
\(117\) −3.81091 3.81091i −0.352318 0.352318i
\(118\) 0 0
\(119\) −2.25749 −0.206943
\(120\) 0 0
\(121\) 10.8783 0.988936
\(122\) 0 0
\(123\) −5.75274 + 5.75274i −0.518707 + 0.518707i
\(124\) 0 0
\(125\) 0.236278 + 11.1778i 0.0211333 + 0.999777i
\(126\) 0 0
\(127\) 5.46519 + 5.46519i 0.484957 + 0.484957i 0.906711 0.421754i \(-0.138585\pi\)
−0.421754 + 0.906711i \(0.638585\pi\)
\(128\) 0 0
\(129\) 2.51940i 0.221821i
\(130\) 0 0
\(131\) 19.1279 1.67121 0.835607 0.549327i \(-0.185116\pi\)
0.835607 + 0.549327i \(0.185116\pi\)
\(132\) 0 0
\(133\) −4.08263 4.08263i −0.354009 0.354009i
\(134\) 0 0
\(135\) 0.593939 + 2.15575i 0.0511181 + 0.185537i
\(136\) 0 0
\(137\) −11.5636 11.5636i −0.987946 0.987946i 0.0119821 0.999928i \(-0.496186\pi\)
−0.999928 + 0.0119821i \(0.996186\pi\)
\(138\) 0 0
\(139\) 12.8328 1.08846 0.544230 0.838936i \(-0.316822\pi\)
0.544230 + 0.838936i \(0.316822\pi\)
\(140\) 0 0
\(141\) 5.01095i 0.421998i
\(142\) 0 0
\(143\) −1.32950 1.32950i −0.111179 0.111179i
\(144\) 0 0
\(145\) 5.94313 + 3.37567i 0.493550 + 0.280334i
\(146\) 0 0
\(147\) −2.55307 2.55307i −0.210574 0.210574i
\(148\) 0 0
\(149\) 5.28719i 0.433144i 0.976267 + 0.216572i \(0.0694876\pi\)
−0.976267 + 0.216572i \(0.930512\pi\)
\(150\) 0 0
\(151\) 0.693754i 0.0564569i 0.999601 + 0.0282285i \(0.00898659\pi\)
−0.999601 + 0.0282285i \(0.991013\pi\)
\(152\) 0 0
\(153\) 0.867057 0.867057i 0.0700974 0.0700974i
\(154\) 0 0
\(155\) 9.33142 8.24163i 0.749518 0.661984i
\(156\) 0 0
\(157\) 0.0925744 0.0925744i 0.00738824 0.00738824i −0.703403 0.710791i \(-0.748337\pi\)
0.710791 + 0.703403i \(0.248337\pi\)
\(158\) 0 0
\(159\) 1.70618i 0.135309i
\(160\) 0 0
\(161\) 8.30420i 0.654463i
\(162\) 0 0
\(163\) 13.6251 + 13.6251i 1.06720 + 1.06720i 0.997573 + 0.0696232i \(0.0221797\pi\)
0.0696232 + 0.997573i \(0.477820\pi\)
\(164\) 0 0
\(165\) 0.207206 + 0.752070i 0.0161310 + 0.0585485i
\(166\) 0 0
\(167\) −3.02965 3.02965i −0.234441 0.234441i 0.580102 0.814544i \(-0.303013\pi\)
−0.814544 + 0.580102i \(0.803013\pi\)
\(168\) 0 0
\(169\) 16.0460i 1.23431i
\(170\) 0 0
\(171\) 3.13612 0.239825
\(172\) 0 0
\(173\) −8.02143 8.02143i −0.609858 0.609858i 0.333051 0.942909i \(-0.391922\pi\)
−0.942909 + 0.333051i \(0.891922\pi\)
\(174\) 0 0
\(175\) −8.92420 2.25696i −0.674606 0.170610i
\(176\) 0 0
\(177\) −2.42698 2.42698i −0.182423 0.182423i
\(178\) 0 0
\(179\) −12.2755 −0.917512 −0.458756 0.888562i \(-0.651705\pi\)
−0.458756 + 0.888562i \(0.651705\pi\)
\(180\) 0 0
\(181\) 5.12980i 0.381295i 0.981659 + 0.190648i \(0.0610588\pi\)
−0.981659 + 0.190648i \(0.938941\pi\)
\(182\) 0 0
\(183\) −0.540891 0.540891i −0.0399838 0.0399838i
\(184\) 0 0
\(185\) 1.89613 + 6.88215i 0.139406 + 0.505986i
\(186\) 0 0
\(187\) 0.302488 0.302488i 0.0221201 0.0221201i
\(188\) 0 0
\(189\) −1.84104 −0.133916
\(190\) 0 0
\(191\) −6.50562 −0.470730 −0.235365 0.971907i \(-0.575629\pi\)
−0.235365 + 0.971907i \(0.575629\pi\)
\(192\) 0 0
\(193\) 15.4749 + 15.4749i 1.11391 + 1.11391i 0.992617 + 0.121291i \(0.0387034\pi\)
0.121291 + 0.992617i \(0.461297\pi\)
\(194\) 0 0
\(195\) −5.95190 + 10.4788i −0.426224 + 0.750402i
\(196\) 0 0
\(197\) −4.59069 4.59069i −0.327073 0.327073i 0.524399 0.851473i \(-0.324290\pi\)
−0.851473 + 0.524399i \(0.824290\pi\)
\(198\) 0 0
\(199\) 21.7917 1.54477 0.772386 0.635153i \(-0.219063\pi\)
0.772386 + 0.635153i \(0.219063\pi\)
\(200\) 0 0
\(201\) 1.41283i 0.0996536i
\(202\) 0 0
\(203\) −3.97919 + 3.97919i −0.279284 + 0.279284i
\(204\) 0 0
\(205\) 15.8182 + 8.98466i 1.10479 + 0.627516i
\(206\) 0 0
\(207\) −3.18948 3.18948i −0.221685 0.221685i
\(208\) 0 0
\(209\) 1.09409 0.0756798
\(210\) 0 0
\(211\) 10.4225 0.717512 0.358756 0.933431i \(-0.383201\pi\)
0.358756 + 0.933431i \(0.383201\pi\)
\(212\) 0 0
\(213\) 5.19980 5.19980i 0.356285 0.356285i
\(214\) 0 0
\(215\) −5.43119 + 1.49637i −0.370404 + 0.102052i
\(216\) 0 0
\(217\) 4.50117 + 9.20930i 0.305560 + 0.625168i
\(218\) 0 0
\(219\) 8.70687i 0.588356i
\(220\) 0 0
\(221\) 6.60855 0.444539
\(222\) 0 0
\(223\) −8.06725 + 8.06725i −0.540223 + 0.540223i −0.923594 0.383371i \(-0.874763\pi\)
0.383371 + 0.923594i \(0.374763\pi\)
\(224\) 0 0
\(225\) 4.29447 2.56076i 0.286298 0.170717i
\(226\) 0 0
\(227\) −4.97666 + 4.97666i −0.330312 + 0.330312i −0.852705 0.522393i \(-0.825040\pi\)
0.522393 + 0.852705i \(0.325040\pi\)
\(228\) 0 0
\(229\) 11.9227 0.787876 0.393938 0.919137i \(-0.371113\pi\)
0.393938 + 0.919137i \(0.371113\pi\)
\(230\) 0 0
\(231\) −0.642278 −0.0422588
\(232\) 0 0
\(233\) −1.09023 1.09023i −0.0714234 0.0714234i 0.670493 0.741916i \(-0.266083\pi\)
−0.741916 + 0.670493i \(0.766083\pi\)
\(234\) 0 0
\(235\) −10.8023 + 2.97620i −0.704666 + 0.194146i
\(236\) 0 0
\(237\) −7.60767 + 7.60767i −0.494171 + 0.494171i
\(238\) 0 0
\(239\) −29.3174 −1.89638 −0.948192 0.317699i \(-0.897090\pi\)
−0.948192 + 0.317699i \(0.897090\pi\)
\(240\) 0 0
\(241\) 12.9784i 0.836015i 0.908444 + 0.418007i \(0.137271\pi\)
−0.908444 + 0.418007i \(0.862729\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −3.98740 + 7.02014i −0.254746 + 0.448500i
\(246\) 0 0
\(247\) 11.9515 + 11.9515i 0.760453 + 0.760453i
\(248\) 0 0
\(249\) 8.48410i 0.537658i
\(250\) 0 0
\(251\) 15.6400i 0.987187i −0.869693 0.493594i \(-0.835683\pi\)
0.869693 0.493594i \(-0.164317\pi\)
\(252\) 0 0
\(253\) −1.11271 1.11271i −0.0699554 0.0699554i
\(254\) 0 0
\(255\) −2.38413 1.35418i −0.149300 0.0848017i
\(256\) 0 0
\(257\) 12.0640 12.0640i 0.752532 0.752532i −0.222419 0.974951i \(-0.571395\pi\)
0.974951 + 0.222419i \(0.0713953\pi\)
\(258\) 0 0
\(259\) −5.87745 −0.365207
\(260\) 0 0
\(261\) 3.05666i 0.189203i
\(262\) 0 0
\(263\) 7.77183 7.77183i 0.479232 0.479232i −0.425654 0.904886i \(-0.639956\pi\)
0.904886 + 0.425654i \(0.139956\pi\)
\(264\) 0 0
\(265\) 3.67809 1.01337i 0.225943 0.0622507i
\(266\) 0 0
\(267\) 5.27724 5.27724i 0.322962 0.322962i
\(268\) 0 0
\(269\) −19.4976 −1.18879 −0.594394 0.804174i \(-0.702608\pi\)
−0.594394 + 0.804174i \(0.702608\pi\)
\(270\) 0 0
\(271\) 8.35693i 0.507647i −0.967251 0.253824i \(-0.918312\pi\)
0.967251 0.253824i \(-0.0816883\pi\)
\(272\) 0 0
\(273\) −7.01602 7.01602i −0.424629 0.424629i
\(274\) 0 0
\(275\) 1.49820 0.893367i 0.0903450 0.0538720i
\(276\) 0 0
\(277\) 9.34364 + 9.34364i 0.561405 + 0.561405i 0.929706 0.368302i \(-0.120061\pi\)
−0.368302 + 0.929706i \(0.620061\pi\)
\(278\) 0 0
\(279\) −5.26593 1.80830i −0.315263 0.108260i
\(280\) 0 0
\(281\) −5.67863 −0.338759 −0.169379 0.985551i \(-0.554176\pi\)
−0.169379 + 0.985551i \(0.554176\pi\)
\(282\) 0 0
\(283\) −23.6450 23.6450i −1.40555 1.40555i −0.780934 0.624614i \(-0.785256\pi\)
−0.624614 0.780934i \(-0.714744\pi\)
\(284\) 0 0
\(285\) −1.86266 6.76067i −0.110335 0.400468i
\(286\) 0 0
\(287\) −10.5910 + 10.5910i −0.625167 + 0.625167i
\(288\) 0 0
\(289\) 15.4964i 0.911554i
\(290\) 0 0
\(291\) 1.68283i 0.0986493i
\(292\) 0 0
\(293\) −10.2310 10.2310i −0.597699 0.597699i 0.342001 0.939700i \(-0.388895\pi\)
−0.939700 + 0.342001i \(0.888895\pi\)
\(294\) 0 0
\(295\) −3.79048 + 6.67344i −0.220690 + 0.388543i
\(296\) 0 0
\(297\) 0.246687 0.246687i 0.0143142 0.0143142i
\(298\) 0 0
\(299\) 24.3097i 1.40586i
\(300\) 0 0
\(301\) 4.63831i 0.267348i
\(302\) 0 0
\(303\) −13.7688 + 13.7688i −0.790995 + 0.790995i
\(304\) 0 0
\(305\) −0.844767 + 1.48728i −0.0483712 + 0.0851614i
\(306\) 0 0
\(307\) 6.28012 6.28012i 0.358425 0.358425i −0.504807 0.863232i \(-0.668436\pi\)
0.863232 + 0.504807i \(0.168436\pi\)
\(308\) 0 0
\(309\) 4.68208 0.266354
\(310\) 0 0
\(311\) −6.38003 −0.361778 −0.180889 0.983504i \(-0.557898\pi\)
−0.180889 + 0.983504i \(0.557898\pi\)
\(312\) 0 0
\(313\) 14.3766 14.3766i 0.812613 0.812613i −0.172412 0.985025i \(-0.555156\pi\)
0.985025 + 0.172412i \(0.0551560\pi\)
\(314\) 0 0
\(315\) 1.09346 + 3.96880i 0.0616096 + 0.223617i
\(316\) 0 0
\(317\) −12.0154 + 12.0154i −0.674854 + 0.674854i −0.958831 0.283977i \(-0.908346\pi\)
0.283977 + 0.958831i \(0.408346\pi\)
\(318\) 0 0
\(319\) 1.06637i 0.0597053i
\(320\) 0 0
\(321\) 16.4143i 0.916160i
\(322\) 0 0
\(323\) −2.71919 + 2.71919i −0.151300 + 0.151300i
\(324\) 0 0
\(325\) 26.1247 + 6.60702i 1.44914 + 0.366491i
\(326\) 0 0
\(327\) 4.37439 + 4.37439i 0.241904 + 0.241904i
\(328\) 0 0
\(329\) 9.22534i 0.508609i
\(330\) 0 0
\(331\) 9.37198i 0.515131i −0.966261 0.257565i \(-0.917080\pi\)
0.966261 0.257565i \(-0.0829202\pi\)
\(332\) 0 0
\(333\) 2.25742 2.25742i 0.123706 0.123706i
\(334\) 0 0
\(335\) −3.04571 + 0.839136i −0.166405 + 0.0458469i
\(336\) 0 0
\(337\) −11.6769 11.6769i −0.636080 0.636080i 0.313506 0.949586i \(-0.398496\pi\)
−0.949586 + 0.313506i \(0.898496\pi\)
\(338\) 0 0
\(339\) 4.53313 0.246206
\(340\) 0 0
\(341\) −1.83711 0.630858i −0.0994853 0.0341629i
\(342\) 0 0
\(343\) −13.8130 13.8130i −0.745830 0.745830i
\(344\) 0 0
\(345\) −4.98136 + 8.77007i −0.268187 + 0.472165i
\(346\) 0 0
\(347\) −9.03788 9.03788i −0.485179 0.485179i 0.421602 0.906781i \(-0.361468\pi\)
−0.906781 + 0.421602i \(0.861468\pi\)
\(348\) 0 0
\(349\) 30.2184i 1.61755i −0.588116 0.808776i \(-0.700130\pi\)
0.588116 0.808776i \(-0.299870\pi\)
\(350\) 0 0
\(351\) 5.38944 0.287667
\(352\) 0 0
\(353\) 16.9052 16.9052i 0.899775 0.899775i −0.0956412 0.995416i \(-0.530490\pi\)
0.995416 + 0.0956412i \(0.0304901\pi\)
\(354\) 0 0
\(355\) −14.2978 8.12109i −0.758849 0.431023i
\(356\) 0 0
\(357\) 1.59628 1.59628i 0.0844843 0.0844843i
\(358\) 0 0
\(359\) 11.6863i 0.616780i −0.951260 0.308390i \(-0.900210\pi\)
0.951260 0.308390i \(-0.0997902\pi\)
\(360\) 0 0
\(361\) 9.16476 0.482356
\(362\) 0 0
\(363\) −7.69211 + 7.69211i −0.403731 + 0.403731i
\(364\) 0 0
\(365\) −18.7698 + 5.17135i −0.982455 + 0.270681i
\(366\) 0 0
\(367\) 4.54775 + 4.54775i 0.237391 + 0.237391i 0.815769 0.578378i \(-0.196314\pi\)
−0.578378 + 0.815769i \(0.696314\pi\)
\(368\) 0 0
\(369\) 8.13560i 0.423522i
\(370\) 0 0
\(371\) 3.14114i 0.163080i
\(372\) 0 0
\(373\) −15.8547 15.8547i −0.820924 0.820924i 0.165317 0.986241i \(-0.447135\pi\)
−0.986241 + 0.165317i \(0.947135\pi\)
\(374\) 0 0
\(375\) −8.07100 7.73685i −0.416785 0.399529i
\(376\) 0 0
\(377\) 11.6487 11.6487i 0.599936 0.599936i
\(378\) 0 0
\(379\) 19.7777i 1.01591i −0.861383 0.507956i \(-0.830401\pi\)
0.861383 0.507956i \(-0.169599\pi\)
\(380\) 0 0
\(381\) −7.72894 −0.395966
\(382\) 0 0
\(383\) −1.91240 + 1.91240i −0.0977190 + 0.0977190i −0.754276 0.656557i \(-0.772012\pi\)
0.656557 + 0.754276i \(0.272012\pi\)
\(384\) 0 0
\(385\) 0.381474 + 1.38459i 0.0194417 + 0.0705651i
\(386\) 0 0
\(387\) 1.78149 + 1.78149i 0.0905581 + 0.0905581i
\(388\) 0 0
\(389\) −16.7272 −0.848101 −0.424051 0.905638i \(-0.639392\pi\)
−0.424051 + 0.905638i \(0.639392\pi\)
\(390\) 0 0
\(391\) 5.53093 0.279711
\(392\) 0 0
\(393\) −13.5255 + 13.5255i −0.682271 + 0.682271i
\(394\) 0 0
\(395\) 20.9187 + 11.8817i 1.05253 + 0.597833i
\(396\) 0 0
\(397\) 17.0764 17.0764i 0.857042 0.857042i −0.133947 0.990989i \(-0.542765\pi\)
0.990989 + 0.133947i \(0.0427651\pi\)
\(398\) 0 0
\(399\) 5.77371 0.289047
\(400\) 0 0
\(401\) 16.2324i 0.810607i 0.914182 + 0.405303i \(0.132834\pi\)
−0.914182 + 0.405303i \(0.867166\pi\)
\(402\) 0 0
\(403\) −13.1767 26.9592i −0.656378 1.34294i
\(404\) 0 0
\(405\) −1.94432 1.10436i −0.0966140 0.0548763i
\(406\) 0 0
\(407\) 0.787540 0.787540i 0.0390369 0.0390369i
\(408\) 0 0
\(409\) −38.7463 −1.91588 −0.957942 0.286963i \(-0.907354\pi\)
−0.957942 + 0.286963i \(0.907354\pi\)
\(410\) 0 0
\(411\) 16.3534 0.806655
\(412\) 0 0
\(413\) −4.46816 4.46816i −0.219864 0.219864i
\(414\) 0 0
\(415\) −18.2896 + 5.03904i −0.897799 + 0.247357i
\(416\) 0 0
\(417\) −9.07413 + 9.07413i −0.444362 + 0.444362i
\(418\) 0 0
\(419\) 10.0792i 0.492401i 0.969219 + 0.246201i \(0.0791822\pi\)
−0.969219 + 0.246201i \(0.920818\pi\)
\(420\) 0 0
\(421\) −1.02447 −0.0499298 −0.0249649 0.999688i \(-0.507947\pi\)
−0.0249649 + 0.999688i \(0.507947\pi\)
\(422\) 0 0
\(423\) 3.54328 + 3.54328i 0.172280 + 0.172280i
\(424\) 0 0
\(425\) −1.50323 + 5.94388i −0.0729173 + 0.288321i
\(426\) 0 0
\(427\) −0.995800 0.995800i −0.0481901 0.0481901i
\(428\) 0 0
\(429\) 1.88020 0.0907769
\(430\) 0 0
\(431\) 10.5957 0.510378 0.255189 0.966891i \(-0.417862\pi\)
0.255189 + 0.966891i \(0.417862\pi\)
\(432\) 0 0
\(433\) −22.1124 + 22.1124i −1.06265 + 1.06265i −0.0647524 + 0.997901i \(0.520626\pi\)
−0.997901 + 0.0647524i \(0.979374\pi\)
\(434\) 0 0
\(435\) −6.58939 + 1.81547i −0.315937 + 0.0870452i
\(436\) 0 0
\(437\) 10.0026 + 10.0026i 0.478489 + 0.478489i
\(438\) 0 0
\(439\) 2.34169i 0.111763i −0.998437 0.0558813i \(-0.982203\pi\)
0.998437 0.0558813i \(-0.0177969\pi\)
\(440\) 0 0
\(441\) 3.61059 0.171933
\(442\) 0 0
\(443\) −11.9067 11.9067i −0.565705 0.565705i 0.365217 0.930922i \(-0.380995\pi\)
−0.930922 + 0.365217i \(0.880995\pi\)
\(444\) 0 0
\(445\) −14.5107 8.24202i −0.687875 0.390709i
\(446\) 0 0
\(447\) −3.73861 3.73861i −0.176830 0.176830i
\(448\) 0 0
\(449\) 5.92002 0.279383 0.139692 0.990195i \(-0.455389\pi\)
0.139692 + 0.990195i \(0.455389\pi\)
\(450\) 0 0
\(451\) 2.83825i 0.133648i
\(452\) 0 0
\(453\) −0.490558 0.490558i −0.0230484 0.0230484i
\(454\) 0 0
\(455\) −10.9577 + 19.2918i −0.513703 + 0.904415i
\(456\) 0 0
\(457\) −2.39647 2.39647i −0.112102 0.112102i 0.648831 0.760933i \(-0.275258\pi\)
−0.760933 + 0.648831i \(0.775258\pi\)
\(458\) 0 0
\(459\) 1.22620i 0.0572343i
\(460\) 0 0
\(461\) 36.7775i 1.71290i −0.516230 0.856450i \(-0.672665\pi\)
0.516230 0.856450i \(-0.327335\pi\)
\(462\) 0 0
\(463\) 6.01752 6.01752i 0.279658 0.279658i −0.553314 0.832972i \(-0.686637\pi\)
0.832972 + 0.553314i \(0.186637\pi\)
\(464\) 0 0
\(465\) −0.770598 + 12.4260i −0.0357356 + 0.576243i
\(466\) 0 0
\(467\) 10.1040 10.1040i 0.467556 0.467556i −0.433566 0.901122i \(-0.642745\pi\)
0.901122 + 0.433566i \(0.142745\pi\)
\(468\) 0 0
\(469\) 2.60108i 0.120107i
\(470\) 0 0
\(471\) 0.130920i 0.00603247i
\(472\) 0 0
\(473\) 0.621503 + 0.621503i 0.0285767 + 0.0285767i
\(474\) 0 0
\(475\) −13.4680 + 8.03085i −0.617953 + 0.368481i
\(476\) 0 0
\(477\) −1.20645 1.20645i −0.0552397 0.0552397i
\(478\) 0 0
\(479\) 9.08899i 0.415286i −0.978205 0.207643i \(-0.933421\pi\)
0.978205 0.207643i \(-0.0665793\pi\)
\(480\) 0 0
\(481\) 17.2056 0.784509
\(482\) 0 0
\(483\) −5.87196 5.87196i −0.267183 0.267183i
\(484\) 0 0
\(485\) −3.62775 + 0.999498i −0.164728 + 0.0453849i
\(486\) 0 0
\(487\) 19.9178 + 19.9178i 0.902563 + 0.902563i 0.995657 0.0930941i \(-0.0296757\pi\)
−0.0930941 + 0.995657i \(0.529676\pi\)
\(488\) 0 0
\(489\) −19.2687 −0.871362
\(490\) 0 0
\(491\) 17.7634i 0.801652i 0.916154 + 0.400826i \(0.131277\pi\)
−0.916154 + 0.400826i \(0.868723\pi\)
\(492\) 0 0
\(493\) 2.65030 + 2.65030i 0.119364 + 0.119364i
\(494\) 0 0
\(495\) −0.678310 0.385277i −0.0304878 0.0173169i
\(496\) 0 0
\(497\) 9.57303 9.57303i 0.429409 0.429409i
\(498\) 0 0
\(499\) 43.1597 1.93210 0.966048 0.258364i \(-0.0831834\pi\)
0.966048 + 0.258364i \(0.0831834\pi\)
\(500\) 0 0
\(501\) 4.28457 0.191421
\(502\) 0 0
\(503\) 3.03688 + 3.03688i 0.135408 + 0.135408i 0.771562 0.636154i \(-0.219476\pi\)
−0.636154 + 0.771562i \(0.719476\pi\)
\(504\) 0 0
\(505\) 37.8597 + 21.5041i 1.68474 + 0.956921i
\(506\) 0 0
\(507\) 11.3463 + 11.3463i 0.503905 + 0.503905i
\(508\) 0 0
\(509\) −21.1512 −0.937511 −0.468756 0.883328i \(-0.655297\pi\)
−0.468756 + 0.883328i \(0.655297\pi\)
\(510\) 0 0
\(511\) 16.0297i 0.709110i
\(512\) 0 0
\(513\) −2.21757 + 2.21757i −0.0979081 + 0.0979081i
\(514\) 0 0
\(515\) −2.78087 10.0934i −0.122540 0.444767i
\(516\) 0 0
\(517\) 1.23613 + 1.23613i 0.0543651 + 0.0543651i
\(518\) 0 0
\(519\) 11.3440 0.497947
\(520\) 0 0
\(521\) −1.41037 −0.0617894 −0.0308947 0.999523i \(-0.509836\pi\)
−0.0308947 + 0.999523i \(0.509836\pi\)
\(522\) 0 0
\(523\) −15.5265 + 15.5265i −0.678925 + 0.678925i −0.959757 0.280832i \(-0.909390\pi\)
0.280832 + 0.959757i \(0.409390\pi\)
\(524\) 0 0
\(525\) 7.90628 4.71445i 0.345058 0.205756i
\(526\) 0 0
\(527\) 6.13377 2.99796i 0.267191 0.130593i
\(528\) 0 0
\(529\) 2.65437i 0.115408i
\(530\) 0 0
\(531\) 3.43227 0.148948
\(532\) 0 0
\(533\) 31.0040 31.0040i 1.34293 1.34293i
\(534\) 0 0
\(535\) −35.3852 + 9.74912i −1.52983 + 0.421491i
\(536\) 0 0
\(537\) 8.68007 8.68007i 0.374573 0.374573i
\(538\) 0 0
\(539\) 1.25962 0.0542556
\(540\) 0 0
\(541\) 26.4422 1.13684 0.568420 0.822738i \(-0.307555\pi\)
0.568420 + 0.822738i \(0.307555\pi\)
\(542\) 0 0
\(543\) −3.62732 3.62732i −0.155663 0.155663i
\(544\) 0 0
\(545\) 6.83195 12.0282i 0.292649 0.515231i
\(546\) 0 0
\(547\) −3.76122 + 3.76122i −0.160818 + 0.160818i −0.782929 0.622111i \(-0.786275\pi\)
0.622111 + 0.782929i \(0.286275\pi\)
\(548\) 0 0
\(549\) 0.764936 0.0326467
\(550\) 0 0
\(551\) 9.58606i 0.408380i
\(552\) 0 0
\(553\) −14.0060 + 14.0060i −0.595595 + 0.595595i
\(554\) 0 0
\(555\) −6.20718 3.52565i −0.263480 0.149655i
\(556\) 0 0
\(557\) −14.6279 14.6279i −0.619804 0.619804i 0.325677 0.945481i \(-0.394408\pi\)
−0.945481 + 0.325677i \(0.894408\pi\)
\(558\) 0 0
\(559\) 13.5782i 0.574295i
\(560\) 0 0
\(561\) 0.427783i 0.0180610i
\(562\) 0 0
\(563\) −23.5630 23.5630i −0.993064 0.993064i 0.00691209 0.999976i \(-0.497800\pi\)
−0.999976 + 0.00691209i \(0.997800\pi\)
\(564\) 0 0
\(565\) −2.69240 9.77227i −0.113270 0.411123i
\(566\) 0 0
\(567\) 1.30181 1.30181i 0.0546708 0.0546708i
\(568\) 0 0
\(569\) 15.9609 0.669114 0.334557 0.942376i \(-0.391413\pi\)
0.334557 + 0.942376i \(0.391413\pi\)
\(570\) 0 0
\(571\) 39.4110i 1.64930i −0.565644 0.824650i \(-0.691372\pi\)
0.565644 0.824650i \(-0.308628\pi\)
\(572\) 0 0
\(573\) 4.60017 4.60017i 0.192175 0.192175i
\(574\) 0 0
\(575\) 21.8647 + 5.52965i 0.911820 + 0.230602i
\(576\) 0 0
\(577\) −24.5914 + 24.5914i −1.02375 + 1.02375i −0.0240404 + 0.999711i \(0.507653\pi\)
−0.999711 + 0.0240404i \(0.992347\pi\)
\(578\) 0 0
\(579\) −21.8848 −0.909502
\(580\) 0 0
\(581\) 15.6195i 0.648008i
\(582\) 0 0
\(583\) −0.420892 0.420892i −0.0174316 0.0174316i
\(584\) 0 0
\(585\) −3.20099 11.6183i −0.132345 0.480356i
\(586\) 0 0
\(587\) −2.23731 2.23731i −0.0923437 0.0923437i 0.659426 0.751770i \(-0.270799\pi\)
−0.751770 + 0.659426i \(0.770799\pi\)
\(588\) 0 0
\(589\) 16.5146 + 5.67105i 0.680472 + 0.233672i
\(590\) 0 0
\(591\) 6.49222 0.267054
\(592\) 0 0
\(593\) 10.7112 + 10.7112i 0.439855 + 0.439855i 0.891963 0.452108i \(-0.149328\pi\)
−0.452108 + 0.891963i \(0.649328\pi\)
\(594\) 0 0
\(595\) −4.38927 2.49309i −0.179943 0.102207i
\(596\) 0 0
\(597\) −15.4091 + 15.4091i −0.630651 + 0.630651i
\(598\) 0 0
\(599\) 33.9293i 1.38631i 0.720788 + 0.693156i \(0.243780\pi\)
−0.720788 + 0.693156i \(0.756220\pi\)
\(600\) 0 0
\(601\) 1.15894i 0.0472740i 0.999721 + 0.0236370i \(0.00752458\pi\)
−0.999721 + 0.0236370i \(0.992475\pi\)
\(602\) 0 0
\(603\) 0.999024 + 0.999024i 0.0406834 + 0.0406834i
\(604\) 0 0
\(605\) 21.1509 + 12.0136i 0.859906 + 0.488422i
\(606\) 0 0
\(607\) −3.61903 + 3.61903i −0.146892 + 0.146892i −0.776728 0.629836i \(-0.783122\pi\)
0.629836 + 0.776728i \(0.283122\pi\)
\(608\) 0 0
\(609\) 5.62743i 0.228035i
\(610\) 0 0
\(611\) 27.0062i 1.09255i
\(612\) 0 0
\(613\) −27.4579 + 27.4579i −1.10901 + 1.10901i −0.115732 + 0.993280i \(0.536922\pi\)
−0.993280 + 0.115732i \(0.963078\pi\)
\(614\) 0 0
\(615\) −17.5383 + 4.83205i −0.707212 + 0.194847i
\(616\) 0 0
\(617\) −17.7030 + 17.7030i −0.712697 + 0.712697i −0.967099 0.254402i \(-0.918121\pi\)
0.254402 + 0.967099i \(0.418121\pi\)
\(618\) 0 0
\(619\) −13.2075 −0.530853 −0.265427 0.964131i \(-0.585513\pi\)
−0.265427 + 0.964131i \(0.585513\pi\)
\(620\) 0 0
\(621\) 4.51061 0.181005
\(622\) 0 0
\(623\) 9.71558 9.71558i 0.389247 0.389247i
\(624\) 0 0
\(625\) −11.8850 + 21.9942i −0.475400 + 0.879770i
\(626\) 0 0
\(627\) −0.773639 + 0.773639i −0.0308961 + 0.0308961i
\(628\) 0 0
\(629\) 3.91462i 0.156086i
\(630\) 0 0
\(631\) 19.1048i 0.760550i 0.924873 + 0.380275i \(0.124171\pi\)
−0.924873 + 0.380275i \(0.875829\pi\)
\(632\) 0 0
\(633\) −7.36980 + 7.36980i −0.292923 + 0.292923i
\(634\) 0 0
\(635\) 4.59052 + 16.6616i 0.182169 + 0.661197i
\(636\) 0 0
\(637\) 13.7596 + 13.7596i 0.545176 + 0.545176i
\(638\) 0 0
\(639\) 7.35363i 0.290905i
\(640\) 0 0
\(641\) 15.3696i 0.607064i 0.952821 + 0.303532i \(0.0981660\pi\)
−0.952821 + 0.303532i \(0.901834\pi\)
\(642\) 0 0
\(643\) 4.53851 4.53851i 0.178981 0.178981i −0.611930 0.790912i \(-0.709607\pi\)
0.790912 + 0.611930i \(0.209607\pi\)
\(644\) 0 0
\(645\) 2.78234 4.89853i 0.109554 0.192879i
\(646\) 0 0
\(647\) −0.909934 0.909934i −0.0357732 0.0357732i 0.688994 0.724767i \(-0.258053\pi\)
−0.724767 + 0.688994i \(0.758053\pi\)
\(648\) 0 0
\(649\) 1.19741 0.0470024
\(650\) 0 0
\(651\) −9.69477 3.32915i −0.379968 0.130480i
\(652\) 0 0
\(653\) 9.87258 + 9.87258i 0.386344 + 0.386344i 0.873381 0.487037i \(-0.161922\pi\)
−0.487037 + 0.873381i \(0.661922\pi\)
\(654\) 0 0
\(655\) 37.1908 + 21.1242i 1.45317 + 0.825390i
\(656\) 0 0
\(657\) 6.15668 + 6.15668i 0.240195 + 0.240195i
\(658\) 0 0
\(659\) 14.2874i 0.556559i −0.960500 0.278279i \(-0.910236\pi\)
0.960500 0.278279i \(-0.0897641\pi\)
\(660\) 0 0
\(661\) −5.44398 −0.211746 −0.105873 0.994380i \(-0.533764\pi\)
−0.105873 + 0.994380i \(0.533764\pi\)
\(662\) 0 0
\(663\) −4.67295 + 4.67295i −0.181482 + 0.181482i
\(664\) 0 0
\(665\) −3.42923 12.4466i −0.132980 0.482660i
\(666\) 0 0
\(667\) 9.74918 9.74918i 0.377490 0.377490i
\(668\) 0 0
\(669\) 11.4088i 0.441090i
\(670\) 0 0
\(671\) 0.266861 0.0103021
\(672\) 0 0
\(673\) −5.58983 + 5.58983i −0.215472 + 0.215472i −0.806587 0.591115i \(-0.798688\pi\)
0.591115 + 0.806587i \(0.298688\pi\)
\(674\) 0 0
\(675\) −1.22592 + 4.84738i −0.0471857 + 0.186576i
\(676\) 0 0
\(677\) −9.65893 9.65893i −0.371223 0.371223i 0.496700 0.867922i \(-0.334545\pi\)
−0.867922 + 0.496700i \(0.834545\pi\)
\(678\) 0 0
\(679\) 3.09815i 0.118896i
\(680\) 0 0
\(681\) 7.03806i 0.269699i
\(682\) 0 0
\(683\) −11.8201 11.8201i −0.452285 0.452285i 0.443827 0.896112i \(-0.353620\pi\)
−0.896112 + 0.443827i \(0.853620\pi\)
\(684\) 0 0
\(685\) −9.71293 35.2538i −0.371112 1.34698i
\(686\) 0 0
\(687\) −8.43064 + 8.43064i −0.321649 + 0.321649i
\(688\) 0 0
\(689\) 9.19536i 0.350315i
\(690\) 0 0
\(691\) 20.1495 0.766521 0.383261 0.923640i \(-0.374801\pi\)
0.383261 + 0.923640i \(0.374801\pi\)
\(692\) 0 0
\(693\) 0.454159 0.454159i 0.0172521 0.0172521i
\(694\) 0 0
\(695\) 24.9510 + 14.1720i 0.946445 + 0.537576i
\(696\) 0 0
\(697\) 7.05403 + 7.05403i 0.267190 + 0.267190i
\(698\) 0 0
\(699\) 1.54182 0.0583169
\(700\) 0 0
\(701\) 30.3732 1.14718 0.573589 0.819143i \(-0.305551\pi\)
0.573589 + 0.819143i \(0.305551\pi\)
\(702\) 0 0
\(703\) −7.07953 + 7.07953i −0.267009 + 0.267009i
\(704\) 0 0
\(705\) 5.53391 9.74289i 0.208419 0.366938i
\(706\) 0 0
\(707\) −25.3488 + 25.3488i −0.953339 + 0.953339i
\(708\) 0 0
\(709\) −24.3199 −0.913354 −0.456677 0.889632i \(-0.650961\pi\)
−0.456677 + 0.889632i \(0.650961\pi\)
\(710\) 0 0
\(711\) 10.7589i 0.403489i
\(712\) 0 0
\(713\) −11.0281 22.5632i −0.413004 0.844997i
\(714\) 0 0
\(715\) −1.11672 4.05323i −0.0417631 0.151582i
\(716\) 0 0
\(717\) 20.7305 20.7305i 0.774195 0.774195i
\(718\) 0 0
\(719\) −3.80962 −0.142075 −0.0710374 0.997474i \(-0.522631\pi\)
−0.0710374 + 0.997474i \(0.522631\pi\)
\(720\) 0 0
\(721\) 8.61987 0.321021
\(722\) 0 0
\(723\) −9.17714 9.17714i −0.341302 0.341302i
\(724\) 0 0
\(725\) 7.82738 + 13.1268i 0.290702 + 0.487516i
\(726\) 0 0
\(727\) −8.15383 + 8.15383i −0.302409 + 0.302409i −0.841956 0.539547i \(-0.818596\pi\)
0.539547 + 0.841956i \(0.318596\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −3.08930 −0.114262
\(732\) 0 0
\(733\) −5.56049 5.56049i −0.205381 0.205381i 0.596920 0.802301i \(-0.296391\pi\)
−0.802301 + 0.596920i \(0.796391\pi\)
\(734\) 0 0
\(735\) −2.14447 7.78351i −0.0790999 0.287099i
\(736\) 0 0
\(737\) 0.348527 + 0.348527i 0.0128382 + 0.0128382i
\(738\) 0 0
\(739\) −26.0793 −0.959341 −0.479670 0.877449i \(-0.659244\pi\)
−0.479670 + 0.877449i \(0.659244\pi\)
\(740\) 0 0
\(741\) −16.9019 −0.620907
\(742\) 0 0
\(743\) −7.17052 + 7.17052i −0.263061 + 0.263061i −0.826296 0.563235i \(-0.809556\pi\)
0.563235 + 0.826296i \(0.309556\pi\)
\(744\) 0 0
\(745\) −5.83898 + 10.2800i −0.213924 + 0.376630i
\(746\) 0 0
\(747\) 5.99917 + 5.99917i 0.219498 + 0.219498i
\(748\) 0 0
\(749\) 30.2194i 1.10419i
\(750\) 0 0
\(751\) 38.2209 1.39470 0.697351 0.716730i \(-0.254362\pi\)
0.697351 + 0.716730i \(0.254362\pi\)
\(752\) 0 0
\(753\) 11.0591 + 11.0591i 0.403017 + 0.403017i
\(754\) 0 0
\(755\) −0.766157 + 1.34888i −0.0278833 + 0.0490908i
\(756\) 0 0
\(757\) 23.9112 + 23.9112i 0.869068 + 0.869068i 0.992369 0.123301i \(-0.0393482\pi\)
−0.123301 + 0.992369i \(0.539348\pi\)
\(758\) 0 0
\(759\) 1.57361 0.0571183
\(760\) 0 0
\(761\) 0.244217i 0.00885287i 0.999990 + 0.00442643i \(0.00140898\pi\)
−0.999990 + 0.00442643i \(0.998591\pi\)
\(762\) 0 0
\(763\) 8.05341 + 8.05341i 0.291553 + 0.291553i
\(764\) 0 0
\(765\) 2.64338 0.728290i 0.0955717 0.0263314i
\(766\) 0 0
\(767\) 13.0801 + 13.0801i 0.472294 + 0.472294i
\(768\) 0 0
\(769\) 25.9174i 0.934604i −0.884098 0.467302i \(-0.845226\pi\)
0.884098 0.467302i \(-0.154774\pi\)
\(770\) 0 0
\(771\) 17.0611i 0.614440i
\(772\) 0 0
\(773\) 18.0433 18.0433i 0.648971 0.648971i −0.303773 0.952744i \(-0.598247\pi\)
0.952744 + 0.303773i \(0.0982466\pi\)
\(774\) 0 0
\(775\) 27.2450 5.71909i 0.978671 0.205436i
\(776\) 0 0
\(777\) 4.15599 4.15599i 0.149095 0.149095i
\(778\) 0 0
\(779\) 25.5142i 0.914141i
\(780\) 0 0
\(781\) 2.56544i 0.0917988i
\(782\) 0 0
\(783\) 2.16139 + 2.16139i 0.0772417 + 0.0772417i
\(784\) 0 0
\(785\) 0.282230 0.0777585i 0.0100732 0.00277532i
\(786\) 0 0
\(787\) −24.9163 24.9163i −0.888171 0.888171i 0.106176 0.994347i \(-0.466139\pi\)
−0.994347 + 0.106176i \(0.966139\pi\)
\(788\) 0 0
\(789\) 10.9910i 0.391291i
\(790\) 0 0
\(791\) 8.34565 0.296737
\(792\) 0 0
\(793\) 2.91510 + 2.91510i 0.103518 + 0.103518i
\(794\) 0 0
\(795\) −1.88425 + 3.31736i −0.0668273 + 0.117655i
\(796\) 0 0
\(797\) −0.254437 0.254437i −0.00901263 0.00901263i 0.702586 0.711599i \(-0.252029\pi\)
−0.711599 + 0.702586i \(0.752029\pi\)
\(798\) 0 0
\(799\) −6.14445 −0.217375
\(800\) 0 0
\(801\) 7.46314i 0.263697i
\(802\) 0 0
\(803\) 2.14787 + 2.14787i 0.0757966 + 0.0757966i
\(804\) 0 0
\(805\) −9.17086 + 16.1460i −0.323230 + 0.569072i
\(806\) 0 0
\(807\) 13.7869 13.7869i 0.485321 0.485321i
\(808\) 0 0
\(809\) −0.546906 −0.0192282 −0.00961409 0.999954i \(-0.503060\pi\)
−0.00961409 + 0.999954i \(0.503060\pi\)
\(810\) 0 0
\(811\) −44.3086 −1.55588 −0.777942 0.628336i \(-0.783736\pi\)
−0.777942 + 0.628336i \(0.783736\pi\)
\(812\) 0 0
\(813\) 5.90924 + 5.90924i 0.207246 + 0.207246i
\(814\) 0 0
\(815\) 11.4444 + 41.5385i 0.400882 + 1.45503i
\(816\) 0 0
\(817\) −5.58695 5.58695i −0.195463 0.195463i
\(818\) 0 0
\(819\) 9.92214 0.346708
\(820\) 0 0
\(821\) 18.4461i 0.643772i −0.946778 0.321886i \(-0.895683\pi\)
0.946778 0.321886i \(-0.104317\pi\)
\(822\) 0 0
\(823\) 14.3035 14.3035i 0.498588 0.498588i −0.412410 0.910998i \(-0.635313\pi\)
0.910998 + 0.412410i \(0.135313\pi\)
\(824\) 0 0
\(825\) −0.427684 + 1.69110i −0.0148900 + 0.0588764i
\(826\) 0 0
\(827\) −34.3298 34.3298i −1.19376 1.19376i −0.976002 0.217761i \(-0.930125\pi\)
−0.217761 0.976002i \(-0.569875\pi\)
\(828\) 0 0
\(829\) 13.3161 0.462487 0.231244 0.972896i \(-0.425721\pi\)
0.231244 + 0.972896i \(0.425721\pi\)
\(830\) 0 0
\(831\) −13.2139 −0.458385
\(832\) 0 0
\(833\) −3.13059 + 3.13059i −0.108468 + 0.108468i
\(834\) 0 0
\(835\) −2.54477 9.23644i −0.0880655 0.319640i
\(836\) 0 0
\(837\) 5.00224 2.44491i 0.172903 0.0845086i
\(838\) 0 0
\(839\) 49.8915i 1.72245i 0.508228 + 0.861223i \(0.330301\pi\)
−0.508228 + 0.861223i \(0.669699\pi\)
\(840\) 0 0
\(841\) −19.6568 −0.677821
\(842\) 0 0
\(843\) 4.01540 4.01540i 0.138298 0.138298i
\(844\) 0 0
\(845\) 17.7206 31.1986i 0.609609 1.07326i
\(846\) 0 0
\(847\) −14.1615 + 14.1615i −0.486593 + 0.486593i
\(848\) 0 0
\(849\) 33.4390 1.14762
\(850\) 0 0
\(851\) 14.4000 0.493626
\(852\) 0 0
\(853\) 7.59092 + 7.59092i 0.259908 + 0.259908i 0.825017 0.565109i \(-0.191166\pi\)
−0.565109 + 0.825017i \(0.691166\pi\)
\(854\) 0 0
\(855\) 6.09762 + 3.46342i 0.208534 + 0.118446i
\(856\) 0 0
\(857\) −29.9631 + 29.9631i −1.02352 + 1.02352i −0.0238045 + 0.999717i \(0.507578\pi\)
−0.999717 + 0.0238045i \(0.992422\pi\)
\(858\) 0 0
\(859\) 3.51310 0.119865 0.0599327 0.998202i \(-0.480911\pi\)
0.0599327 + 0.998202i \(0.480911\pi\)
\(860\) 0 0
\(861\) 14.9779i 0.510446i
\(862\) 0 0
\(863\) −3.63860 + 3.63860i −0.123859 + 0.123859i −0.766319 0.642460i \(-0.777914\pi\)
0.642460 + 0.766319i \(0.277914\pi\)
\(864\) 0 0
\(865\) −6.73765 24.4548i −0.229087 0.831489i
\(866\) 0 0
\(867\) 10.9576 + 10.9576i 0.372141 + 0.372141i
\(868\) 0 0
\(869\) 3.75342i 0.127326i
\(870\) 0 0
\(871\) 7.61437i 0.258003i
\(872\) 0 0
\(873\) 1.18994 + 1.18994i 0.0402734 + 0.0402734i
\(874\) 0 0
\(875\) −14.8590 14.2438i −0.502326 0.481529i
\(876\) 0 0
\(877\) 26.1815 26.1815i 0.884088 0.884088i −0.109859 0.993947i \(-0.535040\pi\)
0.993947 + 0.109859i \(0.0350400\pi\)
\(878\) 0 0
\(879\) 14.4688 0.488019
\(880\) 0 0
\(881\) 23.0918i 0.777983i −0.921241 0.388991i \(-0.872824\pi\)
0.921241 0.388991i \(-0.127176\pi\)
\(882\) 0 0
\(883\) 22.7075 22.7075i 0.764167 0.764167i −0.212906 0.977073i \(-0.568293\pi\)
0.977073 + 0.212906i \(0.0682928\pi\)
\(884\) 0 0
\(885\) −2.03856 7.39911i −0.0685255 0.248718i
\(886\) 0 0
\(887\) 16.5220 16.5220i 0.554756 0.554756i −0.373054 0.927810i \(-0.621689\pi\)
0.927810 + 0.373054i \(0.121689\pi\)
\(888\) 0 0
\(889\) −14.2293 −0.477234
\(890\) 0 0
\(891\) 0.348868i 0.0116875i
\(892\) 0 0
\(893\) −11.1121 11.1121i −0.371853 0.371853i
\(894\) 0 0
\(895\) −23.8675 13.5566i −0.797801 0.453147i
\(896\) 0 0
\(897\) 17.1895 + 17.1895i 0.573942 + 0.573942i
\(898\) 0 0
\(899\) 5.52737 16.0962i 0.184348 0.536838i
\(900\) 0 0
\(901\) 2.09213 0.0696989
\(902\) 0 0
\(903\) 3.27978 + 3.27978i 0.109144 + 0.109144i
\(904\) 0 0
\(905\) −5.66517 + 9.97398i −0.188317 + 0.331546i
\(906\) 0 0
\(907\) −22.0275 + 22.0275i −0.731411 + 0.731411i −0.970899 0.239488i \(-0.923020\pi\)
0.239488 + 0.970899i \(0.423020\pi\)
\(908\) 0 0
\(909\) 19.4720i 0.645844i
\(910\) 0 0
\(911\) 26.5767i 0.880526i −0.897869 0.440263i \(-0.854885\pi\)
0.897869 0.440263i \(-0.145115\pi\)
\(912\) 0 0
\(913\) 2.09292 + 2.09292i 0.0692654 + 0.0692654i
\(914\) 0 0
\(915\) −0.454325 1.64901i −0.0150195 0.0545145i
\(916\) 0 0
\(917\) −24.9009 + 24.9009i −0.822300 + 0.822300i
\(918\) 0 0
\(919\) 12.1285i 0.400082i 0.979787 + 0.200041i \(0.0641076\pi\)
−0.979787 + 0.200041i \(0.935892\pi\)
\(920\) 0 0
\(921\) 8.88143i 0.292653i
\(922\) 0 0
\(923\) −28.0240 + 28.0240i −0.922422 + 0.922422i
\(924\) 0 0
\(925\) −3.91371 + 15.4751i −0.128682 + 0.508819i
\(926\) 0 0
\(927\) −3.31073 + 3.31073i −0.108739 + 0.108739i
\(928\) 0 0
\(929\) 38.1417 1.25139 0.625694 0.780069i \(-0.284816\pi\)
0.625694 + 0.780069i \(0.284816\pi\)
\(930\) 0 0
\(931\) −11.3232 −0.371104
\(932\) 0 0
\(933\) 4.51136 4.51136i 0.147695 0.147695i
\(934\) 0 0
\(935\) 0.922191 0.254077i 0.0301589 0.00830920i
\(936\) 0 0
\(937\) −24.0826 + 24.0826i −0.786744 + 0.786744i −0.980959 0.194215i \(-0.937784\pi\)
0.194215 + 0.980959i \(0.437784\pi\)
\(938\) 0 0
\(939\) 20.3316i 0.663496i
\(940\) 0 0
\(941\) 37.5428i 1.22386i 0.790912 + 0.611930i \(0.209607\pi\)
−0.790912 + 0.611930i \(0.790393\pi\)
\(942\) 0 0
\(943\) 25.9484 25.9484i 0.844995 0.844995i
\(944\) 0 0
\(945\) −3.57956 2.03317i −0.116443 0.0661391i
\(946\) 0 0
\(947\) −8.46134 8.46134i −0.274957 0.274957i 0.556135 0.831092i \(-0.312284\pi\)
−0.831092 + 0.556135i \(0.812284\pi\)
\(948\) 0 0
\(949\) 46.9251i 1.52325i
\(950\) 0 0
\(951\) 16.9924i 0.551016i
\(952\) 0 0
\(953\) 36.6226 36.6226i 1.18632 1.18632i 0.208245 0.978077i \(-0.433225\pi\)
0.978077 0.208245i \(-0.0667750\pi\)
\(954\) 0 0
\(955\) −12.6490 7.18457i −0.409312 0.232487i
\(956\) 0 0
\(957\) 0.754038 + 0.754038i 0.0243746 + 0.0243746i
\(958\) 0 0
\(959\) 30.1072 0.972213
\(960\) 0 0
\(961\) −24.4601 19.0448i −0.789035 0.614348i
\(962\) 0 0
\(963\) 11.6067 + 11.6067i 0.374021 + 0.374021i
\(964\) 0 0
\(965\) 12.9982 + 47.1781i 0.418428 + 1.51872i
\(966\) 0 0
\(967\) −5.24076 5.24076i −0.168532 0.168532i 0.617802 0.786334i \(-0.288023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(968\) 0 0
\(969\) 3.84552i 0.123536i
\(970\) 0 0
\(971\) 37.9342 1.21737 0.608684 0.793413i \(-0.291698\pi\)
0.608684 + 0.793413i \(0.291698\pi\)
\(972\) 0 0
\(973\) −16.7058 + 16.7058i −0.535563 + 0.535563i
\(974\) 0 0
\(975\) −23.1448 + 13.8011i −0.741227 + 0.441988i
\(976\) 0 0
\(977\) 12.6104 12.6104i 0.403443 0.403443i −0.476002 0.879444i \(-0.657914\pi\)
0.879444 + 0.476002i \(0.157914\pi\)
\(978\) 0 0
\(979\) 2.60365i 0.0832130i
\(980\) 0 0
\(981\) −6.18632 −0.197514
\(982\) 0 0
\(983\) 24.5105 24.5105i 0.781763 0.781763i −0.198365 0.980128i \(-0.563563\pi\)
0.980128 + 0.198365i \(0.0635631\pi\)
\(984\) 0 0
\(985\) −3.85598 13.9956i −0.122862 0.445936i
\(986\) 0 0
\(987\) 6.52330 + 6.52330i 0.207639 + 0.207639i
\(988\) 0 0
\(989\) 11.3641i 0.361356i
\(990\) 0 0
\(991\) 47.7251i 1.51604i −0.652233 0.758019i \(-0.726167\pi\)
0.652233 0.758019i \(-0.273833\pi\)
\(992\) 0 0
\(993\) 6.62699 + 6.62699i 0.210301 + 0.210301i
\(994\) 0 0
\(995\) 42.3700 + 24.0660i 1.34322 + 0.762942i
\(996\) 0 0
\(997\) −10.3135 + 10.3135i −0.326632 + 0.326632i −0.851304 0.524672i \(-0.824188\pi\)
0.524672 + 0.851304i \(0.324188\pi\)
\(998\) 0 0
\(999\) 3.19247i 0.101005i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.433.9 64
5.2 odd 4 inner 1860.2.s.a.1177.25 yes 64
31.30 odd 2 inner 1860.2.s.a.433.25 yes 64
155.92 even 4 inner 1860.2.s.a.1177.9 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.9 64 1.1 even 1 trivial
1860.2.s.a.433.25 yes 64 31.30 odd 2 inner
1860.2.s.a.1177.9 yes 64 155.92 even 4 inner
1860.2.s.a.1177.25 yes 64 5.2 odd 4 inner