Properties

Label 1860.2.s.a.433.5
Level $1860$
Weight $2$
Character 1860.433
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.5
Character \(\chi\) \(=\) 1860.433
Dual form 1860.2.s.a.1177.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(1.82341 - 1.29429i) q^{5} +(2.05794 - 2.05794i) q^{7} -1.00000i q^{9} +1.00573i q^{11} +(-1.61989 + 1.61989i) q^{13} +(-0.374144 + 2.20454i) q^{15} +(3.86707 + 3.86707i) q^{17} +5.41335i q^{19} +2.91036i q^{21} +(-0.0230415 + 0.0230415i) q^{23} +(1.64963 - 4.72003i) q^{25} +(0.707107 + 0.707107i) q^{27} -1.52171 q^{29} +(4.36154 + 3.46078i) q^{31} +(-0.711157 - 0.711157i) q^{33} +(1.08889 - 6.41602i) q^{35} +(3.04683 + 3.04683i) q^{37} -2.29087i q^{39} +4.90469 q^{41} +(3.37048 - 3.37048i) q^{43} +(-1.29429 - 1.82341i) q^{45} +(-6.30613 + 6.30613i) q^{47} -1.47020i q^{49} -5.46886 q^{51} +(8.56616 - 8.56616i) q^{53} +(1.30170 + 1.83385i) q^{55} +(-3.82781 - 3.82781i) q^{57} -8.14662i q^{59} -14.6938i q^{61} +(-2.05794 - 2.05794i) q^{63} +(-0.857115 + 5.05033i) q^{65} +(5.16207 - 5.16207i) q^{67} -0.0325857i q^{69} +8.00050 q^{71} +(4.34589 - 4.34589i) q^{73} +(2.17110 + 4.50403i) q^{75} +(2.06972 + 2.06972i) q^{77} -3.07648 q^{79} -1.00000 q^{81} +(-10.8786 + 10.8786i) q^{83} +(12.0564 + 2.04614i) q^{85} +(1.07601 - 1.07601i) q^{87} -2.30653 q^{89} +6.66726i q^{91} +(-5.53121 + 0.636934i) q^{93} +(7.00643 + 9.87074i) q^{95} +(1.43316 - 1.43316i) q^{97} +1.00573 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 1.82341 1.29429i 0.815453 0.578824i
\(6\) 0 0
\(7\) 2.05794 2.05794i 0.777827 0.777827i −0.201634 0.979461i \(-0.564625\pi\)
0.979461 + 0.201634i \(0.0646252\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.00573i 0.303238i 0.988439 + 0.151619i \(0.0484487\pi\)
−0.988439 + 0.151619i \(0.951551\pi\)
\(12\) 0 0
\(13\) −1.61989 + 1.61989i −0.449277 + 0.449277i −0.895114 0.445837i \(-0.852906\pi\)
0.445837 + 0.895114i \(0.352906\pi\)
\(14\) 0 0
\(15\) −0.374144 + 2.20454i −0.0966035 + 0.569211i
\(16\) 0 0
\(17\) 3.86707 + 3.86707i 0.937903 + 0.937903i 0.998182 0.0602790i \(-0.0191990\pi\)
−0.0602790 + 0.998182i \(0.519199\pi\)
\(18\) 0 0
\(19\) 5.41335i 1.24191i 0.783848 + 0.620953i \(0.213254\pi\)
−0.783848 + 0.620953i \(0.786746\pi\)
\(20\) 0 0
\(21\) 2.91036i 0.635093i
\(22\) 0 0
\(23\) −0.0230415 + 0.0230415i −0.00480449 + 0.00480449i −0.709505 0.704700i \(-0.751081\pi\)
0.704700 + 0.709505i \(0.251081\pi\)
\(24\) 0 0
\(25\) 1.64963 4.72003i 0.329926 0.944007i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) −1.52171 −0.282574 −0.141287 0.989969i \(-0.545124\pi\)
−0.141287 + 0.989969i \(0.545124\pi\)
\(30\) 0 0
\(31\) 4.36154 + 3.46078i 0.783355 + 0.621574i
\(32\) 0 0
\(33\) −0.711157 0.711157i −0.123796 0.123796i
\(34\) 0 0
\(35\) 1.08889 6.41602i 0.184057 1.08451i
\(36\) 0 0
\(37\) 3.04683 + 3.04683i 0.500895 + 0.500895i 0.911716 0.410821i \(-0.134758\pi\)
−0.410821 + 0.911716i \(0.634758\pi\)
\(38\) 0 0
\(39\) 2.29087i 0.366833i
\(40\) 0 0
\(41\) 4.90469 0.765984 0.382992 0.923752i \(-0.374894\pi\)
0.382992 + 0.923752i \(0.374894\pi\)
\(42\) 0 0
\(43\) 3.37048 3.37048i 0.513993 0.513993i −0.401754 0.915748i \(-0.631599\pi\)
0.915748 + 0.401754i \(0.131599\pi\)
\(44\) 0 0
\(45\) −1.29429 1.82341i −0.192941 0.271818i
\(46\) 0 0
\(47\) −6.30613 + 6.30613i −0.919844 + 0.919844i −0.997018 0.0771735i \(-0.975410\pi\)
0.0771735 + 0.997018i \(0.475410\pi\)
\(48\) 0 0
\(49\) 1.47020i 0.210029i
\(50\) 0 0
\(51\) −5.46886 −0.765794
\(52\) 0 0
\(53\) 8.56616 8.56616i 1.17665 1.17665i 0.196061 0.980592i \(-0.437185\pi\)
0.980592 0.196061i \(-0.0628150\pi\)
\(54\) 0 0
\(55\) 1.30170 + 1.83385i 0.175521 + 0.247276i
\(56\) 0 0
\(57\) −3.82781 3.82781i −0.507006 0.507006i
\(58\) 0 0
\(59\) 8.14662i 1.06060i −0.847810 0.530300i \(-0.822079\pi\)
0.847810 0.530300i \(-0.177921\pi\)
\(60\) 0 0
\(61\) 14.6938i 1.88135i −0.339313 0.940673i \(-0.610195\pi\)
0.339313 0.940673i \(-0.389805\pi\)
\(62\) 0 0
\(63\) −2.05794 2.05794i −0.259276 0.259276i
\(64\) 0 0
\(65\) −0.857115 + 5.05033i −0.106312 + 0.626416i
\(66\) 0 0
\(67\) 5.16207 5.16207i 0.630647 0.630647i −0.317583 0.948230i \(-0.602871\pi\)
0.948230 + 0.317583i \(0.102871\pi\)
\(68\) 0 0
\(69\) 0.0325857i 0.00392285i
\(70\) 0 0
\(71\) 8.00050 0.949485 0.474742 0.880125i \(-0.342541\pi\)
0.474742 + 0.880125i \(0.342541\pi\)
\(72\) 0 0
\(73\) 4.34589 4.34589i 0.508648 0.508648i −0.405463 0.914111i \(-0.632890\pi\)
0.914111 + 0.405463i \(0.132890\pi\)
\(74\) 0 0
\(75\) 2.17110 + 4.50403i 0.250697 + 0.520081i
\(76\) 0 0
\(77\) 2.06972 + 2.06972i 0.235867 + 0.235867i
\(78\) 0 0
\(79\) −3.07648 −0.346131 −0.173066 0.984910i \(-0.555367\pi\)
−0.173066 + 0.984910i \(0.555367\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −10.8786 + 10.8786i −1.19408 + 1.19408i −0.218167 + 0.975911i \(0.570008\pi\)
−0.975911 + 0.218167i \(0.929992\pi\)
\(84\) 0 0
\(85\) 12.0564 + 2.04614i 1.30770 + 0.221935i
\(86\) 0 0
\(87\) 1.07601 1.07601i 0.115360 0.115360i
\(88\) 0 0
\(89\) −2.30653 −0.244492 −0.122246 0.992500i \(-0.539010\pi\)
−0.122246 + 0.992500i \(0.539010\pi\)
\(90\) 0 0
\(91\) 6.66726i 0.698919i
\(92\) 0 0
\(93\) −5.53121 + 0.636934i −0.573560 + 0.0660469i
\(94\) 0 0
\(95\) 7.00643 + 9.87074i 0.718845 + 1.01272i
\(96\) 0 0
\(97\) 1.43316 1.43316i 0.145515 0.145515i −0.630596 0.776111i \(-0.717190\pi\)
0.776111 + 0.630596i \(0.217190\pi\)
\(98\) 0 0
\(99\) 1.00573 0.101079
\(100\) 0 0
\(101\) −15.2263 −1.51508 −0.757539 0.652790i \(-0.773598\pi\)
−0.757539 + 0.652790i \(0.773598\pi\)
\(102\) 0 0
\(103\) 3.32263 + 3.32263i 0.327388 + 0.327388i 0.851593 0.524204i \(-0.175637\pi\)
−0.524204 + 0.851593i \(0.675637\pi\)
\(104\) 0 0
\(105\) 3.76685 + 5.30678i 0.367607 + 0.517888i
\(106\) 0 0
\(107\) −3.16896 + 3.16896i −0.306355 + 0.306355i −0.843494 0.537139i \(-0.819505\pi\)
0.537139 + 0.843494i \(0.319505\pi\)
\(108\) 0 0
\(109\) 7.07906i 0.678051i −0.940777 0.339025i \(-0.889903\pi\)
0.940777 0.339025i \(-0.110097\pi\)
\(110\) 0 0
\(111\) −4.30886 −0.408979
\(112\) 0 0
\(113\) 8.80829 + 8.80829i 0.828614 + 0.828614i 0.987325 0.158711i \(-0.0507339\pi\)
−0.158711 + 0.987325i \(0.550734\pi\)
\(114\) 0 0
\(115\) −0.0121917 + 0.0718365i −0.00113688 + 0.00669879i
\(116\) 0 0
\(117\) 1.61989 + 1.61989i 0.149759 + 0.149759i
\(118\) 0 0
\(119\) 15.9164 1.45905
\(120\) 0 0
\(121\) 9.98851 0.908047
\(122\) 0 0
\(123\) −3.46814 + 3.46814i −0.312712 + 0.312712i
\(124\) 0 0
\(125\) −3.10113 10.7416i −0.277374 0.960762i
\(126\) 0 0
\(127\) 1.63590 + 1.63590i 0.145163 + 0.145163i 0.775953 0.630790i \(-0.217269\pi\)
−0.630790 + 0.775953i \(0.717269\pi\)
\(128\) 0 0
\(129\) 4.76658i 0.419674i
\(130\) 0 0
\(131\) −0.855356 −0.0747328 −0.0373664 0.999302i \(-0.511897\pi\)
−0.0373664 + 0.999302i \(0.511897\pi\)
\(132\) 0 0
\(133\) 11.1403 + 11.1403i 0.965988 + 0.965988i
\(134\) 0 0
\(135\) 2.20454 + 0.374144i 0.189737 + 0.0322012i
\(136\) 0 0
\(137\) 14.3878 + 14.3878i 1.22924 + 1.22924i 0.964253 + 0.264984i \(0.0853666\pi\)
0.264984 + 0.964253i \(0.414633\pi\)
\(138\) 0 0
\(139\) −3.22344 −0.273409 −0.136705 0.990612i \(-0.543651\pi\)
−0.136705 + 0.990612i \(0.543651\pi\)
\(140\) 0 0
\(141\) 8.91822i 0.751050i
\(142\) 0 0
\(143\) −1.62917 1.62917i −0.136238 0.136238i
\(144\) 0 0
\(145\) −2.77469 + 1.96953i −0.230425 + 0.163560i
\(146\) 0 0
\(147\) 1.03959 + 1.03959i 0.0857440 + 0.0857440i
\(148\) 0 0
\(149\) 0.502232i 0.0411444i −0.999788 0.0205722i \(-0.993451\pi\)
0.999788 0.0205722i \(-0.00654880\pi\)
\(150\) 0 0
\(151\) 11.4130i 0.928779i 0.885631 + 0.464390i \(0.153726\pi\)
−0.885631 + 0.464390i \(0.846274\pi\)
\(152\) 0 0
\(153\) 3.86707 3.86707i 0.312634 0.312634i
\(154\) 0 0
\(155\) 12.4321 + 0.665319i 0.998571 + 0.0534397i
\(156\) 0 0
\(157\) 13.7527 13.7527i 1.09759 1.09759i 0.102895 0.994692i \(-0.467190\pi\)
0.994692 0.102895i \(-0.0328105\pi\)
\(158\) 0 0
\(159\) 12.1144i 0.960733i
\(160\) 0 0
\(161\) 0.0948361i 0.00747413i
\(162\) 0 0
\(163\) 9.73756 + 9.73756i 0.762705 + 0.762705i 0.976811 0.214106i \(-0.0686837\pi\)
−0.214106 + 0.976811i \(0.568684\pi\)
\(164\) 0 0
\(165\) −2.21717 0.376286i −0.172606 0.0292939i
\(166\) 0 0
\(167\) 0.0310054 + 0.0310054i 0.00239927 + 0.00239927i 0.708305 0.705906i \(-0.249460\pi\)
−0.705906 + 0.708305i \(0.749460\pi\)
\(168\) 0 0
\(169\) 7.75191i 0.596301i
\(170\) 0 0
\(171\) 5.41335 0.413969
\(172\) 0 0
\(173\) −7.68514 7.68514i −0.584290 0.584290i 0.351789 0.936079i \(-0.385573\pi\)
−0.936079 + 0.351789i \(0.885573\pi\)
\(174\) 0 0
\(175\) −6.31869 13.1084i −0.477648 0.990899i
\(176\) 0 0
\(177\) 5.76053 + 5.76053i 0.432988 + 0.432988i
\(178\) 0 0
\(179\) −15.3123 −1.14449 −0.572247 0.820081i \(-0.693928\pi\)
−0.572247 + 0.820081i \(0.693928\pi\)
\(180\) 0 0
\(181\) 25.4413i 1.89104i −0.325567 0.945519i \(-0.605555\pi\)
0.325567 0.945519i \(-0.394445\pi\)
\(182\) 0 0
\(183\) 10.3901 + 10.3901i 0.768057 + 0.768057i
\(184\) 0 0
\(185\) 9.49908 + 1.61213i 0.698387 + 0.118526i
\(186\) 0 0
\(187\) −3.88922 + 3.88922i −0.284408 + 0.284408i
\(188\) 0 0
\(189\) 2.91036 0.211698
\(190\) 0 0
\(191\) −1.36662 −0.0988853 −0.0494426 0.998777i \(-0.515745\pi\)
−0.0494426 + 0.998777i \(0.515745\pi\)
\(192\) 0 0
\(193\) −7.74265 7.74265i −0.557328 0.557328i 0.371217 0.928546i \(-0.378940\pi\)
−0.928546 + 0.371217i \(0.878940\pi\)
\(194\) 0 0
\(195\) −2.96505 4.17719i −0.212332 0.299135i
\(196\) 0 0
\(197\) 4.97387 + 4.97387i 0.354374 + 0.354374i 0.861734 0.507360i \(-0.169379\pi\)
−0.507360 + 0.861734i \(0.669379\pi\)
\(198\) 0 0
\(199\) −8.43176 −0.597712 −0.298856 0.954298i \(-0.596605\pi\)
−0.298856 + 0.954298i \(0.596605\pi\)
\(200\) 0 0
\(201\) 7.30027i 0.514921i
\(202\) 0 0
\(203\) −3.13157 + 3.13157i −0.219793 + 0.219793i
\(204\) 0 0
\(205\) 8.94325 6.34809i 0.624624 0.443370i
\(206\) 0 0
\(207\) 0.0230415 + 0.0230415i 0.00160150 + 0.00160150i
\(208\) 0 0
\(209\) −5.44435 −0.376593
\(210\) 0 0
\(211\) 3.58266 0.246641 0.123320 0.992367i \(-0.460646\pi\)
0.123320 + 0.992367i \(0.460646\pi\)
\(212\) 0 0
\(213\) −5.65721 + 5.65721i −0.387625 + 0.387625i
\(214\) 0 0
\(215\) 1.78338 10.5081i 0.121626 0.716649i
\(216\) 0 0
\(217\) 16.0978 1.85371i 1.09279 0.125838i
\(218\) 0 0
\(219\) 6.14602i 0.415310i
\(220\) 0 0
\(221\) −12.5285 −0.842756
\(222\) 0 0
\(223\) −14.9347 + 14.9347i −1.00010 + 1.00010i −9.86711e−5 1.00000i \(0.500031\pi\)
−1.00000 9.86711e-5i \(0.999969\pi\)
\(224\) 0 0
\(225\) −4.72003 1.64963i −0.314669 0.109975i
\(226\) 0 0
\(227\) −8.48418 + 8.48418i −0.563115 + 0.563115i −0.930191 0.367076i \(-0.880359\pi\)
0.367076 + 0.930191i \(0.380359\pi\)
\(228\) 0 0
\(229\) −0.256836 −0.0169722 −0.00848608 0.999964i \(-0.502701\pi\)
−0.00848608 + 0.999964i \(0.502701\pi\)
\(230\) 0 0
\(231\) −2.92703 −0.192584
\(232\) 0 0
\(233\) −0.602617 0.602617i −0.0394787 0.0394787i 0.687092 0.726571i \(-0.258887\pi\)
−0.726571 + 0.687092i \(0.758887\pi\)
\(234\) 0 0
\(235\) −3.33669 + 19.6606i −0.217662 + 1.28252i
\(236\) 0 0
\(237\) 2.17540 2.17540i 0.141307 0.141307i
\(238\) 0 0
\(239\) −14.9826 −0.969145 −0.484573 0.874751i \(-0.661025\pi\)
−0.484573 + 0.874751i \(0.661025\pi\)
\(240\) 0 0
\(241\) 12.8347i 0.826757i −0.910559 0.413378i \(-0.864349\pi\)
0.910559 0.413378i \(-0.135651\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −1.90287 2.68078i −0.121570 0.171269i
\(246\) 0 0
\(247\) −8.76903 8.76903i −0.557960 0.557960i
\(248\) 0 0
\(249\) 15.3846i 0.974961i
\(250\) 0 0
\(251\) 6.10846i 0.385562i 0.981242 + 0.192781i \(0.0617507\pi\)
−0.981242 + 0.192781i \(0.938249\pi\)
\(252\) 0 0
\(253\) −0.0231735 0.0231735i −0.00145691 0.00145691i
\(254\) 0 0
\(255\) −9.97197 + 7.07829i −0.624469 + 0.443260i
\(256\) 0 0
\(257\) −5.89894 + 5.89894i −0.367966 + 0.367966i −0.866735 0.498769i \(-0.833786\pi\)
0.498769 + 0.866735i \(0.333786\pi\)
\(258\) 0 0
\(259\) 12.5404 0.779220
\(260\) 0 0
\(261\) 1.52171i 0.0941912i
\(262\) 0 0
\(263\) −3.53635 + 3.53635i −0.218061 + 0.218061i −0.807681 0.589620i \(-0.799277\pi\)
0.589620 + 0.807681i \(0.299277\pi\)
\(264\) 0 0
\(265\) 4.53252 26.7067i 0.278430 1.64058i
\(266\) 0 0
\(267\) 1.63096 1.63096i 0.0998133 0.0998133i
\(268\) 0 0
\(269\) −6.24247 −0.380610 −0.190305 0.981725i \(-0.560948\pi\)
−0.190305 + 0.981725i \(0.560948\pi\)
\(270\) 0 0
\(271\) 24.9306i 1.51442i −0.653169 0.757212i \(-0.726561\pi\)
0.653169 0.757212i \(-0.273439\pi\)
\(272\) 0 0
\(273\) −4.71447 4.71447i −0.285332 0.285332i
\(274\) 0 0
\(275\) 4.74707 + 1.65908i 0.286259 + 0.100046i
\(276\) 0 0
\(277\) −6.42045 6.42045i −0.385767 0.385767i 0.487407 0.873175i \(-0.337943\pi\)
−0.873175 + 0.487407i \(0.837943\pi\)
\(278\) 0 0
\(279\) 3.46078 4.36154i 0.207191 0.261118i
\(280\) 0 0
\(281\) −23.7338 −1.41584 −0.707920 0.706293i \(-0.750366\pi\)
−0.707920 + 0.706293i \(0.750366\pi\)
\(282\) 0 0
\(283\) 17.2573 + 17.2573i 1.02584 + 1.02584i 0.999657 + 0.0261852i \(0.00833596\pi\)
0.0261852 + 0.999657i \(0.491664\pi\)
\(284\) 0 0
\(285\) −11.9340 2.02537i −0.706907 0.119972i
\(286\) 0 0
\(287\) 10.0935 10.0935i 0.595803 0.595803i
\(288\) 0 0
\(289\) 12.9085i 0.759323i
\(290\) 0 0
\(291\) 2.02679i 0.118813i
\(292\) 0 0
\(293\) −15.7208 15.7208i −0.918421 0.918421i 0.0784938 0.996915i \(-0.474989\pi\)
−0.996915 + 0.0784938i \(0.974989\pi\)
\(294\) 0 0
\(295\) −10.5441 14.8546i −0.613900 0.864869i
\(296\) 0 0
\(297\) −0.711157 + 0.711157i −0.0412655 + 0.0412655i
\(298\) 0 0
\(299\) 0.0746495i 0.00431709i
\(300\) 0 0
\(301\) 13.8725i 0.799595i
\(302\) 0 0
\(303\) 10.7667 10.7667i 0.618528 0.618528i
\(304\) 0 0
\(305\) −19.0180 26.7928i −1.08897 1.53415i
\(306\) 0 0
\(307\) −2.85580 + 2.85580i −0.162989 + 0.162989i −0.783889 0.620900i \(-0.786767\pi\)
0.620900 + 0.783889i \(0.286767\pi\)
\(308\) 0 0
\(309\) −4.69891 −0.267311
\(310\) 0 0
\(311\) −8.54691 −0.484651 −0.242325 0.970195i \(-0.577910\pi\)
−0.242325 + 0.970195i \(0.577910\pi\)
\(312\) 0 0
\(313\) 6.85368 6.85368i 0.387393 0.387393i −0.486363 0.873757i \(-0.661677\pi\)
0.873757 + 0.486363i \(0.161677\pi\)
\(314\) 0 0
\(315\) −6.41602 1.08889i −0.361502 0.0613522i
\(316\) 0 0
\(317\) −5.83077 + 5.83077i −0.327489 + 0.327489i −0.851631 0.524142i \(-0.824386\pi\)
0.524142 + 0.851631i \(0.324386\pi\)
\(318\) 0 0
\(319\) 1.53042i 0.0856871i
\(320\) 0 0
\(321\) 4.48158i 0.250137i
\(322\) 0 0
\(323\) −20.9338 + 20.9338i −1.16479 + 1.16479i
\(324\) 0 0
\(325\) 4.97371 + 10.3182i 0.275892 + 0.572349i
\(326\) 0 0
\(327\) 5.00565 + 5.00565i 0.276813 + 0.276813i
\(328\) 0 0
\(329\) 25.9552i 1.43096i
\(330\) 0 0
\(331\) 33.1274i 1.82084i −0.413680 0.910422i \(-0.635757\pi\)
0.413680 0.910422i \(-0.364243\pi\)
\(332\) 0 0
\(333\) 3.04683 3.04683i 0.166965 0.166965i
\(334\) 0 0
\(335\) 2.73135 16.0938i 0.149229 0.879296i
\(336\) 0 0
\(337\) 1.86151 + 1.86151i 0.101403 + 0.101403i 0.755988 0.654585i \(-0.227157\pi\)
−0.654585 + 0.755988i \(0.727157\pi\)
\(338\) 0 0
\(339\) −12.4568 −0.676560
\(340\) 0 0
\(341\) −3.48060 + 4.38652i −0.188485 + 0.237543i
\(342\) 0 0
\(343\) 11.3800 + 11.3800i 0.614461 + 0.614461i
\(344\) 0 0
\(345\) −0.0421753 0.0594170i −0.00227064 0.00319890i
\(346\) 0 0
\(347\) 7.41622 + 7.41622i 0.398123 + 0.398123i 0.877571 0.479447i \(-0.159163\pi\)
−0.479447 + 0.877571i \(0.659163\pi\)
\(348\) 0 0
\(349\) 24.5437i 1.31379i 0.753980 + 0.656897i \(0.228131\pi\)
−0.753980 + 0.656897i \(0.771869\pi\)
\(350\) 0 0
\(351\) −2.29087 −0.122278
\(352\) 0 0
\(353\) −18.6975 + 18.6975i −0.995167 + 0.995167i −0.999988 0.00482173i \(-0.998465\pi\)
0.00482173 + 0.999988i \(0.498465\pi\)
\(354\) 0 0
\(355\) 14.5882 10.3550i 0.774260 0.549584i
\(356\) 0 0
\(357\) −11.2546 + 11.2546i −0.595655 + 0.595655i
\(358\) 0 0
\(359\) 9.13969i 0.482374i −0.970479 0.241187i \(-0.922463\pi\)
0.970479 0.241187i \(-0.0775367\pi\)
\(360\) 0 0
\(361\) −10.3043 −0.542332
\(362\) 0 0
\(363\) −7.06295 + 7.06295i −0.370708 + 0.370708i
\(364\) 0 0
\(365\) 2.29950 13.5492i 0.120361 0.709197i
\(366\) 0 0
\(367\) −5.07571 5.07571i −0.264950 0.264950i 0.562111 0.827062i \(-0.309989\pi\)
−0.827062 + 0.562111i \(0.809989\pi\)
\(368\) 0 0
\(369\) 4.90469i 0.255328i
\(370\) 0 0
\(371\) 35.2572i 1.83046i
\(372\) 0 0
\(373\) 25.4369 + 25.4369i 1.31707 + 1.31707i 0.916081 + 0.400994i \(0.131335\pi\)
0.400994 + 0.916081i \(0.368665\pi\)
\(374\) 0 0
\(375\) 9.78832 + 5.40266i 0.505467 + 0.278992i
\(376\) 0 0
\(377\) 2.46500 2.46500i 0.126954 0.126954i
\(378\) 0 0
\(379\) 7.06419i 0.362863i −0.983404 0.181431i \(-0.941927\pi\)
0.983404 0.181431i \(-0.0580731\pi\)
\(380\) 0 0
\(381\) −2.31351 −0.118525
\(382\) 0 0
\(383\) −15.4749 + 15.4749i −0.790733 + 0.790733i −0.981613 0.190880i \(-0.938866\pi\)
0.190880 + 0.981613i \(0.438866\pi\)
\(384\) 0 0
\(385\) 6.45277 + 1.09513i 0.328863 + 0.0558130i
\(386\) 0 0
\(387\) −3.37048 3.37048i −0.171331 0.171331i
\(388\) 0 0
\(389\) −34.3348 −1.74084 −0.870422 0.492307i \(-0.836154\pi\)
−0.870422 + 0.492307i \(0.836154\pi\)
\(390\) 0 0
\(391\) −0.178207 −0.00901229
\(392\) 0 0
\(393\) 0.604828 0.604828i 0.0305095 0.0305095i
\(394\) 0 0
\(395\) −5.60968 + 3.98186i −0.282254 + 0.200349i
\(396\) 0 0
\(397\) −5.22595 + 5.22595i −0.262283 + 0.262283i −0.825981 0.563698i \(-0.809378\pi\)
0.563698 + 0.825981i \(0.309378\pi\)
\(398\) 0 0
\(399\) −15.7548 −0.788726
\(400\) 0 0
\(401\) 19.4750i 0.972535i −0.873810 0.486268i \(-0.838358\pi\)
0.873810 0.486268i \(-0.161642\pi\)
\(402\) 0 0
\(403\) −12.6713 + 1.45913i −0.631202 + 0.0726846i
\(404\) 0 0
\(405\) −1.82341 + 1.29429i −0.0906059 + 0.0643137i
\(406\) 0 0
\(407\) −3.06428 + 3.06428i −0.151891 + 0.151891i
\(408\) 0 0
\(409\) −15.9313 −0.787753 −0.393876 0.919163i \(-0.628866\pi\)
−0.393876 + 0.919163i \(0.628866\pi\)
\(410\) 0 0
\(411\) −20.3475 −1.00367
\(412\) 0 0
\(413\) −16.7652 16.7652i −0.824963 0.824963i
\(414\) 0 0
\(415\) −5.75606 + 33.9161i −0.282554 + 1.66488i
\(416\) 0 0
\(417\) 2.27932 2.27932i 0.111619 0.111619i
\(418\) 0 0
\(419\) 31.2344i 1.52590i 0.646457 + 0.762951i \(0.276250\pi\)
−0.646457 + 0.762951i \(0.723750\pi\)
\(420\) 0 0
\(421\) −0.248101 −0.0120917 −0.00604585 0.999982i \(-0.501924\pi\)
−0.00604585 + 0.999982i \(0.501924\pi\)
\(422\) 0 0
\(423\) 6.30613 + 6.30613i 0.306615 + 0.306615i
\(424\) 0 0
\(425\) 24.6320 11.8735i 1.19483 0.575947i
\(426\) 0 0
\(427\) −30.2389 30.2389i −1.46336 1.46336i
\(428\) 0 0
\(429\) 2.30399 0.111238
\(430\) 0 0
\(431\) −25.3748 −1.22226 −0.611130 0.791530i \(-0.709285\pi\)
−0.611130 + 0.791530i \(0.709285\pi\)
\(432\) 0 0
\(433\) 4.14491 4.14491i 0.199192 0.199192i −0.600462 0.799653i \(-0.705017\pi\)
0.799653 + 0.600462i \(0.205017\pi\)
\(434\) 0 0
\(435\) 0.569336 3.35467i 0.0272976 0.160844i
\(436\) 0 0
\(437\) −0.124732 0.124732i −0.00596673 0.00596673i
\(438\) 0 0
\(439\) 40.2522i 1.92113i −0.278054 0.960565i \(-0.589689\pi\)
0.278054 0.960565i \(-0.410311\pi\)
\(440\) 0 0
\(441\) −1.47020 −0.0700097
\(442\) 0 0
\(443\) 7.45632 + 7.45632i 0.354260 + 0.354260i 0.861692 0.507432i \(-0.169405\pi\)
−0.507432 + 0.861692i \(0.669405\pi\)
\(444\) 0 0
\(445\) −4.20575 + 2.98532i −0.199371 + 0.141518i
\(446\) 0 0
\(447\) 0.355132 + 0.355132i 0.0167972 + 0.0167972i
\(448\) 0 0
\(449\) 33.2207 1.56778 0.783891 0.620898i \(-0.213232\pi\)
0.783891 + 0.620898i \(0.213232\pi\)
\(450\) 0 0
\(451\) 4.93278i 0.232276i
\(452\) 0 0
\(453\) −8.07023 8.07023i −0.379173 0.379173i
\(454\) 0 0
\(455\) 8.62936 + 12.1571i 0.404551 + 0.569935i
\(456\) 0 0
\(457\) 16.0114 + 16.0114i 0.748981 + 0.748981i 0.974288 0.225307i \(-0.0723384\pi\)
−0.225307 + 0.974288i \(0.572338\pi\)
\(458\) 0 0
\(459\) 5.46886i 0.255265i
\(460\) 0 0
\(461\) 3.24594i 0.151178i −0.997139 0.0755892i \(-0.975916\pi\)
0.997139 0.0755892i \(-0.0240838\pi\)
\(462\) 0 0
\(463\) 26.3184 26.3184i 1.22312 1.22312i 0.256602 0.966517i \(-0.417397\pi\)
0.966517 0.256602i \(-0.0826028\pi\)
\(464\) 0 0
\(465\) −9.26128 + 8.32038i −0.429482 + 0.385848i
\(466\) 0 0
\(467\) −6.57118 + 6.57118i −0.304078 + 0.304078i −0.842607 0.538529i \(-0.818980\pi\)
0.538529 + 0.842607i \(0.318980\pi\)
\(468\) 0 0
\(469\) 21.2464i 0.981068i
\(470\) 0 0
\(471\) 19.4493i 0.896176i
\(472\) 0 0
\(473\) 3.38978 + 3.38978i 0.155862 + 0.155862i
\(474\) 0 0
\(475\) 25.5512 + 8.93003i 1.17237 + 0.409738i
\(476\) 0 0
\(477\) −8.56616 8.56616i −0.392218 0.392218i
\(478\) 0 0
\(479\) 22.4929i 1.02773i 0.857872 + 0.513863i \(0.171786\pi\)
−0.857872 + 0.513863i \(0.828214\pi\)
\(480\) 0 0
\(481\) −9.87105 −0.450081
\(482\) 0 0
\(483\) −0.0670592 0.0670592i −0.00305130 0.00305130i
\(484\) 0 0
\(485\) 0.758310 4.46815i 0.0344331 0.202888i
\(486\) 0 0
\(487\) −14.5479 14.5479i −0.659229 0.659229i 0.295969 0.955198i \(-0.404358\pi\)
−0.955198 + 0.295969i \(0.904358\pi\)
\(488\) 0 0
\(489\) −13.7710 −0.622746
\(490\) 0 0
\(491\) 34.8516i 1.57283i −0.617699 0.786415i \(-0.711935\pi\)
0.617699 0.786415i \(-0.288065\pi\)
\(492\) 0 0
\(493\) −5.88454 5.88454i −0.265027 0.265027i
\(494\) 0 0
\(495\) 1.83385 1.30170i 0.0824255 0.0585071i
\(496\) 0 0
\(497\) 16.4645 16.4645i 0.738535 0.738535i
\(498\) 0 0
\(499\) −16.5368 −0.740288 −0.370144 0.928974i \(-0.620692\pi\)
−0.370144 + 0.928974i \(0.620692\pi\)
\(500\) 0 0
\(501\) −0.0438483 −0.00195900
\(502\) 0 0
\(503\) 16.4932 + 16.4932i 0.735395 + 0.735395i 0.971683 0.236288i \(-0.0759309\pi\)
−0.236288 + 0.971683i \(0.575931\pi\)
\(504\) 0 0
\(505\) −27.7638 + 19.7073i −1.23547 + 0.876963i
\(506\) 0 0
\(507\) −5.48143 5.48143i −0.243439 0.243439i
\(508\) 0 0
\(509\) 32.2747 1.43055 0.715276 0.698842i \(-0.246301\pi\)
0.715276 + 0.698842i \(0.246301\pi\)
\(510\) 0 0
\(511\) 17.8871i 0.791281i
\(512\) 0 0
\(513\) −3.82781 + 3.82781i −0.169002 + 0.169002i
\(514\) 0 0
\(515\) 10.3589 + 1.75807i 0.456470 + 0.0774696i
\(516\) 0 0
\(517\) −6.34225 6.34225i −0.278932 0.278932i
\(518\) 0 0
\(519\) 10.8684 0.477071
\(520\) 0 0
\(521\) −2.33345 −0.102230 −0.0511152 0.998693i \(-0.516278\pi\)
−0.0511152 + 0.998693i \(0.516278\pi\)
\(522\) 0 0
\(523\) 1.66581 1.66581i 0.0728409 0.0728409i −0.669748 0.742589i \(-0.733598\pi\)
0.742589 + 0.669748i \(0.233598\pi\)
\(524\) 0 0
\(525\) 13.7370 + 4.80103i 0.599532 + 0.209534i
\(526\) 0 0
\(527\) 3.48330 + 30.2495i 0.151735 + 1.31769i
\(528\) 0 0
\(529\) 22.9989i 0.999954i
\(530\) 0 0
\(531\) −8.14662 −0.353533
\(532\) 0 0
\(533\) −7.94506 + 7.94506i −0.344139 + 0.344139i
\(534\) 0 0
\(535\) −1.67675 + 9.87984i −0.0724924 + 0.427143i
\(536\) 0 0
\(537\) 10.8274 10.8274i 0.467238 0.467238i
\(538\) 0 0
\(539\) 1.47862 0.0636888
\(540\) 0 0
\(541\) −14.2584 −0.613016 −0.306508 0.951868i \(-0.599161\pi\)
−0.306508 + 0.951868i \(0.599161\pi\)
\(542\) 0 0
\(543\) 17.9897 + 17.9897i 0.772013 + 0.772013i
\(544\) 0 0
\(545\) −9.16235 12.9080i −0.392472 0.552918i
\(546\) 0 0
\(547\) 15.0238 15.0238i 0.642373 0.642373i −0.308765 0.951138i \(-0.599916\pi\)
0.951138 + 0.308765i \(0.0999158\pi\)
\(548\) 0 0
\(549\) −14.6938 −0.627116
\(550\) 0 0
\(551\) 8.23752i 0.350930i
\(552\) 0 0
\(553\) −6.33120 + 6.33120i −0.269230 + 0.269230i
\(554\) 0 0
\(555\) −7.85682 + 5.57692i −0.333503 + 0.236727i
\(556\) 0 0
\(557\) −26.2534 26.2534i −1.11239 1.11239i −0.992826 0.119567i \(-0.961849\pi\)
−0.119567 0.992826i \(-0.538151\pi\)
\(558\) 0 0
\(559\) 10.9196i 0.461850i
\(560\) 0 0
\(561\) 5.50019i 0.232218i
\(562\) 0 0
\(563\) 10.9502 + 10.9502i 0.461496 + 0.461496i 0.899146 0.437650i \(-0.144189\pi\)
−0.437650 + 0.899146i \(0.644189\pi\)
\(564\) 0 0
\(565\) 27.4616 + 4.66063i 1.15532 + 0.196074i
\(566\) 0 0
\(567\) −2.05794 + 2.05794i −0.0864252 + 0.0864252i
\(568\) 0 0
\(569\) −16.0944 −0.674711 −0.337355 0.941377i \(-0.609532\pi\)
−0.337355 + 0.941377i \(0.609532\pi\)
\(570\) 0 0
\(571\) 16.1373i 0.675323i 0.941268 + 0.337662i \(0.109636\pi\)
−0.941268 + 0.337662i \(0.890364\pi\)
\(572\) 0 0
\(573\) 0.966348 0.966348i 0.0403698 0.0403698i
\(574\) 0 0
\(575\) 0.0707468 + 0.146767i 0.00295034 + 0.00612060i
\(576\) 0 0
\(577\) −31.9071 + 31.9071i −1.32831 + 1.32831i −0.421466 + 0.906844i \(0.638484\pi\)
−0.906844 + 0.421466i \(0.861516\pi\)
\(578\) 0 0
\(579\) 10.9498 0.455057
\(580\) 0 0
\(581\) 44.7748i 1.85757i
\(582\) 0 0
\(583\) 8.61522 + 8.61522i 0.356806 + 0.356806i
\(584\) 0 0
\(585\) 5.05033 + 0.857115i 0.208805 + 0.0354373i
\(586\) 0 0
\(587\) 15.1930 + 15.1930i 0.627081 + 0.627081i 0.947333 0.320251i \(-0.103767\pi\)
−0.320251 + 0.947333i \(0.603767\pi\)
\(588\) 0 0
\(589\) −18.7344 + 23.6105i −0.771937 + 0.972854i
\(590\) 0 0
\(591\) −7.03412 −0.289345
\(592\) 0 0
\(593\) 4.50648 + 4.50648i 0.185059 + 0.185059i 0.793556 0.608497i \(-0.208227\pi\)
−0.608497 + 0.793556i \(0.708227\pi\)
\(594\) 0 0
\(595\) 29.0220 20.6004i 1.18979 0.844533i
\(596\) 0 0
\(597\) 5.96216 5.96216i 0.244015 0.244015i
\(598\) 0 0
\(599\) 1.14017i 0.0465859i 0.999729 + 0.0232930i \(0.00741505\pi\)
−0.999729 + 0.0232930i \(0.992585\pi\)
\(600\) 0 0
\(601\) 16.8924i 0.689055i 0.938776 + 0.344528i \(0.111961\pi\)
−0.938776 + 0.344528i \(0.888039\pi\)
\(602\) 0 0
\(603\) −5.16207 5.16207i −0.210216 0.210216i
\(604\) 0 0
\(605\) 18.2131 12.9280i 0.740469 0.525599i
\(606\) 0 0
\(607\) 24.4029 24.4029i 0.990483 0.990483i −0.00947208 0.999955i \(-0.503015\pi\)
0.999955 + 0.00947208i \(0.00301510\pi\)
\(608\) 0 0
\(609\) 4.42871i 0.179461i
\(610\) 0 0
\(611\) 20.4305i 0.826529i
\(612\) 0 0
\(613\) 26.8537 26.8537i 1.08461 1.08461i 0.0885364 0.996073i \(-0.471781\pi\)
0.996073 0.0885364i \(-0.0282189\pi\)
\(614\) 0 0
\(615\) −1.83506 + 10.8126i −0.0739967 + 0.436007i
\(616\) 0 0
\(617\) 14.8475 14.8475i 0.597739 0.597739i −0.341971 0.939710i \(-0.611095\pi\)
0.939710 + 0.341971i \(0.111095\pi\)
\(618\) 0 0
\(619\) 2.38578 0.0958927 0.0479463 0.998850i \(-0.484732\pi\)
0.0479463 + 0.998850i \(0.484732\pi\)
\(620\) 0 0
\(621\) −0.0325857 −0.00130762
\(622\) 0 0
\(623\) −4.74669 + 4.74669i −0.190172 + 0.190172i
\(624\) 0 0
\(625\) −19.5574 15.5726i −0.782297 0.622906i
\(626\) 0 0
\(627\) 3.84974 3.84974i 0.153744 0.153744i
\(628\) 0 0
\(629\) 23.5646i 0.939582i
\(630\) 0 0
\(631\) 38.9538i 1.55072i 0.631517 + 0.775362i \(0.282433\pi\)
−0.631517 + 0.775362i \(0.717567\pi\)
\(632\) 0 0
\(633\) −2.53332 + 2.53332i −0.100691 + 0.100691i
\(634\) 0 0
\(635\) 5.10024 + 0.865586i 0.202397 + 0.0343497i
\(636\) 0 0
\(637\) 2.38157 + 2.38157i 0.0943612 + 0.0943612i
\(638\) 0 0
\(639\) 8.00050i 0.316495i
\(640\) 0 0
\(641\) 37.0561i 1.46363i −0.681503 0.731815i \(-0.738674\pi\)
0.681503 0.731815i \(-0.261326\pi\)
\(642\) 0 0
\(643\) −24.3651 + 24.3651i −0.960865 + 0.960865i −0.999263 0.0383974i \(-0.987775\pi\)
0.0383974 + 0.999263i \(0.487775\pi\)
\(644\) 0 0
\(645\) 6.16933 + 8.69141i 0.242917 + 0.342224i
\(646\) 0 0
\(647\) −7.68973 7.68973i −0.302315 0.302315i 0.539604 0.841919i \(-0.318574\pi\)
−0.841919 + 0.539604i \(0.818574\pi\)
\(648\) 0 0
\(649\) 8.19328 0.321614
\(650\) 0 0
\(651\) −10.0721 + 12.6937i −0.394757 + 0.497503i
\(652\) 0 0
\(653\) −31.2791 31.2791i −1.22405 1.22405i −0.966181 0.257865i \(-0.916981\pi\)
−0.257865 0.966181i \(-0.583019\pi\)
\(654\) 0 0
\(655\) −1.55966 + 1.10708i −0.0609411 + 0.0432571i
\(656\) 0 0
\(657\) −4.34589 4.34589i −0.169549 0.169549i
\(658\) 0 0
\(659\) 15.1979i 0.592025i 0.955184 + 0.296012i \(0.0956569\pi\)
−0.955184 + 0.296012i \(0.904343\pi\)
\(660\) 0 0
\(661\) −41.9891 −1.63319 −0.816593 0.577214i \(-0.804140\pi\)
−0.816593 + 0.577214i \(0.804140\pi\)
\(662\) 0 0
\(663\) 8.85896 8.85896i 0.344054 0.344054i
\(664\) 0 0
\(665\) 34.7321 + 5.89455i 1.34685 + 0.228581i
\(666\) 0 0
\(667\) 0.0350624 0.0350624i 0.00135762 0.00135762i
\(668\) 0 0
\(669\) 21.1208i 0.816577i
\(670\) 0 0
\(671\) 14.7779 0.570496
\(672\) 0 0
\(673\) −7.16198 + 7.16198i −0.276074 + 0.276074i −0.831540 0.555465i \(-0.812540\pi\)
0.555465 + 0.831540i \(0.312540\pi\)
\(674\) 0 0
\(675\) 4.50403 2.17110i 0.173360 0.0835657i
\(676\) 0 0
\(677\) −15.4002 15.4002i −0.591878 0.591878i 0.346261 0.938138i \(-0.387451\pi\)
−0.938138 + 0.346261i \(0.887451\pi\)
\(678\) 0 0
\(679\) 5.89869i 0.226371i
\(680\) 0 0
\(681\) 11.9984i 0.459781i
\(682\) 0 0
\(683\) −26.5875 26.5875i −1.01734 1.01734i −0.999847 0.0174967i \(-0.994430\pi\)
−0.0174967 0.999847i \(-0.505570\pi\)
\(684\) 0 0
\(685\) 44.8569 + 7.61288i 1.71390 + 0.290873i
\(686\) 0 0
\(687\) 0.181610 0.181610i 0.00692886 0.00692886i
\(688\) 0 0
\(689\) 27.7525i 1.05729i
\(690\) 0 0
\(691\) −34.2311 −1.30221 −0.651107 0.758986i \(-0.725695\pi\)
−0.651107 + 0.758986i \(0.725695\pi\)
\(692\) 0 0
\(693\) 2.06972 2.06972i 0.0786223 0.0786223i
\(694\) 0 0
\(695\) −5.87765 + 4.17207i −0.222952 + 0.158256i
\(696\) 0 0
\(697\) 18.9668 + 18.9668i 0.718419 + 0.718419i
\(698\) 0 0
\(699\) 0.852229 0.0322342
\(700\) 0 0
\(701\) 40.8969 1.54466 0.772328 0.635224i \(-0.219092\pi\)
0.772328 + 0.635224i \(0.219092\pi\)
\(702\) 0 0
\(703\) −16.4935 + 16.4935i −0.622065 + 0.622065i
\(704\) 0 0
\(705\) −11.5428 16.2616i −0.434725 0.612446i
\(706\) 0 0
\(707\) −31.3348 + 31.3348i −1.17847 + 1.17847i
\(708\) 0 0
\(709\) −12.4592 −0.467914 −0.233957 0.972247i \(-0.575168\pi\)
−0.233957 + 0.972247i \(0.575168\pi\)
\(710\) 0 0
\(711\) 3.07648i 0.115377i
\(712\) 0 0
\(713\) −0.180238 + 0.0207549i −0.00674997 + 0.000777277i
\(714\) 0 0
\(715\) −5.07925 0.862024i −0.189953 0.0322379i
\(716\) 0 0
\(717\) 10.5943 10.5943i 0.395652 0.395652i
\(718\) 0 0
\(719\) 15.7212 0.586303 0.293152 0.956066i \(-0.405296\pi\)
0.293152 + 0.956066i \(0.405296\pi\)
\(720\) 0 0
\(721\) 13.6755 0.509303
\(722\) 0 0
\(723\) 9.07552 + 9.07552i 0.337522 + 0.337522i
\(724\) 0 0
\(725\) −2.51025 + 7.18250i −0.0932285 + 0.266751i
\(726\) 0 0
\(727\) 19.8045 19.8045i 0.734509 0.734509i −0.237000 0.971510i \(-0.576164\pi\)
0.971510 + 0.237000i \(0.0761643\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 26.0678 0.964151
\(732\) 0 0
\(733\) −35.2165 35.2165i −1.30075 1.30075i −0.927886 0.372864i \(-0.878376\pi\)
−0.372864 0.927886i \(-0.621624\pi\)
\(734\) 0 0
\(735\) 3.24113 + 0.550067i 0.119551 + 0.0202895i
\(736\) 0 0
\(737\) 5.19163 + 5.19163i 0.191236 + 0.191236i
\(738\) 0 0
\(739\) −41.5683 −1.52912 −0.764558 0.644555i \(-0.777043\pi\)
−0.764558 + 0.644555i \(0.777043\pi\)
\(740\) 0 0
\(741\) 12.4013 0.455572
\(742\) 0 0
\(743\) 34.8299 34.8299i 1.27779 1.27779i 0.335881 0.941904i \(-0.390966\pi\)
0.941904 0.335881i \(-0.109034\pi\)
\(744\) 0 0
\(745\) −0.650033 0.915774i −0.0238154 0.0335514i
\(746\) 0 0
\(747\) 10.8786 + 10.8786i 0.398026 + 0.398026i
\(748\) 0 0
\(749\) 13.0430i 0.476582i
\(750\) 0 0
\(751\) −6.71692 −0.245104 −0.122552 0.992462i \(-0.539108\pi\)
−0.122552 + 0.992462i \(0.539108\pi\)
\(752\) 0 0
\(753\) −4.31933 4.31933i −0.157405 0.157405i
\(754\) 0 0
\(755\) 14.7718 + 20.8106i 0.537599 + 0.757376i
\(756\) 0 0
\(757\) 13.6338 + 13.6338i 0.495528 + 0.495528i 0.910043 0.414515i \(-0.136049\pi\)
−0.414515 + 0.910043i \(0.636049\pi\)
\(758\) 0 0
\(759\) 0.0327723 0.00118956
\(760\) 0 0
\(761\) 5.06818i 0.183721i 0.995772 + 0.0918607i \(0.0292814\pi\)
−0.995772 + 0.0918607i \(0.970719\pi\)
\(762\) 0 0
\(763\) −14.5683 14.5683i −0.527406 0.527406i
\(764\) 0 0
\(765\) 2.04614 12.0564i 0.0739784 0.435898i
\(766\) 0 0
\(767\) 13.1966 + 13.1966i 0.476503 + 0.476503i
\(768\) 0 0
\(769\) 3.43119i 0.123732i −0.998084 0.0618659i \(-0.980295\pi\)
0.998084 0.0618659i \(-0.0197051\pi\)
\(770\) 0 0
\(771\) 8.34236i 0.300443i
\(772\) 0 0
\(773\) −21.6945 + 21.6945i −0.780299 + 0.780299i −0.979881 0.199582i \(-0.936041\pi\)
0.199582 + 0.979881i \(0.436041\pi\)
\(774\) 0 0
\(775\) 23.5299 14.8776i 0.845220 0.534419i
\(776\) 0 0
\(777\) −8.86737 + 8.86737i −0.318115 + 0.318115i
\(778\) 0 0
\(779\) 26.5508i 0.951281i
\(780\) 0 0
\(781\) 8.04632i 0.287920i
\(782\) 0 0
\(783\) −1.07601 1.07601i −0.0384534 0.0384534i
\(784\) 0 0
\(785\) 7.27683 42.8768i 0.259721 1.53034i
\(786\) 0 0
\(787\) −23.1426 23.1426i −0.824945 0.824945i 0.161868 0.986812i \(-0.448248\pi\)
−0.986812 + 0.161868i \(0.948248\pi\)
\(788\) 0 0
\(789\) 5.00115i 0.178046i
\(790\) 0 0
\(791\) 36.2538 1.28904
\(792\) 0 0
\(793\) 23.8023 + 23.8023i 0.845245 + 0.845245i
\(794\) 0 0
\(795\) 15.6795 + 22.0895i 0.556095 + 0.783432i
\(796\) 0 0
\(797\) 27.6350 + 27.6350i 0.978881 + 0.978881i 0.999782 0.0209005i \(-0.00665330\pi\)
−0.0209005 + 0.999782i \(0.506653\pi\)
\(798\) 0 0
\(799\) −48.7725 −1.72545
\(800\) 0 0
\(801\) 2.30653i 0.0814973i
\(802\) 0 0
\(803\) 4.37078 + 4.37078i 0.154242 + 0.154242i
\(804\) 0 0
\(805\) 0.122745 + 0.172925i 0.00432620 + 0.00609480i
\(806\) 0 0
\(807\) 4.41409 4.41409i 0.155383 0.155383i
\(808\) 0 0
\(809\) 34.4248 1.21031 0.605155 0.796108i \(-0.293111\pi\)
0.605155 + 0.796108i \(0.293111\pi\)
\(810\) 0 0
\(811\) −21.3123 −0.748377 −0.374189 0.927353i \(-0.622079\pi\)
−0.374189 + 0.927353i \(0.622079\pi\)
\(812\) 0 0
\(813\) 17.6286 + 17.6286i 0.618261 + 0.618261i
\(814\) 0 0
\(815\) 30.3588 + 5.15233i 1.06342 + 0.180478i
\(816\) 0 0
\(817\) 18.2456 + 18.2456i 0.638332 + 0.638332i
\(818\) 0 0
\(819\) 6.66726 0.232973
\(820\) 0 0
\(821\) 10.5414i 0.367898i 0.982936 + 0.183949i \(0.0588881\pi\)
−0.982936 + 0.183949i \(0.941112\pi\)
\(822\) 0 0
\(823\) 15.6469 15.6469i 0.545416 0.545416i −0.379696 0.925111i \(-0.623971\pi\)
0.925111 + 0.379696i \(0.123971\pi\)
\(824\) 0 0
\(825\) −4.52983 + 2.18354i −0.157708 + 0.0760210i
\(826\) 0 0
\(827\) −27.3164 27.3164i −0.949884 0.949884i 0.0489188 0.998803i \(-0.484422\pi\)
−0.998803 + 0.0489188i \(0.984422\pi\)
\(828\) 0 0
\(829\) 31.3754 1.08971 0.544856 0.838530i \(-0.316584\pi\)
0.544856 + 0.838530i \(0.316584\pi\)
\(830\) 0 0
\(831\) 9.07988 0.314978
\(832\) 0 0
\(833\) 5.68538 5.68538i 0.196987 0.196987i
\(834\) 0 0
\(835\) 0.0966656 + 0.0164056i 0.00334525 + 0.000567738i
\(836\) 0 0
\(837\) 0.636934 + 5.53121i 0.0220156 + 0.191187i
\(838\) 0 0
\(839\) 32.4564i 1.12052i −0.828317 0.560259i \(-0.810702\pi\)
0.828317 0.560259i \(-0.189298\pi\)
\(840\) 0 0
\(841\) −26.6844 −0.920152
\(842\) 0 0
\(843\) 16.7823 16.7823i 0.578014 0.578014i
\(844\) 0 0
\(845\) 10.0332 + 14.1349i 0.345153 + 0.486255i
\(846\) 0 0
\(847\) 20.5557 20.5557i 0.706303 0.706303i
\(848\) 0 0
\(849\) −24.4056 −0.837597
\(850\) 0 0
\(851\) −0.140407 −0.00481310
\(852\) 0 0
\(853\) −15.7877 15.7877i −0.540560 0.540560i 0.383133 0.923693i \(-0.374845\pi\)
−0.923693 + 0.383133i \(0.874845\pi\)
\(854\) 0 0
\(855\) 9.87074 7.00643i 0.337572 0.239615i
\(856\) 0 0
\(857\) 18.8453 18.8453i 0.643744 0.643744i −0.307730 0.951474i \(-0.599569\pi\)
0.951474 + 0.307730i \(0.0995692\pi\)
\(858\) 0 0
\(859\) 7.88204 0.268932 0.134466 0.990918i \(-0.457068\pi\)
0.134466 + 0.990918i \(0.457068\pi\)
\(860\) 0 0
\(861\) 14.2744i 0.486471i
\(862\) 0 0
\(863\) −16.9278 + 16.9278i −0.576229 + 0.576229i −0.933862 0.357633i \(-0.883584\pi\)
0.357633 + 0.933862i \(0.383584\pi\)
\(864\) 0 0
\(865\) −23.9599 4.06635i −0.814662 0.138260i
\(866\) 0 0
\(867\) −9.12768 9.12768i −0.309992 0.309992i
\(868\) 0 0
\(869\) 3.09410i 0.104960i
\(870\) 0 0
\(871\) 16.7240i 0.566670i
\(872\) 0 0
\(873\) −1.43316 1.43316i −0.0485050 0.0485050i
\(874\) 0 0
\(875\) −28.4876 15.7237i −0.963055 0.531558i
\(876\) 0 0
\(877\) 21.8245 21.8245i 0.736962 0.736962i −0.235027 0.971989i \(-0.575518\pi\)
0.971989 + 0.235027i \(0.0755178\pi\)
\(878\) 0 0
\(879\) 22.2326 0.749887
\(880\) 0 0
\(881\) 6.39498i 0.215452i −0.994181 0.107726i \(-0.965643\pi\)
0.994181 0.107726i \(-0.0343570\pi\)
\(882\) 0 0
\(883\) −35.5788 + 35.5788i −1.19732 + 1.19732i −0.222358 + 0.974965i \(0.571375\pi\)
−0.974965 + 0.222358i \(0.928625\pi\)
\(884\) 0 0
\(885\) 17.9596 + 3.04801i 0.603705 + 0.102458i
\(886\) 0 0
\(887\) −5.71681 + 5.71681i −0.191952 + 0.191952i −0.796539 0.604587i \(-0.793338\pi\)
0.604587 + 0.796539i \(0.293338\pi\)
\(888\) 0 0
\(889\) 6.73316 0.225823
\(890\) 0 0
\(891\) 1.00573i 0.0336931i
\(892\) 0 0
\(893\) −34.1373 34.1373i −1.14236 1.14236i
\(894\) 0 0
\(895\) −27.9206 + 19.8185i −0.933281 + 0.662460i
\(896\) 0 0
\(897\) 0.0527852 + 0.0527852i 0.00176245 + 0.00176245i
\(898\) 0 0
\(899\) −6.63698 5.26629i −0.221356 0.175640i
\(900\) 0 0
\(901\) 66.2519 2.20717
\(902\) 0 0
\(903\) 9.80931 + 9.80931i 0.326433 + 0.326433i
\(904\) 0 0
\(905\) −32.9284 46.3899i −1.09458 1.54205i
\(906\) 0 0
\(907\) 7.41057 7.41057i 0.246064 0.246064i −0.573289 0.819353i \(-0.694333\pi\)
0.819353 + 0.573289i \(0.194333\pi\)
\(908\) 0 0
\(909\) 15.2263i 0.505026i
\(910\) 0 0
\(911\) 1.86609i 0.0618262i 0.999522 + 0.0309131i \(0.00984152\pi\)
−0.999522 + 0.0309131i \(0.990158\pi\)
\(912\) 0 0
\(913\) −10.9409 10.9409i −0.362090 0.362090i
\(914\) 0 0
\(915\) 32.3931 + 5.49759i 1.07088 + 0.181745i
\(916\) 0 0
\(917\) −1.76027 + 1.76027i −0.0581292 + 0.0581292i
\(918\) 0 0
\(919\) 39.2561i 1.29494i −0.762091 0.647470i \(-0.775827\pi\)
0.762091 0.647470i \(-0.224173\pi\)
\(920\) 0 0
\(921\) 4.03871i 0.133080i
\(922\) 0 0
\(923\) −12.9599 + 12.9599i −0.426581 + 0.426581i
\(924\) 0 0
\(925\) 19.4073 9.35498i 0.638107 0.307590i
\(926\) 0 0
\(927\) 3.32263 3.32263i 0.109129 0.109129i
\(928\) 0 0
\(929\) 11.4743 0.376460 0.188230 0.982125i \(-0.439725\pi\)
0.188230 + 0.982125i \(0.439725\pi\)
\(930\) 0 0
\(931\) 7.95872 0.260836
\(932\) 0 0
\(933\) 6.04358 6.04358i 0.197858 0.197858i
\(934\) 0 0
\(935\) −2.05786 + 12.1254i −0.0672992 + 0.396543i
\(936\) 0 0
\(937\) −8.72571 + 8.72571i −0.285056 + 0.285056i −0.835122 0.550065i \(-0.814603\pi\)
0.550065 + 0.835122i \(0.314603\pi\)
\(938\) 0 0
\(939\) 9.69257i 0.316305i
\(940\) 0 0
\(941\) 26.3576i 0.859232i −0.903012 0.429616i \(-0.858649\pi\)
0.903012 0.429616i \(-0.141351\pi\)
\(942\) 0 0
\(943\) −0.113012 + 0.113012i −0.00368017 + 0.00368017i
\(944\) 0 0
\(945\) 5.30678 3.76685i 0.172629 0.122536i
\(946\) 0 0
\(947\) −7.52696 7.52696i −0.244593 0.244593i 0.574154 0.818747i \(-0.305331\pi\)
−0.818747 + 0.574154i \(0.805331\pi\)
\(948\) 0 0
\(949\) 14.0797i 0.457048i
\(950\) 0 0
\(951\) 8.24595i 0.267393i
\(952\) 0 0
\(953\) −4.76002 + 4.76002i −0.154192 + 0.154192i −0.779987 0.625795i \(-0.784775\pi\)
0.625795 + 0.779987i \(0.284775\pi\)
\(954\) 0 0
\(955\) −2.49191 + 1.76880i −0.0806363 + 0.0572371i
\(956\) 0 0
\(957\) 1.08217 + 1.08217i 0.0349816 + 0.0349816i
\(958\) 0 0
\(959\) 59.2185 1.91227
\(960\) 0 0
\(961\) 7.04603 + 30.1886i 0.227291 + 0.973827i
\(962\) 0 0
\(963\) 3.16896 + 3.16896i 0.102118 + 0.102118i
\(964\) 0 0
\(965\) −24.1392 4.09679i −0.777070 0.131880i
\(966\) 0 0
\(967\) 33.6415 + 33.6415i 1.08184 + 1.08184i 0.996338 + 0.0855009i \(0.0272490\pi\)
0.0855009 + 0.996338i \(0.472751\pi\)
\(968\) 0 0
\(969\) 29.6049i 0.951045i
\(970\) 0 0
\(971\) −36.8940 −1.18399 −0.591993 0.805943i \(-0.701659\pi\)
−0.591993 + 0.805943i \(0.701659\pi\)
\(972\) 0 0
\(973\) −6.63364 + 6.63364i −0.212665 + 0.212665i
\(974\) 0 0
\(975\) −10.8130 3.77909i −0.346293 0.121028i
\(976\) 0 0
\(977\) 0.644193 0.644193i 0.0206096 0.0206096i −0.696727 0.717336i \(-0.745361\pi\)
0.717336 + 0.696727i \(0.245361\pi\)
\(978\) 0 0
\(979\) 2.31974i 0.0741392i
\(980\) 0 0
\(981\) −7.07906 −0.226017
\(982\) 0 0
\(983\) −14.1590 + 14.1590i −0.451602 + 0.451602i −0.895886 0.444284i \(-0.853458\pi\)
0.444284 + 0.895886i \(0.353458\pi\)
\(984\) 0 0
\(985\) 15.5070 + 2.63177i 0.494095 + 0.0838551i
\(986\) 0 0
\(987\) −18.3531 18.3531i −0.584187 0.584187i
\(988\) 0 0
\(989\) 0.155322i 0.00493895i
\(990\) 0 0
\(991\) 25.3764i 0.806106i 0.915177 + 0.403053i \(0.132051\pi\)
−0.915177 + 0.403053i \(0.867949\pi\)
\(992\) 0 0
\(993\) 23.4246 + 23.4246i 0.743357 + 0.743357i
\(994\) 0 0
\(995\) −15.3745 + 10.9131i −0.487406 + 0.345970i
\(996\) 0 0
\(997\) −15.0638 + 15.0638i −0.477076 + 0.477076i −0.904195 0.427119i \(-0.859529\pi\)
0.427119 + 0.904195i \(0.359529\pi\)
\(998\) 0 0
\(999\) 4.30886i 0.136326i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.433.5 64
5.2 odd 4 inner 1860.2.s.a.1177.26 yes 64
31.30 odd 2 inner 1860.2.s.a.433.26 yes 64
155.92 even 4 inner 1860.2.s.a.1177.5 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.5 64 1.1 even 1 trivial
1860.2.s.a.433.26 yes 64 31.30 odd 2 inner
1860.2.s.a.1177.5 yes 64 155.92 even 4 inner
1860.2.s.a.1177.26 yes 64 5.2 odd 4 inner