Properties

Label 1860.2.s.a.433.7
Level $1860$
Weight $2$
Character 1860.433
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.7
Character \(\chi\) \(=\) 1860.433
Dual form 1860.2.s.a.1177.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-1.64250 + 1.51730i) q^{5} +(0.674956 - 0.674956i) q^{7} -1.00000i q^{9} +1.09513i q^{11} +(2.63427 - 2.63427i) q^{13} +(0.0885319 - 2.23431i) q^{15} +(-1.41591 - 1.41591i) q^{17} -2.52916i q^{19} +0.954532i q^{21} +(-5.53381 + 5.53381i) q^{23} +(0.395616 - 4.98432i) q^{25} +(0.707107 + 0.707107i) q^{27} -5.18978 q^{29} +(1.26807 - 5.42144i) q^{31} +(-0.774371 - 0.774371i) q^{33} +(-0.0845065 + 2.13272i) q^{35} +(-3.34017 - 3.34017i) q^{37} +3.72543i q^{39} +4.37610 q^{41} +(-3.16760 + 3.16760i) q^{43} +(1.51730 + 1.64250i) q^{45} +(7.37506 - 7.37506i) q^{47} +6.08887i q^{49} +2.00240 q^{51} +(3.45807 - 3.45807i) q^{53} +(-1.66163 - 1.79875i) q^{55} +(1.78839 + 1.78839i) q^{57} -11.6212i q^{59} -4.88626i q^{61} +(-0.674956 - 0.674956i) q^{63} +(-0.329819 + 8.32377i) q^{65} +(3.63817 - 3.63817i) q^{67} -7.82599i q^{69} +15.2051 q^{71} +(5.18122 - 5.18122i) q^{73} +(3.24471 + 3.80419i) q^{75} +(0.739162 + 0.739162i) q^{77} +8.53262 q^{79} -1.00000 q^{81} +(-0.755959 + 0.755959i) q^{83} +(4.47399 + 0.177276i) q^{85} +(3.66973 - 3.66973i) q^{87} -6.58476 q^{89} -3.55604i q^{91} +(2.93688 + 4.73020i) q^{93} +(3.83750 + 4.15415i) q^{95} +(4.81663 - 4.81663i) q^{97} +1.09513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −1.64250 + 1.51730i −0.734549 + 0.678556i
\(6\) 0 0
\(7\) 0.674956 0.674956i 0.255109 0.255109i −0.567952 0.823062i \(-0.692264\pi\)
0.823062 + 0.567952i \(0.192264\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.09513i 0.330193i 0.986277 + 0.165097i \(0.0527936\pi\)
−0.986277 + 0.165097i \(0.947206\pi\)
\(12\) 0 0
\(13\) 2.63427 2.63427i 0.730616 0.730616i −0.240126 0.970742i \(-0.577189\pi\)
0.970742 + 0.240126i \(0.0771887\pi\)
\(14\) 0 0
\(15\) 0.0885319 2.23431i 0.0228588 0.576898i
\(16\) 0 0
\(17\) −1.41591 1.41591i −0.343409 0.343409i 0.514239 0.857647i \(-0.328075\pi\)
−0.857647 + 0.514239i \(0.828075\pi\)
\(18\) 0 0
\(19\) 2.52916i 0.580230i −0.956992 0.290115i \(-0.906306\pi\)
0.956992 0.290115i \(-0.0936936\pi\)
\(20\) 0 0
\(21\) 0.954532i 0.208296i
\(22\) 0 0
\(23\) −5.53381 + 5.53381i −1.15388 + 1.15388i −0.168112 + 0.985768i \(0.553767\pi\)
−0.985768 + 0.168112i \(0.946233\pi\)
\(24\) 0 0
\(25\) 0.395616 4.98432i 0.0791232 0.996865i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) −5.18978 −0.963718 −0.481859 0.876249i \(-0.660038\pi\)
−0.481859 + 0.876249i \(0.660038\pi\)
\(30\) 0 0
\(31\) 1.26807 5.42144i 0.227752 0.973719i
\(32\) 0 0
\(33\) −0.774371 0.774371i −0.134801 0.134801i
\(34\) 0 0
\(35\) −0.0845065 + 2.13272i −0.0142842 + 0.360496i
\(36\) 0 0
\(37\) −3.34017 3.34017i −0.549121 0.549121i 0.377066 0.926187i \(-0.376933\pi\)
−0.926187 + 0.377066i \(0.876933\pi\)
\(38\) 0 0
\(39\) 3.72543i 0.596545i
\(40\) 0 0
\(41\) 4.37610 0.683431 0.341716 0.939803i \(-0.388992\pi\)
0.341716 + 0.939803i \(0.388992\pi\)
\(42\) 0 0
\(43\) −3.16760 + 3.16760i −0.483054 + 0.483054i −0.906106 0.423051i \(-0.860959\pi\)
0.423051 + 0.906106i \(0.360959\pi\)
\(44\) 0 0
\(45\) 1.51730 + 1.64250i 0.226185 + 0.244850i
\(46\) 0 0
\(47\) 7.37506 7.37506i 1.07576 1.07576i 0.0788794 0.996884i \(-0.474866\pi\)
0.996884 0.0788794i \(-0.0251342\pi\)
\(48\) 0 0
\(49\) 6.08887i 0.869838i
\(50\) 0 0
\(51\) 2.00240 0.280392
\(52\) 0 0
\(53\) 3.45807 3.45807i 0.475003 0.475003i −0.428526 0.903529i \(-0.640967\pi\)
0.903529 + 0.428526i \(0.140967\pi\)
\(54\) 0 0
\(55\) −1.66163 1.79875i −0.224054 0.242543i
\(56\) 0 0
\(57\) 1.78839 + 1.78839i 0.236878 + 0.236878i
\(58\) 0 0
\(59\) 11.6212i 1.51295i −0.654024 0.756473i \(-0.726921\pi\)
0.654024 0.756473i \(-0.273079\pi\)
\(60\) 0 0
\(61\) 4.88626i 0.625622i −0.949815 0.312811i \(-0.898729\pi\)
0.949815 0.312811i \(-0.101271\pi\)
\(62\) 0 0
\(63\) −0.674956 0.674956i −0.0850364 0.0850364i
\(64\) 0 0
\(65\) −0.329819 + 8.32377i −0.0409090 + 1.03244i
\(66\) 0 0
\(67\) 3.63817 3.63817i 0.444473 0.444473i −0.449039 0.893512i \(-0.648234\pi\)
0.893512 + 0.449039i \(0.148234\pi\)
\(68\) 0 0
\(69\) 7.82599i 0.942139i
\(70\) 0 0
\(71\) 15.2051 1.80451 0.902254 0.431205i \(-0.141911\pi\)
0.902254 + 0.431205i \(0.141911\pi\)
\(72\) 0 0
\(73\) 5.18122 5.18122i 0.606416 0.606416i −0.335592 0.942007i \(-0.608936\pi\)
0.942007 + 0.335592i \(0.108936\pi\)
\(74\) 0 0
\(75\) 3.24471 + 3.80419i 0.374666 + 0.439270i
\(76\) 0 0
\(77\) 0.739162 + 0.739162i 0.0842353 + 0.0842353i
\(78\) 0 0
\(79\) 8.53262 0.959995 0.479997 0.877270i \(-0.340638\pi\)
0.479997 + 0.877270i \(0.340638\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −0.755959 + 0.755959i −0.0829773 + 0.0829773i −0.747377 0.664400i \(-0.768687\pi\)
0.664400 + 0.747377i \(0.268687\pi\)
\(84\) 0 0
\(85\) 4.47399 + 0.177276i 0.485272 + 0.0192283i
\(86\) 0 0
\(87\) 3.66973 3.66973i 0.393436 0.393436i
\(88\) 0 0
\(89\) −6.58476 −0.697984 −0.348992 0.937126i \(-0.613476\pi\)
−0.348992 + 0.937126i \(0.613476\pi\)
\(90\) 0 0
\(91\) 3.55604i 0.372774i
\(92\) 0 0
\(93\) 2.93688 + 4.73020i 0.304540 + 0.490498i
\(94\) 0 0
\(95\) 3.83750 + 4.15415i 0.393719 + 0.426207i
\(96\) 0 0
\(97\) 4.81663 4.81663i 0.489055 0.489055i −0.418953 0.908008i \(-0.637603\pi\)
0.908008 + 0.418953i \(0.137603\pi\)
\(98\) 0 0
\(99\) 1.09513 0.110064
\(100\) 0 0
\(101\) 5.57055 0.554291 0.277145 0.960828i \(-0.410612\pi\)
0.277145 + 0.960828i \(0.410612\pi\)
\(102\) 0 0
\(103\) 5.51344 + 5.51344i 0.543256 + 0.543256i 0.924482 0.381226i \(-0.124498\pi\)
−0.381226 + 0.924482i \(0.624498\pi\)
\(104\) 0 0
\(105\) −1.44831 1.56782i −0.141340 0.153003i
\(106\) 0 0
\(107\) −7.40337 + 7.40337i −0.715711 + 0.715711i −0.967724 0.252013i \(-0.918907\pi\)
0.252013 + 0.967724i \(0.418907\pi\)
\(108\) 0 0
\(109\) 12.7983i 1.22586i −0.790139 0.612928i \(-0.789992\pi\)
0.790139 0.612928i \(-0.210008\pi\)
\(110\) 0 0
\(111\) 4.72372 0.448355
\(112\) 0 0
\(113\) −3.41147 3.41147i −0.320924 0.320924i 0.528197 0.849122i \(-0.322868\pi\)
−0.849122 + 0.528197i \(0.822868\pi\)
\(114\) 0 0
\(115\) 0.692850 17.4857i 0.0646086 1.63055i
\(116\) 0 0
\(117\) −2.63427 2.63427i −0.243539 0.243539i
\(118\) 0 0
\(119\) −1.91135 −0.175213
\(120\) 0 0
\(121\) 9.80070 0.890973
\(122\) 0 0
\(123\) −3.09437 + 3.09437i −0.279010 + 0.279010i
\(124\) 0 0
\(125\) 6.91290 + 8.78702i 0.618309 + 0.785935i
\(126\) 0 0
\(127\) −7.87121 7.87121i −0.698457 0.698457i 0.265621 0.964078i \(-0.414423\pi\)
−0.964078 + 0.265621i \(0.914423\pi\)
\(128\) 0 0
\(129\) 4.47966i 0.394412i
\(130\) 0 0
\(131\) 2.41281 0.210808 0.105404 0.994429i \(-0.466386\pi\)
0.105404 + 0.994429i \(0.466386\pi\)
\(132\) 0 0
\(133\) −1.70707 1.70707i −0.148022 0.148022i
\(134\) 0 0
\(135\) −2.23431 0.0885319i −0.192299 0.00761961i
\(136\) 0 0
\(137\) −5.04954 5.04954i −0.431411 0.431411i 0.457697 0.889108i \(-0.348674\pi\)
−0.889108 + 0.457697i \(0.848674\pi\)
\(138\) 0 0
\(139\) 1.34745 0.114289 0.0571447 0.998366i \(-0.481800\pi\)
0.0571447 + 0.998366i \(0.481800\pi\)
\(140\) 0 0
\(141\) 10.4299i 0.878357i
\(142\) 0 0
\(143\) 2.88486 + 2.88486i 0.241244 + 0.241244i
\(144\) 0 0
\(145\) 8.52422 7.87444i 0.707898 0.653937i
\(146\) 0 0
\(147\) −4.30548 4.30548i −0.355110 0.355110i
\(148\) 0 0
\(149\) 17.8665i 1.46368i −0.681474 0.731842i \(-0.738661\pi\)
0.681474 0.731842i \(-0.261339\pi\)
\(150\) 0 0
\(151\) 13.8290i 1.12539i 0.826664 + 0.562696i \(0.190236\pi\)
−0.826664 + 0.562696i \(0.809764\pi\)
\(152\) 0 0
\(153\) −1.41591 + 1.41591i −0.114470 + 0.114470i
\(154\) 0 0
\(155\) 6.14313 + 10.8288i 0.493428 + 0.869786i
\(156\) 0 0
\(157\) −11.1983 + 11.1983i −0.893725 + 0.893725i −0.994872 0.101147i \(-0.967749\pi\)
0.101147 + 0.994872i \(0.467749\pi\)
\(158\) 0 0
\(159\) 4.89045i 0.387838i
\(160\) 0 0
\(161\) 7.47016i 0.588731i
\(162\) 0 0
\(163\) −5.93305 5.93305i −0.464713 0.464713i 0.435484 0.900196i \(-0.356577\pi\)
−0.900196 + 0.435484i \(0.856577\pi\)
\(164\) 0 0
\(165\) 2.44686 + 0.0969536i 0.190488 + 0.00754782i
\(166\) 0 0
\(167\) 10.2689 + 10.2689i 0.794634 + 0.794634i 0.982244 0.187609i \(-0.0600739\pi\)
−0.187609 + 0.982244i \(0.560074\pi\)
\(168\) 0 0
\(169\) 0.878795i 0.0675996i
\(170\) 0 0
\(171\) −2.52916 −0.193410
\(172\) 0 0
\(173\) −9.99494 9.99494i −0.759901 0.759901i 0.216403 0.976304i \(-0.430568\pi\)
−0.976304 + 0.216403i \(0.930568\pi\)
\(174\) 0 0
\(175\) −3.09718 3.63122i −0.234124 0.274495i
\(176\) 0 0
\(177\) 8.21740 + 8.21740i 0.617658 + 0.617658i
\(178\) 0 0
\(179\) 24.0536 1.79785 0.898924 0.438105i \(-0.144350\pi\)
0.898924 + 0.438105i \(0.144350\pi\)
\(180\) 0 0
\(181\) 1.25030i 0.0929339i 0.998920 + 0.0464670i \(0.0147962\pi\)
−0.998920 + 0.0464670i \(0.985204\pi\)
\(182\) 0 0
\(183\) 3.45511 + 3.45511i 0.255409 + 0.255409i
\(184\) 0 0
\(185\) 10.5543 + 0.418199i 0.775965 + 0.0307466i
\(186\) 0 0
\(187\) 1.55060 1.55060i 0.113391 0.113391i
\(188\) 0 0
\(189\) 0.954532 0.0694320
\(190\) 0 0
\(191\) 17.8442 1.29116 0.645579 0.763693i \(-0.276616\pi\)
0.645579 + 0.763693i \(0.276616\pi\)
\(192\) 0 0
\(193\) −14.6393 14.6393i −1.05376 1.05376i −0.998471 0.0552868i \(-0.982393\pi\)
−0.0552868 0.998471i \(-0.517607\pi\)
\(194\) 0 0
\(195\) −5.65258 6.11901i −0.404790 0.438192i
\(196\) 0 0
\(197\) −17.9405 17.9405i −1.27821 1.27821i −0.941671 0.336536i \(-0.890745\pi\)
−0.336536 0.941671i \(-0.609255\pi\)
\(198\) 0 0
\(199\) −12.4017 −0.879134 −0.439567 0.898210i \(-0.644868\pi\)
−0.439567 + 0.898210i \(0.644868\pi\)
\(200\) 0 0
\(201\) 5.14515i 0.362911i
\(202\) 0 0
\(203\) −3.50287 + 3.50287i −0.245853 + 0.245853i
\(204\) 0 0
\(205\) −7.18774 + 6.63984i −0.502013 + 0.463746i
\(206\) 0 0
\(207\) 5.53381 + 5.53381i 0.384627 + 0.384627i
\(208\) 0 0
\(209\) 2.76975 0.191588
\(210\) 0 0
\(211\) 12.9668 0.892674 0.446337 0.894865i \(-0.352728\pi\)
0.446337 + 0.894865i \(0.352728\pi\)
\(212\) 0 0
\(213\) −10.7516 + 10.7516i −0.736687 + 0.736687i
\(214\) 0 0
\(215\) 0.396593 10.0090i 0.0270474 0.682606i
\(216\) 0 0
\(217\) −2.80334 4.51512i −0.190303 0.306506i
\(218\) 0 0
\(219\) 7.32735i 0.495136i
\(220\) 0 0
\(221\) −7.45979 −0.501800
\(222\) 0 0
\(223\) 1.27168 1.27168i 0.0851581 0.0851581i −0.663245 0.748403i \(-0.730821\pi\)
0.748403 + 0.663245i \(0.230821\pi\)
\(224\) 0 0
\(225\) −4.98432 0.395616i −0.332288 0.0263744i
\(226\) 0 0
\(227\) −14.9881 + 14.9881i −0.994798 + 0.994798i −0.999987 0.00518898i \(-0.998348\pi\)
0.00518898 + 0.999987i \(0.498348\pi\)
\(228\) 0 0
\(229\) 9.42360 0.622729 0.311364 0.950291i \(-0.399214\pi\)
0.311364 + 0.950291i \(0.399214\pi\)
\(230\) 0 0
\(231\) −1.04533 −0.0687778
\(232\) 0 0
\(233\) −11.8768 11.8768i −0.778072 0.778072i 0.201431 0.979503i \(-0.435441\pi\)
−0.979503 + 0.201431i \(0.935441\pi\)
\(234\) 0 0
\(235\) −0.923380 + 23.3037i −0.0602346 + 1.52017i
\(236\) 0 0
\(237\) −6.03347 + 6.03347i −0.391916 + 0.391916i
\(238\) 0 0
\(239\) −6.87543 −0.444735 −0.222367 0.974963i \(-0.571378\pi\)
−0.222367 + 0.974963i \(0.571378\pi\)
\(240\) 0 0
\(241\) 27.2401i 1.75469i −0.479859 0.877346i \(-0.659312\pi\)
0.479859 0.877346i \(-0.340688\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −9.23863 10.0010i −0.590234 0.638939i
\(246\) 0 0
\(247\) −6.66251 6.66251i −0.423925 0.423925i
\(248\) 0 0
\(249\) 1.06909i 0.0677507i
\(250\) 0 0
\(251\) 21.4917i 1.35654i 0.734812 + 0.678271i \(0.237270\pi\)
−0.734812 + 0.678271i \(0.762730\pi\)
\(252\) 0 0
\(253\) −6.06023 6.06023i −0.381003 0.381003i
\(254\) 0 0
\(255\) −3.28894 + 3.03824i −0.205961 + 0.190262i
\(256\) 0 0
\(257\) −5.94155 + 5.94155i −0.370624 + 0.370624i −0.867704 0.497080i \(-0.834405\pi\)
0.497080 + 0.867704i \(0.334405\pi\)
\(258\) 0 0
\(259\) −4.50894 −0.280172
\(260\) 0 0
\(261\) 5.18978i 0.321239i
\(262\) 0 0
\(263\) 1.25620 1.25620i 0.0774607 0.0774607i −0.667315 0.744776i \(-0.732556\pi\)
0.744776 + 0.667315i \(0.232556\pi\)
\(264\) 0 0
\(265\) −0.432961 + 10.9268i −0.0265966 + 0.671229i
\(266\) 0 0
\(267\) 4.65613 4.65613i 0.284951 0.284951i
\(268\) 0 0
\(269\) −8.10846 −0.494381 −0.247191 0.968967i \(-0.579507\pi\)
−0.247191 + 0.968967i \(0.579507\pi\)
\(270\) 0 0
\(271\) 25.9070i 1.57374i −0.617122 0.786868i \(-0.711701\pi\)
0.617122 0.786868i \(-0.288299\pi\)
\(272\) 0 0
\(273\) 2.51450 + 2.51450i 0.152184 + 0.152184i
\(274\) 0 0
\(275\) 5.45846 + 0.433250i 0.329158 + 0.0261259i
\(276\) 0 0
\(277\) −2.49814 2.49814i −0.150099 0.150099i 0.628063 0.778162i \(-0.283848\pi\)
−0.778162 + 0.628063i \(0.783848\pi\)
\(278\) 0 0
\(279\) −5.42144 1.26807i −0.324573 0.0759172i
\(280\) 0 0
\(281\) −1.72691 −0.103019 −0.0515093 0.998673i \(-0.516403\pi\)
−0.0515093 + 0.998673i \(0.516403\pi\)
\(282\) 0 0
\(283\) −2.59071 2.59071i −0.154001 0.154001i 0.625901 0.779902i \(-0.284731\pi\)
−0.779902 + 0.625901i \(0.784731\pi\)
\(284\) 0 0
\(285\) −5.65095 0.223912i −0.334733 0.0132634i
\(286\) 0 0
\(287\) 2.95367 2.95367i 0.174350 0.174350i
\(288\) 0 0
\(289\) 12.9904i 0.764141i
\(290\) 0 0
\(291\) 6.81175i 0.399312i
\(292\) 0 0
\(293\) 10.6069 + 10.6069i 0.619665 + 0.619665i 0.945445 0.325781i \(-0.105627\pi\)
−0.325781 + 0.945445i \(0.605627\pi\)
\(294\) 0 0
\(295\) 17.6328 + 19.0878i 1.02662 + 1.11133i
\(296\) 0 0
\(297\) −0.774371 + 0.774371i −0.0449336 + 0.0449336i
\(298\) 0 0
\(299\) 29.1552i 1.68609i
\(300\) 0 0
\(301\) 4.27598i 0.246463i
\(302\) 0 0
\(303\) −3.93897 + 3.93897i −0.226288 + 0.226288i
\(304\) 0 0
\(305\) 7.41392 + 8.02569i 0.424520 + 0.459550i
\(306\) 0 0
\(307\) −22.2521 + 22.2521i −1.26999 + 1.26999i −0.323904 + 0.946090i \(0.604995\pi\)
−0.946090 + 0.323904i \(0.895005\pi\)
\(308\) 0 0
\(309\) −7.79719 −0.443567
\(310\) 0 0
\(311\) −13.2621 −0.752026 −0.376013 0.926614i \(-0.622705\pi\)
−0.376013 + 0.926614i \(0.622705\pi\)
\(312\) 0 0
\(313\) −9.01445 + 9.01445i −0.509527 + 0.509527i −0.914381 0.404854i \(-0.867322\pi\)
0.404854 + 0.914381i \(0.367322\pi\)
\(314\) 0 0
\(315\) 2.13272 + 0.0845065i 0.120165 + 0.00476140i
\(316\) 0 0
\(317\) 2.34914 2.34914i 0.131941 0.131941i −0.638052 0.769993i \(-0.720260\pi\)
0.769993 + 0.638052i \(0.220260\pi\)
\(318\) 0 0
\(319\) 5.68347i 0.318213i
\(320\) 0 0
\(321\) 10.4699i 0.584376i
\(322\) 0 0
\(323\) −3.58107 + 3.58107i −0.199256 + 0.199256i
\(324\) 0 0
\(325\) −12.0879 14.1722i −0.670517 0.786134i
\(326\) 0 0
\(327\) 9.04977 + 9.04977i 0.500453 + 0.500453i
\(328\) 0 0
\(329\) 9.95568i 0.548875i
\(330\) 0 0
\(331\) 26.5502i 1.45933i −0.683804 0.729666i \(-0.739676\pi\)
0.683804 0.729666i \(-0.260324\pi\)
\(332\) 0 0
\(333\) −3.34017 + 3.34017i −0.183040 + 0.183040i
\(334\) 0 0
\(335\) −0.455509 + 11.4959i −0.0248871 + 0.628087i
\(336\) 0 0
\(337\) 18.8301 + 18.8301i 1.02574 + 1.02574i 0.999660 + 0.0260815i \(0.00830294\pi\)
0.0260815 + 0.999660i \(0.491697\pi\)
\(338\) 0 0
\(339\) 4.82455 0.262034
\(340\) 0 0
\(341\) 5.93716 + 1.38869i 0.321515 + 0.0752020i
\(342\) 0 0
\(343\) 8.83441 + 8.83441i 0.477013 + 0.477013i
\(344\) 0 0
\(345\) 11.8744 + 12.8542i 0.639294 + 0.692047i
\(346\) 0 0
\(347\) 2.66638 + 2.66638i 0.143139 + 0.143139i 0.775045 0.631906i \(-0.217727\pi\)
−0.631906 + 0.775045i \(0.717727\pi\)
\(348\) 0 0
\(349\) 26.3012i 1.40787i −0.710265 0.703934i \(-0.751425\pi\)
0.710265 0.703934i \(-0.248575\pi\)
\(350\) 0 0
\(351\) 3.72543 0.198848
\(352\) 0 0
\(353\) −4.13690 + 4.13690i −0.220185 + 0.220185i −0.808576 0.588391i \(-0.799761\pi\)
0.588391 + 0.808576i \(0.299761\pi\)
\(354\) 0 0
\(355\) −24.9743 + 23.0706i −1.32550 + 1.22446i
\(356\) 0 0
\(357\) 1.35153 1.35153i 0.0715306 0.0715306i
\(358\) 0 0
\(359\) 4.28123i 0.225955i 0.993598 + 0.112977i \(0.0360388\pi\)
−0.993598 + 0.112977i \(0.963961\pi\)
\(360\) 0 0
\(361\) 12.6033 0.663333
\(362\) 0 0
\(363\) −6.93014 + 6.93014i −0.363738 + 0.363738i
\(364\) 0 0
\(365\) −0.648704 + 16.3716i −0.0339547 + 0.856929i
\(366\) 0 0
\(367\) 8.88242 + 8.88242i 0.463659 + 0.463659i 0.899853 0.436194i \(-0.143674\pi\)
−0.436194 + 0.899853i \(0.643674\pi\)
\(368\) 0 0
\(369\) 4.37610i 0.227810i
\(370\) 0 0
\(371\) 4.66809i 0.242355i
\(372\) 0 0
\(373\) −14.3672 14.3672i −0.743905 0.743905i 0.229422 0.973327i \(-0.426317\pi\)
−0.973327 + 0.229422i \(0.926317\pi\)
\(374\) 0 0
\(375\) −11.1015 1.32520i −0.573280 0.0684331i
\(376\) 0 0
\(377\) −13.6713 + 13.6713i −0.704108 + 0.704108i
\(378\) 0 0
\(379\) 12.0851i 0.620772i 0.950611 + 0.310386i \(0.100458\pi\)
−0.950611 + 0.310386i \(0.899542\pi\)
\(380\) 0 0
\(381\) 11.1316 0.570287
\(382\) 0 0
\(383\) 25.0270 25.0270i 1.27882 1.27882i 0.337489 0.941330i \(-0.390422\pi\)
0.941330 0.337489i \(-0.109578\pi\)
\(384\) 0 0
\(385\) −2.33560 0.0925452i −0.119033 0.00471654i
\(386\) 0 0
\(387\) 3.16760 + 3.16760i 0.161018 + 0.161018i
\(388\) 0 0
\(389\) −20.0881 −1.01851 −0.509254 0.860616i \(-0.670079\pi\)
−0.509254 + 0.860616i \(0.670079\pi\)
\(390\) 0 0
\(391\) 15.6708 0.792505
\(392\) 0 0
\(393\) −1.70611 + 1.70611i −0.0860621 + 0.0860621i
\(394\) 0 0
\(395\) −14.0148 + 12.9465i −0.705163 + 0.651410i
\(396\) 0 0
\(397\) −24.3552 + 24.3552i −1.22235 + 1.22235i −0.255558 + 0.966794i \(0.582259\pi\)
−0.966794 + 0.255558i \(0.917741\pi\)
\(398\) 0 0
\(399\) 2.41417 0.120860
\(400\) 0 0
\(401\) 19.8177i 0.989649i −0.868993 0.494824i \(-0.835232\pi\)
0.868993 0.494824i \(-0.164768\pi\)
\(402\) 0 0
\(403\) −10.9411 17.6220i −0.545016 0.877814i
\(404\) 0 0
\(405\) 1.64250 1.51730i 0.0816165 0.0753951i
\(406\) 0 0
\(407\) 3.65791 3.65791i 0.181316 0.181316i
\(408\) 0 0
\(409\) 23.2433 1.14931 0.574655 0.818396i \(-0.305136\pi\)
0.574655 + 0.818396i \(0.305136\pi\)
\(410\) 0 0
\(411\) 7.14112 0.352246
\(412\) 0 0
\(413\) −7.84377 7.84377i −0.385967 0.385967i
\(414\) 0 0
\(415\) 0.0946483 2.38868i 0.00464610 0.117256i
\(416\) 0 0
\(417\) −0.952792 + 0.952792i −0.0466584 + 0.0466584i
\(418\) 0 0
\(419\) 14.1658i 0.692042i 0.938227 + 0.346021i \(0.112467\pi\)
−0.938227 + 0.346021i \(0.887533\pi\)
\(420\) 0 0
\(421\) −15.1661 −0.739150 −0.369575 0.929201i \(-0.620497\pi\)
−0.369575 + 0.929201i \(0.620497\pi\)
\(422\) 0 0
\(423\) −7.37506 7.37506i −0.358588 0.358588i
\(424\) 0 0
\(425\) −7.61751 + 6.49720i −0.369504 + 0.315160i
\(426\) 0 0
\(427\) −3.29801 3.29801i −0.159602 0.159602i
\(428\) 0 0
\(429\) −4.07981 −0.196975
\(430\) 0 0
\(431\) 11.6559 0.561447 0.280723 0.959789i \(-0.409426\pi\)
0.280723 + 0.959789i \(0.409426\pi\)
\(432\) 0 0
\(433\) 10.0234 10.0234i 0.481694 0.481694i −0.423978 0.905672i \(-0.639367\pi\)
0.905672 + 0.423978i \(0.139367\pi\)
\(434\) 0 0
\(435\) −0.459461 + 11.5956i −0.0220295 + 0.555967i
\(436\) 0 0
\(437\) 13.9959 + 13.9959i 0.669516 + 0.669516i
\(438\) 0 0
\(439\) 25.4921i 1.21667i 0.793680 + 0.608336i \(0.208163\pi\)
−0.793680 + 0.608336i \(0.791837\pi\)
\(440\) 0 0
\(441\) 6.08887 0.289946
\(442\) 0 0
\(443\) −10.0568 10.0568i −0.477813 0.477813i 0.426619 0.904432i \(-0.359705\pi\)
−0.904432 + 0.426619i \(0.859705\pi\)
\(444\) 0 0
\(445\) 10.8155 9.99105i 0.512703 0.473621i
\(446\) 0 0
\(447\) 12.6336 + 12.6336i 0.597547 + 0.597547i
\(448\) 0 0
\(449\) −27.5805 −1.30160 −0.650802 0.759247i \(-0.725567\pi\)
−0.650802 + 0.759247i \(0.725567\pi\)
\(450\) 0 0
\(451\) 4.79238i 0.225664i
\(452\) 0 0
\(453\) −9.77861 9.77861i −0.459439 0.459439i
\(454\) 0 0
\(455\) 5.39557 + 5.84079i 0.252948 + 0.273821i
\(456\) 0 0
\(457\) 8.75134 + 8.75134i 0.409371 + 0.409371i 0.881519 0.472148i \(-0.156521\pi\)
−0.472148 + 0.881519i \(0.656521\pi\)
\(458\) 0 0
\(459\) 2.00240i 0.0934640i
\(460\) 0 0
\(461\) 11.8628i 0.552506i 0.961085 + 0.276253i \(0.0890928\pi\)
−0.961085 + 0.276253i \(0.910907\pi\)
\(462\) 0 0
\(463\) 10.6990 10.6990i 0.497227 0.497227i −0.413347 0.910574i \(-0.635640\pi\)
0.910574 + 0.413347i \(0.135640\pi\)
\(464\) 0 0
\(465\) −12.0009 3.31323i −0.556530 0.153647i
\(466\) 0 0
\(467\) 2.66393 2.66393i 0.123272 0.123272i −0.642779 0.766051i \(-0.722219\pi\)
0.766051 + 0.642779i \(0.222219\pi\)
\(468\) 0 0
\(469\) 4.91121i 0.226778i
\(470\) 0 0
\(471\) 15.8368i 0.729723i
\(472\) 0 0
\(473\) −3.46892 3.46892i −0.159501 0.159501i
\(474\) 0 0
\(475\) −12.6062 1.00058i −0.578411 0.0459097i
\(476\) 0 0
\(477\) −3.45807 3.45807i −0.158334 0.158334i
\(478\) 0 0
\(479\) 4.74464i 0.216788i 0.994108 + 0.108394i \(0.0345708\pi\)
−0.994108 + 0.108394i \(0.965429\pi\)
\(480\) 0 0
\(481\) −17.5979 −0.802393
\(482\) 0 0
\(483\) −5.28220 5.28220i −0.240348 0.240348i
\(484\) 0 0
\(485\) −0.603057 + 15.2196i −0.0273834 + 0.691086i
\(486\) 0 0
\(487\) −8.34525 8.34525i −0.378159 0.378159i 0.492278 0.870438i \(-0.336164\pi\)
−0.870438 + 0.492278i \(0.836164\pi\)
\(488\) 0 0
\(489\) 8.39060 0.379436
\(490\) 0 0
\(491\) 31.4346i 1.41863i 0.704894 + 0.709313i \(0.250995\pi\)
−0.704894 + 0.709313i \(0.749005\pi\)
\(492\) 0 0
\(493\) 7.34826 + 7.34826i 0.330949 + 0.330949i
\(494\) 0 0
\(495\) −1.79875 + 1.66163i −0.0808476 + 0.0746848i
\(496\) 0 0
\(497\) 10.2627 10.2627i 0.460347 0.460347i
\(498\) 0 0
\(499\) −14.0066 −0.627022 −0.313511 0.949585i \(-0.601505\pi\)
−0.313511 + 0.949585i \(0.601505\pi\)
\(500\) 0 0
\(501\) −14.5225 −0.648816
\(502\) 0 0
\(503\) −3.51443 3.51443i −0.156701 0.156701i 0.624402 0.781103i \(-0.285343\pi\)
−0.781103 + 0.624402i \(0.785343\pi\)
\(504\) 0 0
\(505\) −9.14963 + 8.45218i −0.407153 + 0.376117i
\(506\) 0 0
\(507\) 0.621402 + 0.621402i 0.0275974 + 0.0275974i
\(508\) 0 0
\(509\) 2.64688 0.117321 0.0586604 0.998278i \(-0.481317\pi\)
0.0586604 + 0.998278i \(0.481317\pi\)
\(510\) 0 0
\(511\) 6.99418i 0.309404i
\(512\) 0 0
\(513\) 1.78839 1.78839i 0.0789593 0.0789593i
\(514\) 0 0
\(515\) −17.4214 0.690299i −0.767677 0.0304182i
\(516\) 0 0
\(517\) 8.07663 + 8.07663i 0.355210 + 0.355210i
\(518\) 0 0
\(519\) 14.1350 0.620457
\(520\) 0 0
\(521\) −1.76978 −0.0775353 −0.0387676 0.999248i \(-0.512343\pi\)
−0.0387676 + 0.999248i \(0.512343\pi\)
\(522\) 0 0
\(523\) −5.25909 + 5.25909i −0.229964 + 0.229964i −0.812678 0.582714i \(-0.801991\pi\)
0.582714 + 0.812678i \(0.301991\pi\)
\(524\) 0 0
\(525\) 4.75770 + 0.377628i 0.207643 + 0.0164810i
\(526\) 0 0
\(527\) −9.47174 + 5.88080i −0.412595 + 0.256172i
\(528\) 0 0
\(529\) 38.2462i 1.66288i
\(530\) 0 0
\(531\) −11.6212 −0.504316
\(532\) 0 0
\(533\) 11.5278 11.5278i 0.499326 0.499326i
\(534\) 0 0
\(535\) 0.926924 23.3932i 0.0400744 1.01137i
\(536\) 0 0
\(537\) −17.0084 + 17.0084i −0.733968 + 0.733968i
\(538\) 0 0
\(539\) −6.66808 −0.287215
\(540\) 0 0
\(541\) −10.1801 −0.437679 −0.218839 0.975761i \(-0.570227\pi\)
−0.218839 + 0.975761i \(0.570227\pi\)
\(542\) 0 0
\(543\) −0.884094 0.884094i −0.0379401 0.0379401i
\(544\) 0 0
\(545\) 19.4188 + 21.0212i 0.831812 + 0.900450i
\(546\) 0 0
\(547\) −28.4175 + 28.4175i −1.21504 + 1.21504i −0.245698 + 0.969346i \(0.579017\pi\)
−0.969346 + 0.245698i \(0.920983\pi\)
\(548\) 0 0
\(549\) −4.88626 −0.208541
\(550\) 0 0
\(551\) 13.1258i 0.559178i
\(552\) 0 0
\(553\) 5.75914 5.75914i 0.244904 0.244904i
\(554\) 0 0
\(555\) −7.75871 + 7.16728i −0.329339 + 0.304234i
\(556\) 0 0
\(557\) −0.676207 0.676207i −0.0286518 0.0286518i 0.692636 0.721288i \(-0.256449\pi\)
−0.721288 + 0.692636i \(0.756449\pi\)
\(558\) 0 0
\(559\) 16.6886i 0.705854i
\(560\) 0 0
\(561\) 2.19288i 0.0925835i
\(562\) 0 0
\(563\) 14.8036 + 14.8036i 0.623897 + 0.623897i 0.946526 0.322629i \(-0.104566\pi\)
−0.322629 + 0.946526i \(0.604566\pi\)
\(564\) 0 0
\(565\) 10.7796 + 0.427126i 0.453500 + 0.0179693i
\(566\) 0 0
\(567\) −0.674956 + 0.674956i −0.0283455 + 0.0283455i
\(568\) 0 0
\(569\) −19.5754 −0.820642 −0.410321 0.911941i \(-0.634583\pi\)
−0.410321 + 0.911941i \(0.634583\pi\)
\(570\) 0 0
\(571\) 10.5827i 0.442871i −0.975175 0.221436i \(-0.928926\pi\)
0.975175 0.221436i \(-0.0710743\pi\)
\(572\) 0 0
\(573\) −12.6177 + 12.6177i −0.527113 + 0.527113i
\(574\) 0 0
\(575\) 25.3931 + 29.7716i 1.05896 + 1.24156i
\(576\) 0 0
\(577\) 2.42237 2.42237i 0.100845 0.100845i −0.654884 0.755729i \(-0.727283\pi\)
0.755729 + 0.654884i \(0.227283\pi\)
\(578\) 0 0
\(579\) 20.7030 0.860389
\(580\) 0 0
\(581\) 1.02048i 0.0423365i
\(582\) 0 0
\(583\) 3.78703 + 3.78703i 0.156843 + 0.156843i
\(584\) 0 0
\(585\) 8.32377 + 0.329819i 0.344146 + 0.0136363i
\(586\) 0 0
\(587\) −31.2971 31.2971i −1.29177 1.29177i −0.933691 0.358079i \(-0.883432\pi\)
−0.358079 0.933691i \(-0.616568\pi\)
\(588\) 0 0
\(589\) −13.7117 3.20715i −0.564981 0.132148i
\(590\) 0 0
\(591\) 25.3717 1.04365
\(592\) 0 0
\(593\) −16.1223 16.1223i −0.662062 0.662062i 0.293803 0.955866i \(-0.405079\pi\)
−0.955866 + 0.293803i \(0.905079\pi\)
\(594\) 0 0
\(595\) 3.13940 2.90009i 0.128703 0.118892i
\(596\) 0 0
\(597\) 8.76933 8.76933i 0.358905 0.358905i
\(598\) 0 0
\(599\) 34.4127i 1.40607i −0.711157 0.703033i \(-0.751829\pi\)
0.711157 0.703033i \(-0.248171\pi\)
\(600\) 0 0
\(601\) 43.9721i 1.79366i 0.442375 + 0.896830i \(0.354136\pi\)
−0.442375 + 0.896830i \(0.645864\pi\)
\(602\) 0 0
\(603\) −3.63817 3.63817i −0.148158 0.148158i
\(604\) 0 0
\(605\) −16.0977 + 14.8706i −0.654463 + 0.604575i
\(606\) 0 0
\(607\) 18.9315 18.9315i 0.768407 0.768407i −0.209419 0.977826i \(-0.567157\pi\)
0.977826 + 0.209419i \(0.0671572\pi\)
\(608\) 0 0
\(609\) 4.95381i 0.200739i
\(610\) 0 0
\(611\) 38.8559i 1.57194i
\(612\) 0 0
\(613\) −4.11508 + 4.11508i −0.166207 + 0.166207i −0.785310 0.619103i \(-0.787496\pi\)
0.619103 + 0.785310i \(0.287496\pi\)
\(614\) 0 0
\(615\) 0.387424 9.77757i 0.0156224 0.394270i
\(616\) 0 0
\(617\) −28.7713 + 28.7713i −1.15829 + 1.15829i −0.173447 + 0.984843i \(0.555490\pi\)
−0.984843 + 0.173447i \(0.944510\pi\)
\(618\) 0 0
\(619\) 10.9506 0.440143 0.220071 0.975484i \(-0.429371\pi\)
0.220071 + 0.975484i \(0.429371\pi\)
\(620\) 0 0
\(621\) −7.82599 −0.314046
\(622\) 0 0
\(623\) −4.44442 + 4.44442i −0.178062 + 0.178062i
\(624\) 0 0
\(625\) −24.6870 3.94376i −0.987479 0.157750i
\(626\) 0 0
\(627\) −1.95851 + 1.95851i −0.0782155 + 0.0782155i
\(628\) 0 0
\(629\) 9.45877i 0.377146i
\(630\) 0 0
\(631\) 37.6162i 1.49748i −0.662866 0.748738i \(-0.730660\pi\)
0.662866 0.748738i \(-0.269340\pi\)
\(632\) 0 0
\(633\) −9.16894 + 9.16894i −0.364433 + 0.364433i
\(634\) 0 0
\(635\) 24.8714 + 0.985498i 0.986992 + 0.0391083i
\(636\) 0 0
\(637\) 16.0397 + 16.0397i 0.635518 + 0.635518i
\(638\) 0 0
\(639\) 15.2051i 0.601503i
\(640\) 0 0
\(641\) 33.6101i 1.32752i 0.747945 + 0.663761i \(0.231041\pi\)
−0.747945 + 0.663761i \(0.768959\pi\)
\(642\) 0 0
\(643\) −26.6316 + 26.6316i −1.05025 + 1.05025i −0.0515772 + 0.998669i \(0.516425\pi\)
−0.998669 + 0.0515772i \(0.983575\pi\)
\(644\) 0 0
\(645\) 6.79698 + 7.35785i 0.267631 + 0.289715i
\(646\) 0 0
\(647\) 9.07490 + 9.07490i 0.356771 + 0.356771i 0.862621 0.505850i \(-0.168821\pi\)
−0.505850 + 0.862621i \(0.668821\pi\)
\(648\) 0 0
\(649\) 12.7266 0.499564
\(650\) 0 0
\(651\) 5.17494 + 1.21041i 0.202822 + 0.0474397i
\(652\) 0 0
\(653\) −19.2462 19.2462i −0.753163 0.753163i 0.221905 0.975068i \(-0.428772\pi\)
−0.975068 + 0.221905i \(0.928772\pi\)
\(654\) 0 0
\(655\) −3.96304 + 3.66095i −0.154849 + 0.143045i
\(656\) 0 0
\(657\) −5.18122 5.18122i −0.202139 0.202139i
\(658\) 0 0
\(659\) 6.30466i 0.245595i 0.992432 + 0.122797i \(0.0391865\pi\)
−0.992432 + 0.122797i \(0.960813\pi\)
\(660\) 0 0
\(661\) 30.4139 1.18296 0.591482 0.806318i \(-0.298543\pi\)
0.591482 + 0.806318i \(0.298543\pi\)
\(662\) 0 0
\(663\) 5.27487 5.27487i 0.204859 0.204859i
\(664\) 0 0
\(665\) 5.39401 + 0.213731i 0.209171 + 0.00828812i
\(666\) 0 0
\(667\) 28.7193 28.7193i 1.11202 1.11202i
\(668\) 0 0
\(669\) 1.79843i 0.0695313i
\(670\) 0 0
\(671\) 5.35108 0.206576
\(672\) 0 0
\(673\) 3.14867 3.14867i 0.121372 0.121372i −0.643812 0.765184i \(-0.722648\pi\)
0.765184 + 0.643812i \(0.222648\pi\)
\(674\) 0 0
\(675\) 3.80419 3.24471i 0.146423 0.124889i
\(676\) 0 0
\(677\) 8.64677 + 8.64677i 0.332322 + 0.332322i 0.853468 0.521146i \(-0.174495\pi\)
−0.521146 + 0.853468i \(0.674495\pi\)
\(678\) 0 0
\(679\) 6.50203i 0.249525i
\(680\) 0 0
\(681\) 21.1964i 0.812249i
\(682\) 0 0
\(683\) −23.1432 23.1432i −0.885550 0.885550i 0.108542 0.994092i \(-0.465382\pi\)
−0.994092 + 0.108542i \(0.965382\pi\)
\(684\) 0 0
\(685\) 15.9555 + 0.632217i 0.609629 + 0.0241558i
\(686\) 0 0
\(687\) −6.66349 + 6.66349i −0.254228 + 0.254228i
\(688\) 0 0
\(689\) 18.2190i 0.694089i
\(690\) 0 0
\(691\) −8.97183 −0.341304 −0.170652 0.985331i \(-0.554587\pi\)
−0.170652 + 0.985331i \(0.554587\pi\)
\(692\) 0 0
\(693\) 0.739162 0.739162i 0.0280784 0.0280784i
\(694\) 0 0
\(695\) −2.21319 + 2.04449i −0.0839511 + 0.0775518i
\(696\) 0 0
\(697\) −6.19616 6.19616i −0.234696 0.234696i
\(698\) 0 0
\(699\) 16.7963 0.635293
\(700\) 0 0
\(701\) 26.9783 1.01895 0.509477 0.860484i \(-0.329839\pi\)
0.509477 + 0.860484i \(0.329839\pi\)
\(702\) 0 0
\(703\) −8.44785 + 8.44785i −0.318617 + 0.318617i
\(704\) 0 0
\(705\) −15.8253 17.1311i −0.596015 0.645196i
\(706\) 0 0
\(707\) 3.75988 3.75988i 0.141405 0.141405i
\(708\) 0 0
\(709\) 43.0218 1.61572 0.807860 0.589375i \(-0.200626\pi\)
0.807860 + 0.589375i \(0.200626\pi\)
\(710\) 0 0
\(711\) 8.53262i 0.319998i
\(712\) 0 0
\(713\) 22.9840 + 37.0185i 0.860757 + 1.38635i
\(714\) 0 0
\(715\) −9.11558 0.361193i −0.340903 0.0135079i
\(716\) 0 0
\(717\) 4.86166 4.86166i 0.181562 0.181562i
\(718\) 0 0
\(719\) −2.07067 −0.0772230 −0.0386115 0.999254i \(-0.512293\pi\)
−0.0386115 + 0.999254i \(0.512293\pi\)
\(720\) 0 0
\(721\) 7.44266 0.277179
\(722\) 0 0
\(723\) 19.2617 + 19.2617i 0.716350 + 0.716350i
\(724\) 0 0
\(725\) −2.05316 + 25.8676i −0.0762525 + 0.960697i
\(726\) 0 0
\(727\) 29.8835 29.8835i 1.10832 1.10832i 0.114947 0.993372i \(-0.463330\pi\)
0.993372 0.114947i \(-0.0366697\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 8.97007 0.331770
\(732\) 0 0
\(733\) 27.5334 + 27.5334i 1.01697 + 1.01697i 0.999853 + 0.0171174i \(0.00544889\pi\)
0.0171174 + 0.999853i \(0.494551\pi\)
\(734\) 0 0
\(735\) 13.6045 + 0.539059i 0.501808 + 0.0198835i
\(736\) 0 0
\(737\) 3.98425 + 3.98425i 0.146762 + 0.146762i
\(738\) 0 0
\(739\) 5.02503 0.184849 0.0924244 0.995720i \(-0.470538\pi\)
0.0924244 + 0.995720i \(0.470538\pi\)
\(740\) 0 0
\(741\) 9.42221 0.346134
\(742\) 0 0
\(743\) 34.7705 34.7705i 1.27561 1.27561i 0.332504 0.943102i \(-0.392106\pi\)
0.943102 0.332504i \(-0.107894\pi\)
\(744\) 0 0
\(745\) 27.1089 + 29.3458i 0.993192 + 1.07515i
\(746\) 0 0
\(747\) 0.755959 + 0.755959i 0.0276591 + 0.0276591i
\(748\) 0 0
\(749\) 9.99390i 0.365169i
\(750\) 0 0
\(751\) 14.4725 0.528108 0.264054 0.964508i \(-0.414940\pi\)
0.264054 + 0.964508i \(0.414940\pi\)
\(752\) 0 0
\(753\) −15.1969 15.1969i −0.553806 0.553806i
\(754\) 0 0
\(755\) −20.9828 22.7142i −0.763642 0.826655i
\(756\) 0 0
\(757\) −19.9293 19.9293i −0.724345 0.724345i 0.245143 0.969487i \(-0.421165\pi\)
−0.969487 + 0.245143i \(0.921165\pi\)
\(758\) 0 0
\(759\) 8.57045 0.311088
\(760\) 0 0
\(761\) 2.59554i 0.0940881i 0.998893 + 0.0470441i \(0.0149801\pi\)
−0.998893 + 0.0470441i \(0.985020\pi\)
\(762\) 0 0
\(763\) −8.63829 8.63829i −0.312727 0.312727i
\(764\) 0 0
\(765\) 0.177276 4.47399i 0.00640943 0.161757i
\(766\) 0 0
\(767\) −30.6133 30.6133i −1.10538 1.10538i
\(768\) 0 0
\(769\) 17.1689i 0.619125i 0.950879 + 0.309563i \(0.100183\pi\)
−0.950879 + 0.309563i \(0.899817\pi\)
\(770\) 0 0
\(771\) 8.40263i 0.302613i
\(772\) 0 0
\(773\) 16.1071 16.1071i 0.579331 0.579331i −0.355388 0.934719i \(-0.615651\pi\)
0.934719 + 0.355388i \(0.115651\pi\)
\(774\) 0 0
\(775\) −26.5205 8.46527i −0.952646 0.304081i
\(776\) 0 0
\(777\) 3.18830 3.18830i 0.114380 0.114380i
\(778\) 0 0
\(779\) 11.0679i 0.396547i
\(780\) 0 0
\(781\) 16.6515i 0.595836i
\(782\) 0 0
\(783\) −3.66973 3.66973i −0.131145 0.131145i
\(784\) 0 0
\(785\) 1.40207 35.3845i 0.0500419 1.26293i
\(786\) 0 0
\(787\) 27.2835 + 27.2835i 0.972552 + 0.972552i 0.999633 0.0270816i \(-0.00862140\pi\)
−0.0270816 + 0.999633i \(0.508621\pi\)
\(788\) 0 0
\(789\) 1.77654i 0.0632464i
\(790\) 0 0
\(791\) −4.60519 −0.163742
\(792\) 0 0
\(793\) −12.8718 12.8718i −0.457089 0.457089i
\(794\) 0 0
\(795\) −7.42027 8.03257i −0.263170 0.284886i
\(796\) 0 0
\(797\) 0.223267 + 0.223267i 0.00790851 + 0.00790851i 0.711050 0.703141i \(-0.248220\pi\)
−0.703141 + 0.711050i \(0.748220\pi\)
\(798\) 0 0
\(799\) −20.8849 −0.738853
\(800\) 0 0
\(801\) 6.58476i 0.232661i
\(802\) 0 0
\(803\) 5.67409 + 5.67409i 0.200234 + 0.200234i
\(804\) 0 0
\(805\) −11.3345 12.2697i −0.399487 0.432452i
\(806\) 0 0
\(807\) 5.73355 5.73355i 0.201830 0.201830i
\(808\) 0 0
\(809\) −49.3759 −1.73597 −0.867983 0.496594i \(-0.834584\pi\)
−0.867983 + 0.496594i \(0.834584\pi\)
\(810\) 0 0
\(811\) 35.7963 1.25698 0.628488 0.777819i \(-0.283674\pi\)
0.628488 + 0.777819i \(0.283674\pi\)
\(812\) 0 0
\(813\) 18.3190 + 18.3190i 0.642475 + 0.642475i
\(814\) 0 0
\(815\) 18.7472 + 0.742836i 0.656687 + 0.0260204i
\(816\) 0 0
\(817\) 8.01138 + 8.01138i 0.280283 + 0.280283i
\(818\) 0 0
\(819\) −3.55604 −0.124258
\(820\) 0 0
\(821\) 44.5903i 1.55621i −0.628132 0.778106i \(-0.716180\pi\)
0.628132 0.778106i \(-0.283820\pi\)
\(822\) 0 0
\(823\) −29.3364 + 29.3364i −1.02260 + 1.02260i −0.0228648 + 0.999739i \(0.507279\pi\)
−0.999739 + 0.0228648i \(0.992721\pi\)
\(824\) 0 0
\(825\) −4.16607 + 3.55336i −0.145044 + 0.123712i
\(826\) 0 0
\(827\) 14.1963 + 14.1963i 0.493652 + 0.493652i 0.909455 0.415803i \(-0.136499\pi\)
−0.415803 + 0.909455i \(0.636499\pi\)
\(828\) 0 0
\(829\) −5.58289 −0.193902 −0.0969508 0.995289i \(-0.530909\pi\)
−0.0969508 + 0.995289i \(0.530909\pi\)
\(830\) 0 0
\(831\) 3.53291 0.122555
\(832\) 0 0
\(833\) 8.62129 8.62129i 0.298710 0.298710i
\(834\) 0 0
\(835\) −32.4478 1.28570i −1.12290 0.0444935i
\(836\) 0 0
\(837\) 4.73020 2.93688i 0.163499 0.101513i
\(838\) 0 0
\(839\) 29.4670i 1.01732i −0.860969 0.508658i \(-0.830142\pi\)
0.860969 0.508658i \(-0.169858\pi\)
\(840\) 0 0
\(841\) −2.06617 −0.0712472
\(842\) 0 0
\(843\) 1.22111 1.22111i 0.0420572 0.0420572i
\(844\) 0 0
\(845\) 1.33339 + 1.44342i 0.0458701 + 0.0496552i
\(846\) 0 0
\(847\) 6.61504 6.61504i 0.227295 0.227295i
\(848\) 0 0
\(849\) 3.66381 0.125742
\(850\) 0 0
\(851\) 36.9678 1.26724
\(852\) 0 0
\(853\) 14.9270 + 14.9270i 0.511090 + 0.511090i 0.914860 0.403770i \(-0.132300\pi\)
−0.403770 + 0.914860i \(0.632300\pi\)
\(854\) 0 0
\(855\) 4.15415 3.83750i 0.142069 0.131240i
\(856\) 0 0
\(857\) 14.8493 14.8493i 0.507243 0.507243i −0.406436 0.913679i \(-0.633229\pi\)
0.913679 + 0.406436i \(0.133229\pi\)
\(858\) 0 0
\(859\) −1.41434 −0.0482565 −0.0241283 0.999709i \(-0.507681\pi\)
−0.0241283 + 0.999709i \(0.507681\pi\)
\(860\) 0 0
\(861\) 4.17712i 0.142356i
\(862\) 0 0
\(863\) −13.1106 + 13.1106i −0.446289 + 0.446289i −0.894119 0.447830i \(-0.852197\pi\)
0.447830 + 0.894119i \(0.352197\pi\)
\(864\) 0 0
\(865\) 31.5820 + 1.25140i 1.07382 + 0.0425487i
\(866\) 0 0
\(867\) 9.18560 + 9.18560i 0.311959 + 0.311959i
\(868\) 0 0
\(869\) 9.34430i 0.316984i
\(870\) 0 0
\(871\) 19.1679i 0.649478i
\(872\) 0 0
\(873\) −4.81663 4.81663i −0.163018 0.163018i
\(874\) 0 0
\(875\) 10.5968 + 1.26495i 0.358236 + 0.0427630i
\(876\) 0 0
\(877\) 22.8529 22.8529i 0.771689 0.771689i −0.206713 0.978402i \(-0.566277\pi\)
0.978402 + 0.206713i \(0.0662766\pi\)
\(878\) 0 0
\(879\) −15.0005 −0.505954
\(880\) 0 0
\(881\) 10.6141i 0.357597i −0.983886 0.178798i \(-0.942779\pi\)
0.983886 0.178798i \(-0.0572210\pi\)
\(882\) 0 0
\(883\) 1.13603 1.13603i 0.0382305 0.0382305i −0.687733 0.725964i \(-0.741394\pi\)
0.725964 + 0.687733i \(0.241394\pi\)
\(884\) 0 0
\(885\) −25.9653 1.02884i −0.872815 0.0345842i
\(886\) 0 0
\(887\) 8.48910 8.48910i 0.285036 0.285036i −0.550078 0.835114i \(-0.685402\pi\)
0.835114 + 0.550078i \(0.185402\pi\)
\(888\) 0 0
\(889\) −10.6254 −0.356366
\(890\) 0 0
\(891\) 1.09513i 0.0366881i
\(892\) 0 0
\(893\) −18.6528 18.6528i −0.624191 0.624191i
\(894\) 0 0
\(895\) −39.5080 + 36.4964i −1.32061 + 1.21994i
\(896\) 0 0
\(897\) −20.6158 20.6158i −0.688342 0.688342i
\(898\) 0 0
\(899\) −6.58099 + 28.1361i −0.219488 + 0.938391i
\(900\) 0 0
\(901\) −9.79264 −0.326240
\(902\) 0 0
\(903\) −3.02357 3.02357i −0.100618 0.100618i
\(904\) 0 0
\(905\) −1.89707 2.05362i −0.0630609 0.0682645i
\(906\) 0 0
\(907\) −22.5564 + 22.5564i −0.748972 + 0.748972i −0.974286 0.225314i \(-0.927659\pi\)
0.225314 + 0.974286i \(0.427659\pi\)
\(908\) 0 0
\(909\) 5.57055i 0.184764i
\(910\) 0 0
\(911\) 9.99495i 0.331148i 0.986197 + 0.165574i \(0.0529476\pi\)
−0.986197 + 0.165574i \(0.947052\pi\)
\(912\) 0 0
\(913\) −0.827870 0.827870i −0.0273985 0.0273985i
\(914\) 0 0
\(915\) −10.9175 0.432590i −0.360920 0.0143010i
\(916\) 0 0
\(917\) 1.62854 1.62854i 0.0537791 0.0537791i
\(918\) 0 0
\(919\) 25.4139i 0.838328i −0.907911 0.419164i \(-0.862323\pi\)
0.907911 0.419164i \(-0.137677\pi\)
\(920\) 0 0
\(921\) 31.4692i 1.03695i
\(922\) 0 0
\(923\) 40.0543 40.0543i 1.31840 1.31840i
\(924\) 0 0
\(925\) −17.9699 + 15.3271i −0.590848 + 0.503951i
\(926\) 0 0
\(927\) 5.51344 5.51344i 0.181085 0.181085i
\(928\) 0 0
\(929\) −33.1942 −1.08907 −0.544533 0.838740i \(-0.683293\pi\)
−0.544533 + 0.838740i \(0.683293\pi\)
\(930\) 0 0
\(931\) 15.3998 0.504707
\(932\) 0 0
\(933\) 9.37774 9.37774i 0.307014 0.307014i
\(934\) 0 0
\(935\) −0.194140 + 4.89958i −0.00634905 + 0.160234i
\(936\) 0 0
\(937\) 2.85795 2.85795i 0.0933651 0.0933651i −0.658882 0.752247i \(-0.728970\pi\)
0.752247 + 0.658882i \(0.228970\pi\)
\(938\) 0 0
\(939\) 12.7484i 0.416027i
\(940\) 0 0
\(941\) 10.4526i 0.340746i 0.985380 + 0.170373i \(0.0544973\pi\)
−0.985380 + 0.170373i \(0.945503\pi\)
\(942\) 0 0
\(943\) −24.2165 + 24.2165i −0.788598 + 0.788598i
\(944\) 0 0
\(945\) −1.56782 + 1.44831i −0.0510011 + 0.0471135i
\(946\) 0 0
\(947\) 2.08838 + 2.08838i 0.0678632 + 0.0678632i 0.740224 0.672361i \(-0.234720\pi\)
−0.672361 + 0.740224i \(0.734720\pi\)
\(948\) 0 0
\(949\) 27.2975i 0.886114i
\(950\) 0 0
\(951\) 3.32218i 0.107729i
\(952\) 0 0
\(953\) 43.1572 43.1572i 1.39800 1.39800i 0.592225 0.805772i \(-0.298250\pi\)
0.805772 0.592225i \(-0.201750\pi\)
\(954\) 0 0
\(955\) −29.3090 + 27.0749i −0.948418 + 0.876123i
\(956\) 0 0
\(957\) 4.01882 + 4.01882i 0.129910 + 0.129910i
\(958\) 0 0
\(959\) −6.81643 −0.220114
\(960\) 0 0
\(961\) −27.7840 13.7495i −0.896258 0.443532i
\(962\) 0 0
\(963\) 7.40337 + 7.40337i 0.238570 + 0.238570i
\(964\) 0 0
\(965\) 46.2571 + 1.83288i 1.48907 + 0.0590025i
\(966\) 0 0
\(967\) 15.0000 + 15.0000i 0.482369 + 0.482369i 0.905887 0.423518i \(-0.139205\pi\)
−0.423518 + 0.905887i \(0.639205\pi\)
\(968\) 0 0
\(969\) 5.06440i 0.162692i
\(970\) 0 0
\(971\) −10.0013 −0.320957 −0.160479 0.987039i \(-0.551304\pi\)
−0.160479 + 0.987039i \(0.551304\pi\)
\(972\) 0 0
\(973\) 0.909471 0.909471i 0.0291563 0.0291563i
\(974\) 0 0
\(975\) 18.5687 + 1.47384i 0.594675 + 0.0472006i
\(976\) 0 0
\(977\) 13.3907 13.3907i 0.428406 0.428406i −0.459679 0.888085i \(-0.652036\pi\)
0.888085 + 0.459679i \(0.152036\pi\)
\(978\) 0 0
\(979\) 7.21115i 0.230469i
\(980\) 0 0
\(981\) −12.7983 −0.408619
\(982\) 0 0
\(983\) 0.201467 0.201467i 0.00642579 0.00642579i −0.703887 0.710312i \(-0.748554\pi\)
0.710312 + 0.703887i \(0.248554\pi\)
\(984\) 0 0
\(985\) 56.6883 + 2.24620i 1.80624 + 0.0715699i
\(986\) 0 0
\(987\) 7.03973 + 7.03973i 0.224077 + 0.224077i
\(988\) 0 0
\(989\) 35.0578i 1.11477i
\(990\) 0 0
\(991\) 49.2420i 1.56422i 0.623137 + 0.782112i \(0.285858\pi\)
−0.623137 + 0.782112i \(0.714142\pi\)
\(992\) 0 0
\(993\) 18.7738 + 18.7738i 0.595770 + 0.595770i
\(994\) 0 0
\(995\) 20.3698 18.8171i 0.645766 0.596541i
\(996\) 0 0
\(997\) −10.2384 + 10.2384i −0.324252 + 0.324252i −0.850396 0.526144i \(-0.823637\pi\)
0.526144 + 0.850396i \(0.323637\pi\)
\(998\) 0 0
\(999\) 4.72372i 0.149452i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.433.7 64
5.2 odd 4 inner 1860.2.s.a.1177.27 yes 64
31.30 odd 2 inner 1860.2.s.a.433.27 yes 64
155.92 even 4 inner 1860.2.s.a.1177.7 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.7 64 1.1 even 1 trivial
1860.2.s.a.433.27 yes 64 31.30 odd 2 inner
1860.2.s.a.1177.7 yes 64 155.92 even 4 inner
1860.2.s.a.1177.27 yes 64 5.2 odd 4 inner