Properties

Label 1860.2.s.a.433.20
Level $1860$
Weight $2$
Character 1860.433
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.20
Character \(\chi\) \(=\) 1860.433
Dual form 1860.2.s.a.1177.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{3} +(-1.72803 - 1.41912i) q^{5} +(-0.575654 + 0.575654i) q^{7} -1.00000i q^{9} +5.07781i q^{11} +(-0.293315 + 0.293315i) q^{13} +(-2.22537 + 0.218435i) q^{15} +(0.365849 + 0.365849i) q^{17} +0.439900i q^{19} +0.814097i q^{21} +(4.26424 - 4.26424i) q^{23} +(0.972199 + 4.90457i) q^{25} +(-0.707107 - 0.707107i) q^{27} +6.60907 q^{29} +(5.23909 - 1.88466i) q^{31} +(3.59055 + 3.59055i) q^{33} +(1.81167 - 0.177827i) q^{35} +(0.849177 + 0.849177i) q^{37} +0.414810i q^{39} +10.3445 q^{41} +(-6.93067 + 6.93067i) q^{43} +(-1.41912 + 1.72803i) q^{45} +(-3.89640 + 3.89640i) q^{47} +6.33725i q^{49} +0.517388 q^{51} +(8.89919 - 8.89919i) q^{53} +(7.20602 - 8.77462i) q^{55} +(0.311057 + 0.311057i) q^{57} -8.14835i q^{59} -1.48893i q^{61} +(0.575654 + 0.575654i) q^{63} +(0.923106 - 0.0906090i) q^{65} +(-6.46138 + 6.46138i) q^{67} -6.03054i q^{69} -11.3814 q^{71} +(10.0788 - 10.0788i) q^{73} +(4.15551 + 2.78061i) q^{75} +(-2.92306 - 2.92306i) q^{77} +11.2244 q^{79} -1.00000 q^{81} +(4.35534 - 4.35534i) q^{83} +(-0.113016 - 1.15138i) q^{85} +(4.67332 - 4.67332i) q^{87} +4.17657 q^{89} -0.337695i q^{91} +(2.37194 - 5.03725i) q^{93} +(0.624271 - 0.760163i) q^{95} +(-5.28842 + 5.28842i) q^{97} +5.07781 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 0.707107i 0.408248 0.408248i
\(4\) 0 0
\(5\) −1.72803 1.41912i −0.772800 0.634650i
\(6\) 0 0
\(7\) −0.575654 + 0.575654i −0.217577 + 0.217577i −0.807476 0.589900i \(-0.799167\pi\)
0.589900 + 0.807476i \(0.299167\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 5.07781i 1.53102i 0.643426 + 0.765508i \(0.277512\pi\)
−0.643426 + 0.765508i \(0.722488\pi\)
\(12\) 0 0
\(13\) −0.293315 + 0.293315i −0.0813509 + 0.0813509i −0.746611 0.665260i \(-0.768320\pi\)
0.665260 + 0.746611i \(0.268320\pi\)
\(14\) 0 0
\(15\) −2.22537 + 0.218435i −0.574589 + 0.0563997i
\(16\) 0 0
\(17\) 0.365849 + 0.365849i 0.0887314 + 0.0887314i 0.750079 0.661348i \(-0.230015\pi\)
−0.661348 + 0.750079i \(0.730015\pi\)
\(18\) 0 0
\(19\) 0.439900i 0.100920i 0.998726 + 0.0504600i \(0.0160688\pi\)
−0.998726 + 0.0504600i \(0.983931\pi\)
\(20\) 0 0
\(21\) 0.814097i 0.177651i
\(22\) 0 0
\(23\) 4.26424 4.26424i 0.889155 0.889155i −0.105287 0.994442i \(-0.533576\pi\)
0.994442 + 0.105287i \(0.0335762\pi\)
\(24\) 0 0
\(25\) 0.972199 + 4.90457i 0.194440 + 0.980914i
\(26\) 0 0
\(27\) −0.707107 0.707107i −0.136083 0.136083i
\(28\) 0 0
\(29\) 6.60907 1.22727 0.613637 0.789589i \(-0.289706\pi\)
0.613637 + 0.789589i \(0.289706\pi\)
\(30\) 0 0
\(31\) 5.23909 1.88466i 0.940968 0.338495i
\(32\) 0 0
\(33\) 3.59055 + 3.59055i 0.625035 + 0.625035i
\(34\) 0 0
\(35\) 1.81167 0.177827i 0.306228 0.0300583i
\(36\) 0 0
\(37\) 0.849177 + 0.849177i 0.139604 + 0.139604i 0.773455 0.633851i \(-0.218527\pi\)
−0.633851 + 0.773455i \(0.718527\pi\)
\(38\) 0 0
\(39\) 0.414810i 0.0664227i
\(40\) 0 0
\(41\) 10.3445 1.61554 0.807772 0.589495i \(-0.200673\pi\)
0.807772 + 0.589495i \(0.200673\pi\)
\(42\) 0 0
\(43\) −6.93067 + 6.93067i −1.05692 + 1.05692i −0.0586379 + 0.998279i \(0.518676\pi\)
−0.998279 + 0.0586379i \(0.981324\pi\)
\(44\) 0 0
\(45\) −1.41912 + 1.72803i −0.211550 + 0.257600i
\(46\) 0 0
\(47\) −3.89640 + 3.89640i −0.568348 + 0.568348i −0.931666 0.363317i \(-0.881644\pi\)
0.363317 + 0.931666i \(0.381644\pi\)
\(48\) 0 0
\(49\) 6.33725i 0.905321i
\(50\) 0 0
\(51\) 0.517388 0.0724488
\(52\) 0 0
\(53\) 8.89919 8.89919i 1.22240 1.22240i 0.255621 0.966777i \(-0.417720\pi\)
0.966777 0.255621i \(-0.0822800\pi\)
\(54\) 0 0
\(55\) 7.20602 8.77462i 0.971659 1.18317i
\(56\) 0 0
\(57\) 0.311057 + 0.311057i 0.0412005 + 0.0412005i
\(58\) 0 0
\(59\) 8.14835i 1.06082i −0.847740 0.530412i \(-0.822037\pi\)
0.847740 0.530412i \(-0.177963\pi\)
\(60\) 0 0
\(61\) 1.48893i 0.190638i −0.995447 0.0953188i \(-0.969613\pi\)
0.995447 0.0953188i \(-0.0303870\pi\)
\(62\) 0 0
\(63\) 0.575654 + 0.575654i 0.0725255 + 0.0725255i
\(64\) 0 0
\(65\) 0.923106 0.0906090i 0.114497 0.0112387i
\(66\) 0 0
\(67\) −6.46138 + 6.46138i −0.789383 + 0.789383i −0.981393 0.192010i \(-0.938499\pi\)
0.192010 + 0.981393i \(0.438499\pi\)
\(68\) 0 0
\(69\) 6.03054i 0.725992i
\(70\) 0 0
\(71\) −11.3814 −1.35072 −0.675361 0.737488i \(-0.736012\pi\)
−0.675361 + 0.737488i \(0.736012\pi\)
\(72\) 0 0
\(73\) 10.0788 10.0788i 1.17963 1.17963i 0.199797 0.979837i \(-0.435972\pi\)
0.979837 0.199797i \(-0.0640281\pi\)
\(74\) 0 0
\(75\) 4.15551 + 2.78061i 0.479836 + 0.321077i
\(76\) 0 0
\(77\) −2.92306 2.92306i −0.333113 0.333113i
\(78\) 0 0
\(79\) 11.2244 1.26285 0.631424 0.775438i \(-0.282471\pi\)
0.631424 + 0.775438i \(0.282471\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 4.35534 4.35534i 0.478061 0.478061i −0.426450 0.904511i \(-0.640236\pi\)
0.904511 + 0.426450i \(0.140236\pi\)
\(84\) 0 0
\(85\) −0.113016 1.15138i −0.0122583 0.124885i
\(86\) 0 0
\(87\) 4.67332 4.67332i 0.501032 0.501032i
\(88\) 0 0
\(89\) 4.17657 0.442716 0.221358 0.975193i \(-0.428951\pi\)
0.221358 + 0.975193i \(0.428951\pi\)
\(90\) 0 0
\(91\) 0.337695i 0.0354001i
\(92\) 0 0
\(93\) 2.37194 5.03725i 0.245959 0.522339i
\(94\) 0 0
\(95\) 0.624271 0.760163i 0.0640489 0.0779911i
\(96\) 0 0
\(97\) −5.28842 + 5.28842i −0.536958 + 0.536958i −0.922634 0.385676i \(-0.873968\pi\)
0.385676 + 0.922634i \(0.373968\pi\)
\(98\) 0 0
\(99\) 5.07781 0.510339
\(100\) 0 0
\(101\) 7.71583 0.767754 0.383877 0.923384i \(-0.374589\pi\)
0.383877 + 0.923384i \(0.374589\pi\)
\(102\) 0 0
\(103\) 11.0295 + 11.0295i 1.08677 + 1.08677i 0.995859 + 0.0909079i \(0.0289769\pi\)
0.0909079 + 0.995859i \(0.471023\pi\)
\(104\) 0 0
\(105\) 1.15530 1.40679i 0.112746 0.137288i
\(106\) 0 0
\(107\) 11.7750 11.7750i 1.13833 1.13833i 0.149578 0.988750i \(-0.452209\pi\)
0.988750 0.149578i \(-0.0477915\pi\)
\(108\) 0 0
\(109\) 5.33906i 0.511389i 0.966758 + 0.255695i \(0.0823041\pi\)
−0.966758 + 0.255695i \(0.917696\pi\)
\(110\) 0 0
\(111\) 1.20092 0.113986
\(112\) 0 0
\(113\) −5.34569 5.34569i −0.502880 0.502880i 0.409452 0.912332i \(-0.365720\pi\)
−0.912332 + 0.409452i \(0.865720\pi\)
\(114\) 0 0
\(115\) −13.4202 + 1.31728i −1.25144 + 0.122837i
\(116\) 0 0
\(117\) 0.293315 + 0.293315i 0.0271170 + 0.0271170i
\(118\) 0 0
\(119\) −0.421204 −0.0386117
\(120\) 0 0
\(121\) −14.7841 −1.34401
\(122\) 0 0
\(123\) 7.31469 7.31469i 0.659543 0.659543i
\(124\) 0 0
\(125\) 5.28018 9.85493i 0.472274 0.881452i
\(126\) 0 0
\(127\) −1.85057 1.85057i −0.164212 0.164212i 0.620218 0.784430i \(-0.287044\pi\)
−0.784430 + 0.620218i \(0.787044\pi\)
\(128\) 0 0
\(129\) 9.80145i 0.862969i
\(130\) 0 0
\(131\) −12.6937 −1.10906 −0.554528 0.832165i \(-0.687101\pi\)
−0.554528 + 0.832165i \(0.687101\pi\)
\(132\) 0 0
\(133\) −0.253230 0.253230i −0.0219579 0.0219579i
\(134\) 0 0
\(135\) 0.218435 + 2.22537i 0.0187999 + 0.191530i
\(136\) 0 0
\(137\) −8.40732 8.40732i −0.718286 0.718286i 0.249968 0.968254i \(-0.419580\pi\)
−0.968254 + 0.249968i \(0.919580\pi\)
\(138\) 0 0
\(139\) 20.3134 1.72296 0.861480 0.507791i \(-0.169538\pi\)
0.861480 + 0.507791i \(0.169538\pi\)
\(140\) 0 0
\(141\) 5.51034i 0.464055i
\(142\) 0 0
\(143\) −1.48940 1.48940i −0.124550 0.124550i
\(144\) 0 0
\(145\) −11.4207 9.37906i −0.948437 0.778888i
\(146\) 0 0
\(147\) 4.48111 + 4.48111i 0.369596 + 0.369596i
\(148\) 0 0
\(149\) 18.9448i 1.55202i 0.630723 + 0.776008i \(0.282758\pi\)
−0.630723 + 0.776008i \(0.717242\pi\)
\(150\) 0 0
\(151\) 10.0823i 0.820483i 0.911977 + 0.410241i \(0.134556\pi\)
−0.911977 + 0.410241i \(0.865444\pi\)
\(152\) 0 0
\(153\) 0.365849 0.365849i 0.0295771 0.0295771i
\(154\) 0 0
\(155\) −11.7279 4.17814i −0.942006 0.335597i
\(156\) 0 0
\(157\) −6.58857 + 6.58857i −0.525825 + 0.525825i −0.919325 0.393500i \(-0.871264\pi\)
0.393500 + 0.919325i \(0.371264\pi\)
\(158\) 0 0
\(159\) 12.5854i 0.998084i
\(160\) 0 0
\(161\) 4.90945i 0.386919i
\(162\) 0 0
\(163\) 16.2980 + 16.2980i 1.27656 + 1.27656i 0.942583 + 0.333973i \(0.108389\pi\)
0.333973 + 0.942583i \(0.391611\pi\)
\(164\) 0 0
\(165\) −1.10917 11.3000i −0.0863489 0.879705i
\(166\) 0 0
\(167\) 13.5571 + 13.5571i 1.04908 + 1.04908i 0.998732 + 0.0503509i \(0.0160340\pi\)
0.0503509 + 0.998732i \(0.483966\pi\)
\(168\) 0 0
\(169\) 12.8279i 0.986764i
\(170\) 0 0
\(171\) 0.439900 0.0336400
\(172\) 0 0
\(173\) 8.44894 + 8.44894i 0.642361 + 0.642361i 0.951135 0.308774i \(-0.0999187\pi\)
−0.308774 + 0.951135i \(0.599919\pi\)
\(174\) 0 0
\(175\) −3.38299 2.26368i −0.255730 0.171118i
\(176\) 0 0
\(177\) −5.76175 5.76175i −0.433080 0.433080i
\(178\) 0 0
\(179\) −13.8628 −1.03616 −0.518079 0.855333i \(-0.673353\pi\)
−0.518079 + 0.855333i \(0.673353\pi\)
\(180\) 0 0
\(181\) 2.66204i 0.197868i −0.995094 0.0989341i \(-0.968457\pi\)
0.995094 0.0989341i \(-0.0315433\pi\)
\(182\) 0 0
\(183\) −1.05283 1.05283i −0.0778275 0.0778275i
\(184\) 0 0
\(185\) −0.262323 2.67249i −0.0192863 0.196485i
\(186\) 0 0
\(187\) −1.85771 + 1.85771i −0.135849 + 0.135849i
\(188\) 0 0
\(189\) 0.814097 0.0592169
\(190\) 0 0
\(191\) 23.8209 1.72362 0.861810 0.507232i \(-0.169331\pi\)
0.861810 + 0.507232i \(0.169331\pi\)
\(192\) 0 0
\(193\) −13.3646 13.3646i −0.962003 0.962003i 0.0373011 0.999304i \(-0.488124\pi\)
−0.999304 + 0.0373011i \(0.988124\pi\)
\(194\) 0 0
\(195\) 0.588665 0.716805i 0.0421551 0.0513315i
\(196\) 0 0
\(197\) −10.0820 10.0820i −0.718316 0.718316i 0.249944 0.968260i \(-0.419588\pi\)
−0.968260 + 0.249944i \(0.919588\pi\)
\(198\) 0 0
\(199\) −8.47035 −0.600448 −0.300224 0.953869i \(-0.597061\pi\)
−0.300224 + 0.953869i \(0.597061\pi\)
\(200\) 0 0
\(201\) 9.13777i 0.644528i
\(202\) 0 0
\(203\) −3.80454 + 3.80454i −0.267026 + 0.267026i
\(204\) 0 0
\(205\) −17.8757 14.6801i −1.24849 1.02530i
\(206\) 0 0
\(207\) −4.26424 4.26424i −0.296385 0.296385i
\(208\) 0 0
\(209\) −2.23373 −0.154510
\(210\) 0 0
\(211\) −21.0191 −1.44702 −0.723508 0.690316i \(-0.757471\pi\)
−0.723508 + 0.690316i \(0.757471\pi\)
\(212\) 0 0
\(213\) −8.04785 + 8.04785i −0.551430 + 0.551430i
\(214\) 0 0
\(215\) 21.8119 2.14098i 1.48756 0.146014i
\(216\) 0 0
\(217\) −1.93099 + 4.10081i −0.131084 + 0.278381i
\(218\) 0 0
\(219\) 14.2536i 0.963167i
\(220\) 0 0
\(221\) −0.214618 −0.0144367
\(222\) 0 0
\(223\) −6.52316 + 6.52316i −0.436823 + 0.436823i −0.890941 0.454118i \(-0.849954\pi\)
0.454118 + 0.890941i \(0.349954\pi\)
\(224\) 0 0
\(225\) 4.90457 0.972199i 0.326971 0.0648133i
\(226\) 0 0
\(227\) −19.9575 + 19.9575i −1.32463 + 1.32463i −0.414641 + 0.909985i \(0.636093\pi\)
−0.909985 + 0.414641i \(0.863907\pi\)
\(228\) 0 0
\(229\) −5.62109 −0.371452 −0.185726 0.982602i \(-0.559464\pi\)
−0.185726 + 0.982602i \(0.559464\pi\)
\(230\) 0 0
\(231\) −4.13383 −0.271986
\(232\) 0 0
\(233\) 0.444489 + 0.444489i 0.0291195 + 0.0291195i 0.721517 0.692397i \(-0.243445\pi\)
−0.692397 + 0.721517i \(0.743445\pi\)
\(234\) 0 0
\(235\) 12.2626 1.20365i 0.799922 0.0785176i
\(236\) 0 0
\(237\) 7.93687 7.93687i 0.515555 0.515555i
\(238\) 0 0
\(239\) 27.3608 1.76983 0.884913 0.465757i \(-0.154218\pi\)
0.884913 + 0.465757i \(0.154218\pi\)
\(240\) 0 0
\(241\) 3.86122i 0.248723i −0.992237 0.124361i \(-0.960312\pi\)
0.992237 0.124361i \(-0.0396882\pi\)
\(242\) 0 0
\(243\) −0.707107 + 0.707107i −0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 8.99331 10.9510i 0.574561 0.699632i
\(246\) 0 0
\(247\) −0.129029 0.129029i −0.00820994 0.00820994i
\(248\) 0 0
\(249\) 6.15938i 0.390335i
\(250\) 0 0
\(251\) 29.8469i 1.88392i 0.335725 + 0.941960i \(0.391019\pi\)
−0.335725 + 0.941960i \(0.608981\pi\)
\(252\) 0 0
\(253\) 21.6530 + 21.6530i 1.36131 + 1.36131i
\(254\) 0 0
\(255\) −0.894064 0.734236i −0.0559885 0.0459796i
\(256\) 0 0
\(257\) 11.2365 11.2365i 0.700917 0.700917i −0.263691 0.964607i \(-0.584940\pi\)
0.964607 + 0.263691i \(0.0849398\pi\)
\(258\) 0 0
\(259\) −0.977664 −0.0607491
\(260\) 0 0
\(261\) 6.60907i 0.409091i
\(262\) 0 0
\(263\) 2.39013 2.39013i 0.147382 0.147382i −0.629565 0.776947i \(-0.716767\pi\)
0.776947 + 0.629565i \(0.216767\pi\)
\(264\) 0 0
\(265\) −28.0071 + 2.74908i −1.72046 + 0.168875i
\(266\) 0 0
\(267\) 2.95328 2.95328i 0.180738 0.180738i
\(268\) 0 0
\(269\) 12.9537 0.789801 0.394901 0.918724i \(-0.370779\pi\)
0.394901 + 0.918724i \(0.370779\pi\)
\(270\) 0 0
\(271\) 9.57319i 0.581530i 0.956795 + 0.290765i \(0.0939097\pi\)
−0.956795 + 0.290765i \(0.906090\pi\)
\(272\) 0 0
\(273\) −0.238787 0.238787i −0.0144520 0.0144520i
\(274\) 0 0
\(275\) −24.9045 + 4.93664i −1.50180 + 0.297691i
\(276\) 0 0
\(277\) −9.98683 9.98683i −0.600050 0.600050i 0.340275 0.940326i \(-0.389480\pi\)
−0.940326 + 0.340275i \(0.889480\pi\)
\(278\) 0 0
\(279\) −1.88466 5.23909i −0.112832 0.313656i
\(280\) 0 0
\(281\) 6.68935 0.399053 0.199527 0.979892i \(-0.436060\pi\)
0.199527 + 0.979892i \(0.436060\pi\)
\(282\) 0 0
\(283\) −7.46041 7.46041i −0.443475 0.443475i 0.449703 0.893178i \(-0.351530\pi\)
−0.893178 + 0.449703i \(0.851530\pi\)
\(284\) 0 0
\(285\) −0.0960897 0.978943i −0.00569186 0.0579876i
\(286\) 0 0
\(287\) −5.95487 + 5.95487i −0.351505 + 0.351505i
\(288\) 0 0
\(289\) 16.7323i 0.984253i
\(290\) 0 0
\(291\) 7.47896i 0.438424i
\(292\) 0 0
\(293\) −5.50982 5.50982i −0.321887 0.321887i 0.527604 0.849491i \(-0.323091\pi\)
−0.849491 + 0.527604i \(0.823091\pi\)
\(294\) 0 0
\(295\) −11.5635 + 14.0806i −0.673252 + 0.819806i
\(296\) 0 0
\(297\) 3.59055 3.59055i 0.208345 0.208345i
\(298\) 0 0
\(299\) 2.50153i 0.144667i
\(300\) 0 0
\(301\) 7.97933i 0.459921i
\(302\) 0 0
\(303\) 5.45592 5.45592i 0.313434 0.313434i
\(304\) 0 0
\(305\) −2.11297 + 2.57292i −0.120988 + 0.147325i
\(306\) 0 0
\(307\) 4.80394 4.80394i 0.274175 0.274175i −0.556603 0.830778i \(-0.687896\pi\)
0.830778 + 0.556603i \(0.187896\pi\)
\(308\) 0 0
\(309\) 15.5980 0.887342
\(310\) 0 0
\(311\) −23.7495 −1.34671 −0.673356 0.739318i \(-0.735148\pi\)
−0.673356 + 0.739318i \(0.735148\pi\)
\(312\) 0 0
\(313\) 3.39387 3.39387i 0.191833 0.191833i −0.604655 0.796488i \(-0.706689\pi\)
0.796488 + 0.604655i \(0.206689\pi\)
\(314\) 0 0
\(315\) −0.177827 1.81167i −0.0100194 0.102076i
\(316\) 0 0
\(317\) 16.1463 16.1463i 0.906866 0.906866i −0.0891519 0.996018i \(-0.528416\pi\)
0.996018 + 0.0891519i \(0.0284156\pi\)
\(318\) 0 0
\(319\) 33.5596i 1.87898i
\(320\) 0 0
\(321\) 16.6523i 0.929441i
\(322\) 0 0
\(323\) −0.160937 + 0.160937i −0.00895478 + 0.00895478i
\(324\) 0 0
\(325\) −1.72374 1.15342i −0.0956161 0.0639804i
\(326\) 0 0
\(327\) 3.77528 + 3.77528i 0.208774 + 0.208774i
\(328\) 0 0
\(329\) 4.48595i 0.247319i
\(330\) 0 0
\(331\) 27.2963i 1.50034i 0.661245 + 0.750170i \(0.270028\pi\)
−0.661245 + 0.750170i \(0.729972\pi\)
\(332\) 0 0
\(333\) 0.849177 0.849177i 0.0465346 0.0465346i
\(334\) 0 0
\(335\) 20.3349 1.99601i 1.11102 0.109054i
\(336\) 0 0
\(337\) −14.2054 14.2054i −0.773819 0.773819i 0.204953 0.978772i \(-0.434296\pi\)
−0.978772 + 0.204953i \(0.934296\pi\)
\(338\) 0 0
\(339\) −7.55994 −0.410600
\(340\) 0 0
\(341\) 9.56993 + 26.6031i 0.518241 + 1.44064i
\(342\) 0 0
\(343\) −7.67763 7.67763i −0.414553 0.414553i
\(344\) 0 0
\(345\) −8.55806 + 10.4210i −0.460750 + 0.561046i
\(346\) 0 0
\(347\) −12.1576 12.1576i −0.652652 0.652652i 0.300979 0.953631i \(-0.402687\pi\)
−0.953631 + 0.300979i \(0.902687\pi\)
\(348\) 0 0
\(349\) 8.30114i 0.444350i 0.975007 + 0.222175i \(0.0713156\pi\)
−0.975007 + 0.222175i \(0.928684\pi\)
\(350\) 0 0
\(351\) 0.414810 0.0221409
\(352\) 0 0
\(353\) −6.60632 + 6.60632i −0.351619 + 0.351619i −0.860712 0.509093i \(-0.829981\pi\)
0.509093 + 0.860712i \(0.329981\pi\)
\(354\) 0 0
\(355\) 19.6674 + 16.1515i 1.04384 + 0.857235i
\(356\) 0 0
\(357\) −0.297836 + 0.297836i −0.0157632 + 0.0157632i
\(358\) 0 0
\(359\) 10.2070i 0.538707i 0.963041 + 0.269353i \(0.0868099\pi\)
−0.963041 + 0.269353i \(0.913190\pi\)
\(360\) 0 0
\(361\) 18.8065 0.989815
\(362\) 0 0
\(363\) −10.4540 + 10.4540i −0.548690 + 0.548690i
\(364\) 0 0
\(365\) −31.7195 + 3.11348i −1.66028 + 0.162967i
\(366\) 0 0
\(367\) −4.28767 4.28767i −0.223815 0.223815i 0.586288 0.810103i \(-0.300589\pi\)
−0.810103 + 0.586288i \(0.800589\pi\)
\(368\) 0 0
\(369\) 10.3445i 0.538515i
\(370\) 0 0
\(371\) 10.2457i 0.531931i
\(372\) 0 0
\(373\) 2.94743 + 2.94743i 0.152612 + 0.152612i 0.779283 0.626672i \(-0.215583\pi\)
−0.626672 + 0.779283i \(0.715583\pi\)
\(374\) 0 0
\(375\) −3.23484 10.7021i −0.167046 0.552656i
\(376\) 0 0
\(377\) −1.93854 + 1.93854i −0.0998398 + 0.0998398i
\(378\) 0 0
\(379\) 4.60786i 0.236690i 0.992973 + 0.118345i \(0.0377588\pi\)
−0.992973 + 0.118345i \(0.962241\pi\)
\(380\) 0 0
\(381\) −2.61711 −0.134078
\(382\) 0 0
\(383\) 20.2250 20.2250i 1.03345 1.03345i 0.0340280 0.999421i \(-0.489166\pi\)
0.999421 0.0340280i \(-0.0108335\pi\)
\(384\) 0 0
\(385\) 0.902973 + 9.19931i 0.0460198 + 0.468840i
\(386\) 0 0
\(387\) 6.93067 + 6.93067i 0.352306 + 0.352306i
\(388\) 0 0
\(389\) −26.3586 −1.33643 −0.668217 0.743966i \(-0.732942\pi\)
−0.668217 + 0.743966i \(0.732942\pi\)
\(390\) 0 0
\(391\) 3.12013 0.157792
\(392\) 0 0
\(393\) −8.97583 + 8.97583i −0.452771 + 0.452771i
\(394\) 0 0
\(395\) −19.3962 15.9288i −0.975929 0.801466i
\(396\) 0 0
\(397\) 2.18912 2.18912i 0.109869 0.109869i −0.650035 0.759904i \(-0.725246\pi\)
0.759904 + 0.650035i \(0.225246\pi\)
\(398\) 0 0
\(399\) −0.358122 −0.0179285
\(400\) 0 0
\(401\) 26.3320i 1.31496i −0.753473 0.657479i \(-0.771623\pi\)
0.753473 0.657479i \(-0.228377\pi\)
\(402\) 0 0
\(403\) −0.983904 + 2.08950i −0.0490118 + 0.104085i
\(404\) 0 0
\(405\) 1.72803 + 1.41912i 0.0858667 + 0.0705166i
\(406\) 0 0
\(407\) −4.31196 + 4.31196i −0.213736 + 0.213736i
\(408\) 0 0
\(409\) −11.2663 −0.557082 −0.278541 0.960424i \(-0.589851\pi\)
−0.278541 + 0.960424i \(0.589851\pi\)
\(410\) 0 0
\(411\) −11.8897 −0.586478
\(412\) 0 0
\(413\) 4.69063 + 4.69063i 0.230811 + 0.230811i
\(414\) 0 0
\(415\) −13.7069 + 1.34543i −0.672847 + 0.0660444i
\(416\) 0 0
\(417\) 14.3637 14.3637i 0.703396 0.703396i
\(418\) 0 0
\(419\) 13.2921i 0.649361i −0.945824 0.324680i \(-0.894743\pi\)
0.945824 0.324680i \(-0.105257\pi\)
\(420\) 0 0
\(421\) −27.3668 −1.33377 −0.666887 0.745159i \(-0.732374\pi\)
−0.666887 + 0.745159i \(0.732374\pi\)
\(422\) 0 0
\(423\) 3.89640 + 3.89640i 0.189449 + 0.189449i
\(424\) 0 0
\(425\) −1.43865 + 2.15001i −0.0697850 + 0.104291i
\(426\) 0 0
\(427\) 0.857106 + 0.857106i 0.0414783 + 0.0414783i
\(428\) 0 0
\(429\) −2.10632 −0.101694
\(430\) 0 0
\(431\) 5.25254 0.253006 0.126503 0.991966i \(-0.459625\pi\)
0.126503 + 0.991966i \(0.459625\pi\)
\(432\) 0 0
\(433\) 16.1942 16.1942i 0.778244 0.778244i −0.201288 0.979532i \(-0.564513\pi\)
0.979532 + 0.201288i \(0.0645126\pi\)
\(434\) 0 0
\(435\) −14.7076 + 1.44365i −0.705178 + 0.0692179i
\(436\) 0 0
\(437\) 1.87584 + 1.87584i 0.0897336 + 0.0897336i
\(438\) 0 0
\(439\) 18.2878i 0.872831i −0.899745 0.436415i \(-0.856248\pi\)
0.899745 0.436415i \(-0.143752\pi\)
\(440\) 0 0
\(441\) 6.33725 0.301774
\(442\) 0 0
\(443\) −11.5612 11.5612i −0.549288 0.549288i 0.376947 0.926235i \(-0.376974\pi\)
−0.926235 + 0.376947i \(0.876974\pi\)
\(444\) 0 0
\(445\) −7.21726 5.92706i −0.342131 0.280970i
\(446\) 0 0
\(447\) 13.3960 + 13.3960i 0.633608 + 0.633608i
\(448\) 0 0
\(449\) −9.29786 −0.438793 −0.219397 0.975636i \(-0.570409\pi\)
−0.219397 + 0.975636i \(0.570409\pi\)
\(450\) 0 0
\(451\) 52.5275i 2.47342i
\(452\) 0 0
\(453\) 7.12923 + 7.12923i 0.334961 + 0.334961i
\(454\) 0 0
\(455\) −0.479230 + 0.583549i −0.0224667 + 0.0273572i
\(456\) 0 0
\(457\) 1.87262 + 1.87262i 0.0875973 + 0.0875973i 0.749548 0.661950i \(-0.230271\pi\)
−0.661950 + 0.749548i \(0.730271\pi\)
\(458\) 0 0
\(459\) 0.517388i 0.0241496i
\(460\) 0 0
\(461\) 24.9462i 1.16186i 0.813954 + 0.580930i \(0.197311\pi\)
−0.813954 + 0.580930i \(0.802689\pi\)
\(462\) 0 0
\(463\) 12.5924 12.5924i 0.585219 0.585219i −0.351114 0.936333i \(-0.614197\pi\)
0.936333 + 0.351114i \(0.114197\pi\)
\(464\) 0 0
\(465\) −11.2473 + 5.33847i −0.521579 + 0.247566i
\(466\) 0 0
\(467\) −1.95220 + 1.95220i −0.0903370 + 0.0903370i −0.750831 0.660494i \(-0.770347\pi\)
0.660494 + 0.750831i \(0.270347\pi\)
\(468\) 0 0
\(469\) 7.43903i 0.343503i
\(470\) 0 0
\(471\) 9.31764i 0.429334i
\(472\) 0 0
\(473\) −35.1926 35.1926i −1.61816 1.61816i
\(474\) 0 0
\(475\) −2.15752 + 0.427671i −0.0989940 + 0.0196229i
\(476\) 0 0
\(477\) −8.89919 8.89919i −0.407466 0.407466i
\(478\) 0 0
\(479\) 12.3481i 0.564200i 0.959385 + 0.282100i \(0.0910310\pi\)
−0.959385 + 0.282100i \(0.908969\pi\)
\(480\) 0 0
\(481\) −0.498152 −0.0227138
\(482\) 0 0
\(483\) 3.47150 + 3.47150i 0.157959 + 0.157959i
\(484\) 0 0
\(485\) 16.6435 1.63367i 0.755741 0.0741810i
\(486\) 0 0
\(487\) −5.83590 5.83590i −0.264450 0.264450i 0.562409 0.826859i \(-0.309875\pi\)
−0.826859 + 0.562409i \(0.809875\pi\)
\(488\) 0 0
\(489\) 23.0488 1.04230
\(490\) 0 0
\(491\) 2.22265i 0.100307i −0.998742 0.0501533i \(-0.984029\pi\)
0.998742 0.0501533i \(-0.0159710\pi\)
\(492\) 0 0
\(493\) 2.41792 + 2.41792i 0.108898 + 0.108898i
\(494\) 0 0
\(495\) −8.77462 7.20602i −0.394390 0.323886i
\(496\) 0 0
\(497\) 6.55173 6.55173i 0.293885 0.293885i
\(498\) 0 0
\(499\) −11.3548 −0.508312 −0.254156 0.967163i \(-0.581798\pi\)
−0.254156 + 0.967163i \(0.581798\pi\)
\(500\) 0 0
\(501\) 19.1727 0.856572
\(502\) 0 0
\(503\) −19.0779 19.0779i −0.850643 0.850643i 0.139569 0.990212i \(-0.455428\pi\)
−0.990212 + 0.139569i \(0.955428\pi\)
\(504\) 0 0
\(505\) −13.3332 10.9497i −0.593320 0.487255i
\(506\) 0 0
\(507\) 9.07072 + 9.07072i 0.402845 + 0.402845i
\(508\) 0 0
\(509\) 6.25137 0.277087 0.138543 0.990356i \(-0.455758\pi\)
0.138543 + 0.990356i \(0.455758\pi\)
\(510\) 0 0
\(511\) 11.6038i 0.513322i
\(512\) 0 0
\(513\) 0.311057 0.311057i 0.0137335 0.0137335i
\(514\) 0 0
\(515\) −3.40716 34.7115i −0.150137 1.52957i
\(516\) 0 0
\(517\) −19.7852 19.7852i −0.870151 0.870151i
\(518\) 0 0
\(519\) 11.9486 0.524486
\(520\) 0 0
\(521\) 7.50173 0.328657 0.164328 0.986406i \(-0.447454\pi\)
0.164328 + 0.986406i \(0.447454\pi\)
\(522\) 0 0
\(523\) −25.8067 + 25.8067i −1.12845 + 1.12845i −0.138016 + 0.990430i \(0.544073\pi\)
−0.990430 + 0.138016i \(0.955927\pi\)
\(524\) 0 0
\(525\) −3.99280 + 0.791465i −0.174260 + 0.0345424i
\(526\) 0 0
\(527\) 2.60621 + 1.22721i 0.113528 + 0.0534583i
\(528\) 0 0
\(529\) 13.3674i 0.581192i
\(530\) 0 0
\(531\) −8.14835 −0.353608
\(532\) 0 0
\(533\) −3.03420 + 3.03420i −0.131426 + 0.131426i
\(534\) 0 0
\(535\) −37.0576 + 3.63745i −1.60214 + 0.157261i
\(536\) 0 0
\(537\) −9.80251 + 9.80251i −0.423010 + 0.423010i
\(538\) 0 0
\(539\) −32.1793 −1.38606
\(540\) 0 0
\(541\) −23.5126 −1.01089 −0.505443 0.862860i \(-0.668671\pi\)
−0.505443 + 0.862860i \(0.668671\pi\)
\(542\) 0 0
\(543\) −1.88235 1.88235i −0.0807793 0.0807793i
\(544\) 0 0
\(545\) 7.57676 9.22607i 0.324553 0.395201i
\(546\) 0 0
\(547\) −6.68445 + 6.68445i −0.285807 + 0.285807i −0.835419 0.549613i \(-0.814775\pi\)
0.549613 + 0.835419i \(0.314775\pi\)
\(548\) 0 0
\(549\) −1.48893 −0.0635459
\(550\) 0 0
\(551\) 2.90733i 0.123857i
\(552\) 0 0
\(553\) −6.46139 + 6.46139i −0.274766 + 0.274766i
\(554\) 0 0
\(555\) −2.07523 1.70425i −0.0880884 0.0723412i
\(556\) 0 0
\(557\) −25.6613 25.6613i −1.08730 1.08730i −0.995805 0.0914983i \(-0.970834\pi\)
−0.0914983 0.995805i \(-0.529166\pi\)
\(558\) 0 0
\(559\) 4.06574i 0.171962i
\(560\) 0 0
\(561\) 2.62720i 0.110920i
\(562\) 0 0
\(563\) −23.8281 23.8281i −1.00423 1.00423i −0.999991 0.00424364i \(-0.998649\pi\)
−0.00424364 0.999991i \(-0.501351\pi\)
\(564\) 0 0
\(565\) 1.65136 + 16.8237i 0.0694731 + 0.707778i
\(566\) 0 0
\(567\) 0.575654 0.575654i 0.0241752 0.0241752i
\(568\) 0 0
\(569\) 27.4294 1.14990 0.574951 0.818188i \(-0.305021\pi\)
0.574951 + 0.818188i \(0.305021\pi\)
\(570\) 0 0
\(571\) 10.0366i 0.420019i 0.977699 + 0.210010i \(0.0673495\pi\)
−0.977699 + 0.210010i \(0.932650\pi\)
\(572\) 0 0
\(573\) 16.8439 16.8439i 0.703665 0.703665i
\(574\) 0 0
\(575\) 25.0599 + 16.7686i 1.04507 + 0.699297i
\(576\) 0 0
\(577\) −4.32282 + 4.32282i −0.179961 + 0.179961i −0.791339 0.611378i \(-0.790616\pi\)
0.611378 + 0.791339i \(0.290616\pi\)
\(578\) 0 0
\(579\) −18.9004 −0.785472
\(580\) 0 0
\(581\) 5.01434i 0.208030i
\(582\) 0 0
\(583\) 45.1884 + 45.1884i 1.87151 + 1.87151i
\(584\) 0 0
\(585\) −0.0906090 0.923106i −0.00374622 0.0381658i
\(586\) 0 0
\(587\) 21.6379 + 21.6379i 0.893090 + 0.893090i 0.994813 0.101723i \(-0.0324354\pi\)
−0.101723 + 0.994813i \(0.532435\pi\)
\(588\) 0 0
\(589\) 0.829062 + 2.30468i 0.0341609 + 0.0949626i
\(590\) 0 0
\(591\) −14.2582 −0.586503
\(592\) 0 0
\(593\) −18.1551 18.1551i −0.745541 0.745541i 0.228098 0.973638i \(-0.426749\pi\)
−0.973638 + 0.228098i \(0.926749\pi\)
\(594\) 0 0
\(595\) 0.727855 + 0.597739i 0.0298392 + 0.0245049i
\(596\) 0 0
\(597\) −5.98945 + 5.98945i −0.245132 + 0.245132i
\(598\) 0 0
\(599\) 5.05341i 0.206477i 0.994657 + 0.103238i \(0.0329204\pi\)
−0.994657 + 0.103238i \(0.967080\pi\)
\(600\) 0 0
\(601\) 6.47060i 0.263941i 0.991254 + 0.131971i \(0.0421305\pi\)
−0.991254 + 0.131971i \(0.957870\pi\)
\(602\) 0 0
\(603\) 6.46138 + 6.46138i 0.263128 + 0.263128i
\(604\) 0 0
\(605\) 25.5475 + 20.9804i 1.03865 + 0.852976i
\(606\) 0 0
\(607\) 25.7718 25.7718i 1.04605 1.04605i 0.0471585 0.998887i \(-0.484983\pi\)
0.998887 0.0471585i \(-0.0150166\pi\)
\(608\) 0 0
\(609\) 5.38043i 0.218026i
\(610\) 0 0
\(611\) 2.28574i 0.0924713i
\(612\) 0 0
\(613\) 2.03353 2.03353i 0.0821336 0.0821336i −0.664846 0.746980i \(-0.731503\pi\)
0.746980 + 0.664846i \(0.231503\pi\)
\(614\) 0 0
\(615\) −23.0204 + 2.25961i −0.928274 + 0.0911162i
\(616\) 0 0
\(617\) −26.2948 + 26.2948i −1.05859 + 1.05859i −0.0604158 + 0.998173i \(0.519243\pi\)
−0.998173 + 0.0604158i \(0.980757\pi\)
\(618\) 0 0
\(619\) 8.62552 0.346689 0.173344 0.984861i \(-0.444543\pi\)
0.173344 + 0.984861i \(0.444543\pi\)
\(620\) 0 0
\(621\) −6.03054 −0.241997
\(622\) 0 0
\(623\) −2.40426 + 2.40426i −0.0963247 + 0.0963247i
\(624\) 0 0
\(625\) −23.1097 + 9.53644i −0.924386 + 0.381458i
\(626\) 0 0
\(627\) −1.57949 + 1.57949i −0.0630786 + 0.0630786i
\(628\) 0 0
\(629\) 0.621341i 0.0247745i
\(630\) 0 0
\(631\) 16.6281i 0.661954i −0.943639 0.330977i \(-0.892622\pi\)
0.943639 0.330977i \(-0.107378\pi\)
\(632\) 0 0
\(633\) −14.8628 + 14.8628i −0.590742 + 0.590742i
\(634\) 0 0
\(635\) 0.571668 + 5.82404i 0.0226860 + 0.231120i
\(636\) 0 0
\(637\) −1.85881 1.85881i −0.0736486 0.0736486i
\(638\) 0 0
\(639\) 11.3814i 0.450240i
\(640\) 0 0
\(641\) 18.1311i 0.716137i 0.933695 + 0.358068i \(0.116565\pi\)
−0.933695 + 0.358068i \(0.883435\pi\)
\(642\) 0 0
\(643\) 20.0275 20.0275i 0.789807 0.789807i −0.191655 0.981462i \(-0.561386\pi\)
0.981462 + 0.191655i \(0.0613856\pi\)
\(644\) 0 0
\(645\) 13.9094 16.9372i 0.547683 0.666903i
\(646\) 0 0
\(647\) −7.68799 7.68799i −0.302246 0.302246i 0.539646 0.841892i \(-0.318558\pi\)
−0.841892 + 0.539646i \(0.818558\pi\)
\(648\) 0 0
\(649\) 41.3758 1.62414
\(650\) 0 0
\(651\) 1.53429 + 4.26513i 0.0601338 + 0.167164i
\(652\) 0 0
\(653\) −1.59545 1.59545i −0.0624348 0.0624348i 0.675200 0.737635i \(-0.264057\pi\)
−0.737635 + 0.675200i \(0.764057\pi\)
\(654\) 0 0
\(655\) 21.9352 + 18.0139i 0.857079 + 0.703862i
\(656\) 0 0
\(657\) −10.0788 10.0788i −0.393211 0.393211i
\(658\) 0 0
\(659\) 11.5424i 0.449629i 0.974402 + 0.224814i \(0.0721776\pi\)
−0.974402 + 0.224814i \(0.927822\pi\)
\(660\) 0 0
\(661\) −5.01044 −0.194884 −0.0974418 0.995241i \(-0.531066\pi\)
−0.0974418 + 0.995241i \(0.531066\pi\)
\(662\) 0 0
\(663\) −0.151758 + 0.151758i −0.00589378 + 0.00589378i
\(664\) 0 0
\(665\) 0.0782264 + 0.796955i 0.00303349 + 0.0309046i
\(666\) 0 0
\(667\) 28.1826 28.1826i 1.09124 1.09124i
\(668\) 0 0
\(669\) 9.22514i 0.356664i
\(670\) 0 0
\(671\) 7.56048 0.291869
\(672\) 0 0
\(673\) 19.2226 19.2226i 0.740978 0.740978i −0.231788 0.972766i \(-0.574458\pi\)
0.972766 + 0.231788i \(0.0744577\pi\)
\(674\) 0 0
\(675\) 2.78061 4.15551i 0.107026 0.159945i
\(676\) 0 0
\(677\) 18.0400 + 18.0400i 0.693335 + 0.693335i 0.962964 0.269629i \(-0.0869012\pi\)
−0.269629 + 0.962964i \(0.586901\pi\)
\(678\) 0 0
\(679\) 6.08860i 0.233659i
\(680\) 0 0
\(681\) 28.2242i 1.08155i
\(682\) 0 0
\(683\) 19.3030 + 19.3030i 0.738609 + 0.738609i 0.972309 0.233700i \(-0.0750834\pi\)
−0.233700 + 0.972309i \(0.575083\pi\)
\(684\) 0 0
\(685\) 2.59714 + 26.4591i 0.0992315 + 1.01095i
\(686\) 0 0
\(687\) −3.97471 + 3.97471i −0.151645 + 0.151645i
\(688\) 0 0
\(689\) 5.22053i 0.198886i
\(690\) 0 0
\(691\) −28.2777 −1.07573 −0.537867 0.843030i \(-0.680770\pi\)
−0.537867 + 0.843030i \(0.680770\pi\)
\(692\) 0 0
\(693\) −2.92306 + 2.92306i −0.111038 + 0.111038i
\(694\) 0 0
\(695\) −35.1022 28.8272i −1.33150 1.09348i
\(696\) 0 0
\(697\) 3.78453 + 3.78453i 0.143349 + 0.143349i
\(698\) 0 0
\(699\) 0.628603 0.0237759
\(700\) 0 0
\(701\) −40.7139 −1.53774 −0.768871 0.639403i \(-0.779181\pi\)
−0.768871 + 0.639403i \(0.779181\pi\)
\(702\) 0 0
\(703\) −0.373553 + 0.373553i −0.0140888 + 0.0140888i
\(704\) 0 0
\(705\) 7.81983 9.52206i 0.294512 0.358621i
\(706\) 0 0
\(707\) −4.44165 + 4.44165i −0.167045 + 0.167045i
\(708\) 0 0
\(709\) −33.8075 −1.26967 −0.634834 0.772649i \(-0.718931\pi\)
−0.634834 + 0.772649i \(0.718931\pi\)
\(710\) 0 0
\(711\) 11.2244i 0.420949i
\(712\) 0 0
\(713\) 14.3041 30.3773i 0.535692 1.13764i
\(714\) 0 0
\(715\) 0.460095 + 4.68736i 0.0172066 + 0.175297i
\(716\) 0 0
\(717\) 19.3470 19.3470i 0.722528 0.722528i
\(718\) 0 0
\(719\) 12.7320 0.474822 0.237411 0.971409i \(-0.423701\pi\)
0.237411 + 0.971409i \(0.423701\pi\)
\(720\) 0 0
\(721\) −12.6983 −0.472910
\(722\) 0 0
\(723\) −2.73029 2.73029i −0.101541 0.101541i
\(724\) 0 0
\(725\) 6.42533 + 32.4147i 0.238631 + 1.20385i
\(726\) 0 0
\(727\) 8.08237 8.08237i 0.299759 0.299759i −0.541161 0.840919i \(-0.682015\pi\)
0.840919 + 0.541161i \(0.182015\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −5.07115 −0.187563
\(732\) 0 0
\(733\) 5.30399 + 5.30399i 0.195907 + 0.195907i 0.798243 0.602336i \(-0.205763\pi\)
−0.602336 + 0.798243i \(0.705763\pi\)
\(734\) 0 0
\(735\) −1.38428 14.1027i −0.0510598 0.520187i
\(736\) 0 0
\(737\) −32.8096 32.8096i −1.20856 1.20856i
\(738\) 0 0
\(739\) −43.6596 −1.60604 −0.803021 0.595950i \(-0.796776\pi\)
−0.803021 + 0.595950i \(0.796776\pi\)
\(740\) 0 0
\(741\) −0.182475 −0.00670339
\(742\) 0 0
\(743\) 7.66124 7.66124i 0.281063 0.281063i −0.552470 0.833533i \(-0.686314\pi\)
0.833533 + 0.552470i \(0.186314\pi\)
\(744\) 0 0
\(745\) 26.8849 32.7372i 0.984986 1.19940i
\(746\) 0 0
\(747\) −4.35534 4.35534i −0.159354 0.159354i
\(748\) 0 0
\(749\) 13.5566i 0.495347i
\(750\) 0 0
\(751\) −21.3600 −0.779439 −0.389720 0.920934i \(-0.627428\pi\)
−0.389720 + 0.920934i \(0.627428\pi\)
\(752\) 0 0
\(753\) 21.1050 + 21.1050i 0.769107 + 0.769107i
\(754\) 0 0
\(755\) 14.3079 17.4225i 0.520719 0.634069i
\(756\) 0 0
\(757\) 17.1881 + 17.1881i 0.624713 + 0.624713i 0.946733 0.322020i \(-0.104362\pi\)
−0.322020 + 0.946733i \(0.604362\pi\)
\(758\) 0 0
\(759\) 30.6219 1.11151
\(760\) 0 0
\(761\) 24.6522i 0.893642i −0.894623 0.446821i \(-0.852556\pi\)
0.894623 0.446821i \(-0.147444\pi\)
\(762\) 0 0
\(763\) −3.07345 3.07345i −0.111266 0.111266i
\(764\) 0 0
\(765\) −1.15138 + 0.113016i −0.0416283 + 0.00408609i
\(766\) 0 0
\(767\) 2.39003 + 2.39003i 0.0862990 + 0.0862990i
\(768\) 0 0
\(769\) 27.1546i 0.979220i −0.871941 0.489610i \(-0.837139\pi\)
0.871941 0.489610i \(-0.162861\pi\)
\(770\) 0 0
\(771\) 15.8909i 0.572296i
\(772\) 0 0
\(773\) 30.5805 30.5805i 1.09990 1.09990i 0.105482 0.994421i \(-0.466361\pi\)
0.994421 0.105482i \(-0.0336387\pi\)
\(774\) 0 0
\(775\) 14.3369 + 23.8632i 0.514996 + 0.857193i
\(776\) 0 0
\(777\) −0.691313 + 0.691313i −0.0248007 + 0.0248007i
\(778\) 0 0
\(779\) 4.55056i 0.163041i
\(780\) 0 0
\(781\) 57.7924i 2.06798i
\(782\) 0 0
\(783\) −4.67332 4.67332i −0.167011 0.167011i
\(784\) 0 0
\(785\) 20.7352 2.03530i 0.740072 0.0726430i
\(786\) 0 0
\(787\) 14.7092 + 14.7092i 0.524328 + 0.524328i 0.918875 0.394548i \(-0.129099\pi\)
−0.394548 + 0.918875i \(0.629099\pi\)
\(788\) 0 0
\(789\) 3.38016i 0.120337i
\(790\) 0 0
\(791\) 6.15453 0.218830
\(792\) 0 0
\(793\) 0.436724 + 0.436724i 0.0155085 + 0.0155085i
\(794\) 0 0
\(795\) −17.8601 + 21.7479i −0.633434 + 0.771319i
\(796\) 0 0
\(797\) 21.5382 + 21.5382i 0.762922 + 0.762922i 0.976850 0.213927i \(-0.0686255\pi\)
−0.213927 + 0.976850i \(0.568626\pi\)
\(798\) 0 0
\(799\) −2.85099 −0.100861
\(800\) 0 0
\(801\) 4.17657i 0.147572i
\(802\) 0 0
\(803\) 51.1782 + 51.1782i 1.80604 + 1.80604i
\(804\) 0 0
\(805\) 6.96709 8.48369i 0.245558 0.299011i
\(806\) 0 0
\(807\) 9.15965 9.15965i 0.322435 0.322435i
\(808\) 0 0
\(809\) 56.4758 1.98558 0.992792 0.119851i \(-0.0382418\pi\)
0.992792 + 0.119851i \(0.0382418\pi\)
\(810\) 0 0
\(811\) 32.6065 1.14497 0.572484 0.819916i \(-0.305980\pi\)
0.572484 + 0.819916i \(0.305980\pi\)
\(812\) 0 0
\(813\) 6.76926 + 6.76926i 0.237408 + 0.237408i
\(814\) 0 0
\(815\) −5.03467 51.2922i −0.176357 1.79669i
\(816\) 0 0
\(817\) −3.04881 3.04881i −0.106664 0.106664i
\(818\) 0 0
\(819\) −0.337695 −0.0118000
\(820\) 0 0
\(821\) 28.7387i 1.00299i −0.865161 0.501494i \(-0.832784\pi\)
0.865161 0.501494i \(-0.167216\pi\)
\(822\) 0 0
\(823\) 10.5214 10.5214i 0.366754 0.366754i −0.499538 0.866292i \(-0.666497\pi\)
0.866292 + 0.499538i \(0.166497\pi\)
\(824\) 0 0
\(825\) −14.1194 + 21.1009i −0.491574 + 0.734637i
\(826\) 0 0
\(827\) 4.30689 + 4.30689i 0.149765 + 0.149765i 0.778013 0.628248i \(-0.216228\pi\)
−0.628248 + 0.778013i \(0.716228\pi\)
\(828\) 0 0
\(829\) 43.3977 1.50726 0.753632 0.657297i \(-0.228300\pi\)
0.753632 + 0.657297i \(0.228300\pi\)
\(830\) 0 0
\(831\) −14.1235 −0.489939
\(832\) 0 0
\(833\) −2.31847 + 2.31847i −0.0803303 + 0.0803303i
\(834\) 0 0
\(835\) −4.18799 42.6664i −0.144931 1.47653i
\(836\) 0 0
\(837\) −5.03725 2.37194i −0.174113 0.0819863i
\(838\) 0 0
\(839\) 22.4676i 0.775668i 0.921729 + 0.387834i \(0.126777\pi\)
−0.921729 + 0.387834i \(0.873223\pi\)
\(840\) 0 0
\(841\) 14.6798 0.506200
\(842\) 0 0
\(843\) 4.73009 4.73009i 0.162913 0.162913i
\(844\) 0 0
\(845\) 18.2044 22.1671i 0.626249 0.762571i
\(846\) 0 0
\(847\) 8.51054 8.51054i 0.292426 0.292426i
\(848\) 0 0
\(849\) −10.5506 −0.362096
\(850\) 0 0
\(851\) 7.24218 0.248259
\(852\) 0 0
\(853\) −33.8441 33.8441i −1.15880 1.15880i −0.984734 0.174066i \(-0.944309\pi\)
−0.174066 0.984734i \(-0.555691\pi\)
\(854\) 0 0
\(855\) −0.760163 0.624271i −0.0259970 0.0213496i
\(856\) 0 0
\(857\) 16.4510 16.4510i 0.561955 0.561955i −0.367908 0.929862i \(-0.619926\pi\)
0.929862 + 0.367908i \(0.119926\pi\)
\(858\) 0 0
\(859\) 3.65653 0.124759 0.0623796 0.998052i \(-0.480131\pi\)
0.0623796 + 0.998052i \(0.480131\pi\)
\(860\) 0 0
\(861\) 8.42145i 0.287002i
\(862\) 0 0
\(863\) −5.67721 + 5.67721i −0.193254 + 0.193254i −0.797101 0.603846i \(-0.793634\pi\)
0.603846 + 0.797101i \(0.293634\pi\)
\(864\) 0 0
\(865\) −2.61000 26.5901i −0.0887425 0.904091i
\(866\) 0 0
\(867\) −11.8315 11.8315i −0.401820 0.401820i
\(868\) 0 0
\(869\) 56.9955i 1.93344i
\(870\) 0 0
\(871\) 3.79043i 0.128434i
\(872\) 0 0
\(873\) 5.28842 + 5.28842i 0.178986 + 0.178986i
\(874\) 0 0
\(875\) 2.63347 + 8.71258i 0.0890276 + 0.294539i
\(876\) 0 0
\(877\) −1.31955 + 1.31955i −0.0445579 + 0.0445579i −0.729035 0.684477i \(-0.760031\pi\)
0.684477 + 0.729035i \(0.260031\pi\)
\(878\) 0 0
\(879\) −7.79206 −0.262820
\(880\) 0 0
\(881\) 53.1298i 1.78999i 0.446076 + 0.894995i \(0.352821\pi\)
−0.446076 + 0.894995i \(0.647179\pi\)
\(882\) 0 0
\(883\) −7.16831 + 7.16831i −0.241233 + 0.241233i −0.817360 0.576127i \(-0.804563\pi\)
0.576127 + 0.817360i \(0.304563\pi\)
\(884\) 0 0
\(885\) 1.77989 + 18.1331i 0.0598302 + 0.609538i
\(886\) 0 0
\(887\) −17.5734 + 17.5734i −0.590057 + 0.590057i −0.937647 0.347590i \(-0.887000\pi\)
0.347590 + 0.937647i \(0.387000\pi\)
\(888\) 0 0
\(889\) 2.13058 0.0714573
\(890\) 0 0
\(891\) 5.07781i 0.170113i
\(892\) 0 0
\(893\) −1.71403 1.71403i −0.0573578 0.0573578i
\(894\) 0 0
\(895\) 23.9555 + 19.6730i 0.800743 + 0.657597i
\(896\) 0 0
\(897\) 1.76885 + 1.76885i 0.0590601 + 0.0590601i
\(898\) 0 0
\(899\) 34.6255 12.4558i 1.15483 0.415425i
\(900\) 0 0
\(901\) 6.51152 0.216930
\(902\) 0 0
\(903\) −5.64224 5.64224i −0.187762 0.187762i
\(904\) 0 0
\(905\) −3.77776 + 4.60010i −0.125577 + 0.152912i
\(906\) 0 0
\(907\) 33.1694 33.1694i 1.10137 1.10137i 0.107125 0.994246i \(-0.465836\pi\)
0.994246 0.107125i \(-0.0341645\pi\)
\(908\) 0 0
\(909\) 7.71583i 0.255918i
\(910\) 0 0
\(911\) 19.2876i 0.639027i 0.947582 + 0.319514i \(0.103520\pi\)
−0.947582 + 0.319514i \(0.896480\pi\)
\(912\) 0 0
\(913\) 22.1156 + 22.1156i 0.731919 + 0.731919i
\(914\) 0 0
\(915\) 0.325234 + 3.31342i 0.0107519 + 0.109538i
\(916\) 0 0
\(917\) 7.30720 7.30720i 0.241305 0.241305i
\(918\) 0 0
\(919\) 29.1593i 0.961876i 0.876754 + 0.480938i \(0.159704\pi\)
−0.876754 + 0.480938i \(0.840296\pi\)
\(920\) 0 0
\(921\) 6.79380i 0.223863i
\(922\) 0 0
\(923\) 3.33833 3.33833i 0.109882 0.109882i
\(924\) 0 0
\(925\) −3.33928 + 4.99042i −0.109795 + 0.164084i
\(926\) 0 0
\(927\) 11.0295 11.0295i 0.362256 0.362256i
\(928\) 0 0
\(929\) −15.0570 −0.494004 −0.247002 0.969015i \(-0.579445\pi\)
−0.247002 + 0.969015i \(0.579445\pi\)
\(930\) 0 0
\(931\) −2.78776 −0.0913651
\(932\) 0 0
\(933\) −16.7935 + 16.7935i −0.549793 + 0.549793i
\(934\) 0 0
\(935\) 5.84650 0.573872i 0.191201 0.0187676i
\(936\) 0 0
\(937\) −19.4744 + 19.4744i −0.636201 + 0.636201i −0.949616 0.313415i \(-0.898527\pi\)
0.313415 + 0.949616i \(0.398527\pi\)
\(938\) 0 0
\(939\) 4.79965i 0.156631i
\(940\) 0 0
\(941\) 39.7367i 1.29538i −0.761904 0.647690i \(-0.775735\pi\)
0.761904 0.647690i \(-0.224265\pi\)
\(942\) 0 0
\(943\) 44.1115 44.1115i 1.43647 1.43647i
\(944\) 0 0
\(945\) −1.40679 1.15530i −0.0457628 0.0375820i
\(946\) 0 0
\(947\) −23.3073 23.3073i −0.757384 0.757384i 0.218461 0.975846i \(-0.429896\pi\)
−0.975846 + 0.218461i \(0.929896\pi\)
\(948\) 0 0
\(949\) 5.91252i 0.191929i
\(950\) 0 0
\(951\) 22.8343i 0.740453i
\(952\) 0 0
\(953\) 0.489238 0.489238i 0.0158480 0.0158480i −0.699138 0.714986i \(-0.746433\pi\)
0.714986 + 0.699138i \(0.246433\pi\)
\(954\) 0 0
\(955\) −41.1633 33.8047i −1.33201 1.09389i
\(956\) 0 0
\(957\) 23.7302 + 23.7302i 0.767089 + 0.767089i
\(958\) 0 0
\(959\) 9.67941 0.312564
\(960\) 0 0
\(961\) 23.8961 19.7478i 0.770843 0.637025i
\(962\) 0 0
\(963\) −11.7750 11.7750i −0.379443 0.379443i
\(964\) 0 0
\(965\) 4.12850 + 42.0604i 0.132901 + 1.35397i
\(966\) 0 0
\(967\) 41.4729 + 41.4729i 1.33368 + 1.33368i 0.902052 + 0.431627i \(0.142060\pi\)
0.431627 + 0.902052i \(0.357940\pi\)
\(968\) 0 0
\(969\) 0.227599i 0.00731154i
\(970\) 0 0
\(971\) −9.32210 −0.299161 −0.149580 0.988750i \(-0.547792\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(972\) 0 0
\(973\) −11.6935 + 11.6935i −0.374876 + 0.374876i
\(974\) 0 0
\(975\) −2.03446 + 0.403278i −0.0651550 + 0.0129152i
\(976\) 0 0
\(977\) −41.0885 + 41.0885i −1.31454 + 1.31454i −0.396503 + 0.918034i \(0.629776\pi\)
−0.918034 + 0.396503i \(0.870224\pi\)
\(978\) 0 0
\(979\) 21.2078i 0.677806i
\(980\) 0 0
\(981\) 5.33906 0.170463
\(982\) 0 0
\(983\) 14.4307 14.4307i 0.460269 0.460269i −0.438474 0.898744i \(-0.644481\pi\)
0.898744 + 0.438474i \(0.144481\pi\)
\(984\) 0 0
\(985\) 3.11449 + 31.7298i 0.0992358 + 1.01099i
\(986\) 0 0
\(987\) −3.17205 3.17205i −0.100967 0.100967i
\(988\) 0 0
\(989\) 59.1080i 1.87953i
\(990\) 0 0
\(991\) 46.5039i 1.47724i −0.674120 0.738622i \(-0.735477\pi\)
0.674120 0.738622i \(-0.264523\pi\)
\(992\) 0 0
\(993\) 19.3014 + 19.3014i 0.612511 + 0.612511i
\(994\) 0 0
\(995\) 14.6371 + 12.0204i 0.464026 + 0.381074i
\(996\) 0 0
\(997\) 30.9891 30.9891i 0.981433 0.981433i −0.0183976 0.999831i \(-0.505856\pi\)
0.999831 + 0.0183976i \(0.00585648\pi\)
\(998\) 0 0
\(999\) 1.20092i 0.0379954i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.433.20 yes 64
5.2 odd 4 inner 1860.2.s.a.1177.13 yes 64
31.30 odd 2 inner 1860.2.s.a.433.13 64
155.92 even 4 inner 1860.2.s.a.1177.20 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.13 64 31.30 odd 2 inner
1860.2.s.a.433.20 yes 64 1.1 even 1 trivial
1860.2.s.a.1177.13 yes 64 5.2 odd 4 inner
1860.2.s.a.1177.20 yes 64 155.92 even 4 inner