Properties

Label 1860.2.s.a.433.2
Level $1860$
Weight $2$
Character 1860.433
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.2
Character \(\chi\) \(=\) 1860.433
Dual form 1860.2.s.a.1177.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(1.61302 - 1.54861i) q^{5} +(-2.80826 + 2.80826i) q^{7} -1.00000i q^{9} -2.34265i q^{11} +(-0.590842 + 0.590842i) q^{13} +(-0.0455449 + 2.23560i) q^{15} +(3.30425 + 3.30425i) q^{17} -6.38127i q^{19} -3.97148i q^{21} +(-3.47676 + 3.47676i) q^{23} +(0.203641 - 4.99585i) q^{25} +(0.707107 + 0.707107i) q^{27} +8.33933 q^{29} +(4.99725 + 2.45509i) q^{31} +(1.65650 + 1.65650i) q^{33} +(-0.180881 + 8.87866i) q^{35} +(3.67706 + 3.67706i) q^{37} -0.835576i q^{39} +4.78580 q^{41} +(-7.19448 + 7.19448i) q^{43} +(-1.54861 - 1.61302i) q^{45} +(7.44953 - 7.44953i) q^{47} -8.77265i q^{49} -4.67291 q^{51} +(-7.23439 + 7.23439i) q^{53} +(-3.62784 - 3.77873i) q^{55} +(4.51224 + 4.51224i) q^{57} +11.9801i q^{59} +4.05315i q^{61} +(2.80826 + 2.80826i) q^{63} +(-0.0380563 + 1.86802i) q^{65} +(7.19745 - 7.19745i) q^{67} -4.91689i q^{69} +2.52995 q^{71} +(10.7663 - 10.7663i) q^{73} +(3.38860 + 3.67660i) q^{75} +(6.57877 + 6.57877i) q^{77} -3.70118 q^{79} -1.00000 q^{81} +(2.11806 - 2.11806i) q^{83} +(10.4468 + 0.212827i) q^{85} +(-5.89680 + 5.89680i) q^{87} +18.5496 q^{89} -3.31847i q^{91} +(-5.26960 + 1.79758i) q^{93} +(-9.88207 - 10.2931i) q^{95} +(1.23892 - 1.23892i) q^{97} -2.34265 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) 1.61302 1.54861i 0.721363 0.692558i
\(6\) 0 0
\(7\) −2.80826 + 2.80826i −1.06142 + 1.06142i −0.0634366 + 0.997986i \(0.520206\pi\)
−0.997986 + 0.0634366i \(0.979794\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.34265i 0.706336i −0.935560 0.353168i \(-0.885104\pi\)
0.935560 0.353168i \(-0.114896\pi\)
\(12\) 0 0
\(13\) −0.590842 + 0.590842i −0.163870 + 0.163870i −0.784279 0.620409i \(-0.786967\pi\)
0.620409 + 0.784279i \(0.286967\pi\)
\(14\) 0 0
\(15\) −0.0455449 + 2.23560i −0.0117596 + 0.577230i
\(16\) 0 0
\(17\) 3.30425 + 3.30425i 0.801397 + 0.801397i 0.983314 0.181917i \(-0.0582301\pi\)
−0.181917 + 0.983314i \(0.558230\pi\)
\(18\) 0 0
\(19\) 6.38127i 1.46396i −0.681324 0.731982i \(-0.738596\pi\)
0.681324 0.731982i \(-0.261404\pi\)
\(20\) 0 0
\(21\) 3.97148i 0.866648i
\(22\) 0 0
\(23\) −3.47676 + 3.47676i −0.724955 + 0.724955i −0.969610 0.244655i \(-0.921325\pi\)
0.244655 + 0.969610i \(0.421325\pi\)
\(24\) 0 0
\(25\) 0.203641 4.99585i 0.0407282 0.999170i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) 8.33933 1.54857 0.774287 0.632834i \(-0.218108\pi\)
0.774287 + 0.632834i \(0.218108\pi\)
\(30\) 0 0
\(31\) 4.99725 + 2.45509i 0.897533 + 0.440947i
\(32\) 0 0
\(33\) 1.65650 + 1.65650i 0.288360 + 0.288360i
\(34\) 0 0
\(35\) −0.180881 + 8.87866i −0.0305744 + 1.50077i
\(36\) 0 0
\(37\) 3.67706 + 3.67706i 0.604504 + 0.604504i 0.941505 0.337000i \(-0.109412\pi\)
−0.337000 + 0.941505i \(0.609412\pi\)
\(38\) 0 0
\(39\) 0.835576i 0.133799i
\(40\) 0 0
\(41\) 4.78580 0.747416 0.373708 0.927546i \(-0.378086\pi\)
0.373708 + 0.927546i \(0.378086\pi\)
\(42\) 0 0
\(43\) −7.19448 + 7.19448i −1.09715 + 1.09715i −0.102405 + 0.994743i \(0.532654\pi\)
−0.994743 + 0.102405i \(0.967346\pi\)
\(44\) 0 0
\(45\) −1.54861 1.61302i −0.230853 0.240454i
\(46\) 0 0
\(47\) 7.44953 7.44953i 1.08663 1.08663i 0.0907523 0.995873i \(-0.471073\pi\)
0.995873 0.0907523i \(-0.0289272\pi\)
\(48\) 0 0
\(49\) 8.77265i 1.25324i
\(50\) 0 0
\(51\) −4.67291 −0.654338
\(52\) 0 0
\(53\) −7.23439 + 7.23439i −0.993719 + 0.993719i −0.999980 0.00626091i \(-0.998007\pi\)
0.00626091 + 0.999980i \(0.498007\pi\)
\(54\) 0 0
\(55\) −3.62784 3.77873i −0.489178 0.509524i
\(56\) 0 0
\(57\) 4.51224 + 4.51224i 0.597661 + 0.597661i
\(58\) 0 0
\(59\) 11.9801i 1.55967i 0.625984 + 0.779836i \(0.284697\pi\)
−0.625984 + 0.779836i \(0.715303\pi\)
\(60\) 0 0
\(61\) 4.05315i 0.518953i 0.965749 + 0.259477i \(0.0835501\pi\)
−0.965749 + 0.259477i \(0.916450\pi\)
\(62\) 0 0
\(63\) 2.80826 + 2.80826i 0.353807 + 0.353807i
\(64\) 0 0
\(65\) −0.0380563 + 1.86802i −0.00472030 + 0.231699i
\(66\) 0 0
\(67\) 7.19745 7.19745i 0.879309 0.879309i −0.114154 0.993463i \(-0.536416\pi\)
0.993463 + 0.114154i \(0.0364159\pi\)
\(68\) 0 0
\(69\) 4.91689i 0.591924i
\(70\) 0 0
\(71\) 2.52995 0.300249 0.150125 0.988667i \(-0.452032\pi\)
0.150125 + 0.988667i \(0.452032\pi\)
\(72\) 0 0
\(73\) 10.7663 10.7663i 1.26010 1.26010i 0.309059 0.951043i \(-0.399986\pi\)
0.951043 0.309059i \(-0.100014\pi\)
\(74\) 0 0
\(75\) 3.38860 + 3.67660i 0.391282 + 0.424537i
\(76\) 0 0
\(77\) 6.57877 + 6.57877i 0.749721 + 0.749721i
\(78\) 0 0
\(79\) −3.70118 −0.416415 −0.208208 0.978085i \(-0.566763\pi\)
−0.208208 + 0.978085i \(0.566763\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 2.11806 2.11806i 0.232488 0.232488i −0.581243 0.813730i \(-0.697433\pi\)
0.813730 + 0.581243i \(0.197433\pi\)
\(84\) 0 0
\(85\) 10.4468 + 0.212827i 1.13311 + 0.0230844i
\(86\) 0 0
\(87\) −5.89680 + 5.89680i −0.632203 + 0.632203i
\(88\) 0 0
\(89\) 18.5496 1.96625 0.983124 0.182939i \(-0.0585609\pi\)
0.983124 + 0.182939i \(0.0585609\pi\)
\(90\) 0 0
\(91\) 3.31847i 0.347870i
\(92\) 0 0
\(93\) −5.26960 + 1.79758i −0.546432 + 0.186401i
\(94\) 0 0
\(95\) −9.88207 10.2931i −1.01388 1.05605i
\(96\) 0 0
\(97\) 1.23892 1.23892i 0.125793 0.125793i −0.641407 0.767200i \(-0.721649\pi\)
0.767200 + 0.641407i \(0.221649\pi\)
\(98\) 0 0
\(99\) −2.34265 −0.235445
\(100\) 0 0
\(101\) 2.92312 0.290862 0.145431 0.989368i \(-0.453543\pi\)
0.145431 + 0.989368i \(0.453543\pi\)
\(102\) 0 0
\(103\) 8.02128 + 8.02128i 0.790360 + 0.790360i 0.981553 0.191192i \(-0.0612354\pi\)
−0.191192 + 0.981553i \(0.561235\pi\)
\(104\) 0 0
\(105\) −6.15026 6.40606i −0.600203 0.625167i
\(106\) 0 0
\(107\) −4.83791 + 4.83791i −0.467698 + 0.467698i −0.901168 0.433470i \(-0.857289\pi\)
0.433470 + 0.901168i \(0.357289\pi\)
\(108\) 0 0
\(109\) 14.3473i 1.37422i 0.726554 + 0.687109i \(0.241121\pi\)
−0.726554 + 0.687109i \(0.758879\pi\)
\(110\) 0 0
\(111\) −5.20014 −0.493576
\(112\) 0 0
\(113\) −3.72753 3.72753i −0.350657 0.350657i 0.509697 0.860354i \(-0.329757\pi\)
−0.860354 + 0.509697i \(0.829757\pi\)
\(114\) 0 0
\(115\) −0.223939 + 10.9922i −0.0208824 + 1.02503i
\(116\) 0 0
\(117\) 0.590842 + 0.590842i 0.0546233 + 0.0546233i
\(118\) 0 0
\(119\) −18.5584 −1.70124
\(120\) 0 0
\(121\) 5.51199 0.501090
\(122\) 0 0
\(123\) −3.38407 + 3.38407i −0.305131 + 0.305131i
\(124\) 0 0
\(125\) −7.40813 8.37375i −0.662603 0.748971i
\(126\) 0 0
\(127\) 13.1600 + 13.1600i 1.16776 + 1.16776i 0.982733 + 0.185031i \(0.0592387\pi\)
0.185031 + 0.982733i \(0.440761\pi\)
\(128\) 0 0
\(129\) 10.1745i 0.895817i
\(130\) 0 0
\(131\) −19.8630 −1.73544 −0.867719 0.497056i \(-0.834414\pi\)
−0.867719 + 0.497056i \(0.834414\pi\)
\(132\) 0 0
\(133\) 17.9203 + 17.9203i 1.55388 + 1.55388i
\(134\) 0 0
\(135\) 2.23560 + 0.0455449i 0.192410 + 0.00391988i
\(136\) 0 0
\(137\) −4.43440 4.43440i −0.378857 0.378857i 0.491833 0.870690i \(-0.336327\pi\)
−0.870690 + 0.491833i \(0.836327\pi\)
\(138\) 0 0
\(139\) −4.83171 −0.409820 −0.204910 0.978781i \(-0.565690\pi\)
−0.204910 + 0.978781i \(0.565690\pi\)
\(140\) 0 0
\(141\) 10.5352i 0.887226i
\(142\) 0 0
\(143\) 1.38414 + 1.38414i 0.115747 + 0.115747i
\(144\) 0 0
\(145\) 13.4515 12.9143i 1.11708 1.07248i
\(146\) 0 0
\(147\) 6.20320 + 6.20320i 0.511631 + 0.511631i
\(148\) 0 0
\(149\) 0 0.000206065i 0 1.68815e-5i 1.00000 8.44074e-6i \(2.68677e-6\pi\)
−1.00000 8.44074e-6i \(0.999997\pi\)
\(150\) 0 0
\(151\) 20.3716i 1.65782i −0.559381 0.828911i \(-0.688961\pi\)
0.559381 0.828911i \(-0.311039\pi\)
\(152\) 0 0
\(153\) 3.30425 3.30425i 0.267132 0.267132i
\(154\) 0 0
\(155\) 11.8626 3.77868i 0.952828 0.303511i
\(156\) 0 0
\(157\) 2.62965 2.62965i 0.209869 0.209869i −0.594343 0.804212i \(-0.702588\pi\)
0.804212 + 0.594343i \(0.202588\pi\)
\(158\) 0 0
\(159\) 10.2310i 0.811369i
\(160\) 0 0
\(161\) 19.5273i 1.53897i
\(162\) 0 0
\(163\) 1.39589 + 1.39589i 0.109335 + 0.109335i 0.759658 0.650323i \(-0.225366\pi\)
−0.650323 + 0.759658i \(0.725366\pi\)
\(164\) 0 0
\(165\) 5.23724 + 0.106696i 0.407719 + 0.00830626i
\(166\) 0 0
\(167\) 9.88999 + 9.88999i 0.765310 + 0.765310i 0.977277 0.211967i \(-0.0679868\pi\)
−0.211967 + 0.977277i \(0.567987\pi\)
\(168\) 0 0
\(169\) 12.3018i 0.946293i
\(170\) 0 0
\(171\) −6.38127 −0.487988
\(172\) 0 0
\(173\) 0.820017 + 0.820017i 0.0623448 + 0.0623448i 0.737592 0.675247i \(-0.235963\pi\)
−0.675247 + 0.737592i \(0.735963\pi\)
\(174\) 0 0
\(175\) 13.4578 + 14.6015i 1.01731 + 1.10377i
\(176\) 0 0
\(177\) −8.47118 8.47118i −0.636733 0.636733i
\(178\) 0 0
\(179\) 6.44016 0.481360 0.240680 0.970605i \(-0.422630\pi\)
0.240680 + 0.970605i \(0.422630\pi\)
\(180\) 0 0
\(181\) 17.2858i 1.28484i 0.766352 + 0.642421i \(0.222070\pi\)
−0.766352 + 0.642421i \(0.777930\pi\)
\(182\) 0 0
\(183\) −2.86601 2.86601i −0.211862 0.211862i
\(184\) 0 0
\(185\) 11.6255 + 0.236840i 0.854721 + 0.0174128i
\(186\) 0 0
\(187\) 7.74069 7.74069i 0.566056 0.566056i
\(188\) 0 0
\(189\) −3.97148 −0.288883
\(190\) 0 0
\(191\) 3.68562 0.266682 0.133341 0.991070i \(-0.457429\pi\)
0.133341 + 0.991070i \(0.457429\pi\)
\(192\) 0 0
\(193\) 5.17809 + 5.17809i 0.372727 + 0.372727i 0.868470 0.495742i \(-0.165104\pi\)
−0.495742 + 0.868470i \(0.665104\pi\)
\(194\) 0 0
\(195\) −1.29398 1.34780i −0.0926637 0.0965178i
\(196\) 0 0
\(197\) −1.71608 1.71608i −0.122266 0.122266i 0.643326 0.765592i \(-0.277554\pi\)
−0.765592 + 0.643326i \(0.777554\pi\)
\(198\) 0 0
\(199\) −6.90093 −0.489194 −0.244597 0.969625i \(-0.578656\pi\)
−0.244597 + 0.969625i \(0.578656\pi\)
\(200\) 0 0
\(201\) 10.1787i 0.717953i
\(202\) 0 0
\(203\) −23.4190 + 23.4190i −1.64369 + 1.64369i
\(204\) 0 0
\(205\) 7.71957 7.41131i 0.539158 0.517628i
\(206\) 0 0
\(207\) 3.47676 + 3.47676i 0.241652 + 0.241652i
\(208\) 0 0
\(209\) −14.9491 −1.03405
\(210\) 0 0
\(211\) 17.5192 1.20607 0.603036 0.797714i \(-0.293957\pi\)
0.603036 + 0.797714i \(0.293957\pi\)
\(212\) 0 0
\(213\) −1.78894 + 1.78894i −0.122576 + 0.122576i
\(214\) 0 0
\(215\) −0.463398 + 22.7462i −0.0316035 + 1.55128i
\(216\) 0 0
\(217\) −20.9281 + 7.13906i −1.42069 + 0.484631i
\(218\) 0 0
\(219\) 15.2259i 1.02887i
\(220\) 0 0
\(221\) −3.90457 −0.262650
\(222\) 0 0
\(223\) 19.4287 19.4287i 1.30104 1.30104i 0.373356 0.927688i \(-0.378207\pi\)
0.927688 0.373356i \(-0.121793\pi\)
\(224\) 0 0
\(225\) −4.99585 0.203641i −0.333057 0.0135761i
\(226\) 0 0
\(227\) 9.62547 9.62547i 0.638865 0.638865i −0.311411 0.950275i \(-0.600802\pi\)
0.950275 + 0.311411i \(0.100802\pi\)
\(228\) 0 0
\(229\) −0.974170 −0.0643750 −0.0321875 0.999482i \(-0.510247\pi\)
−0.0321875 + 0.999482i \(0.510247\pi\)
\(230\) 0 0
\(231\) −9.30379 −0.612144
\(232\) 0 0
\(233\) −19.6144 19.6144i −1.28498 1.28498i −0.937796 0.347188i \(-0.887137\pi\)
−0.347188 0.937796i \(-0.612863\pi\)
\(234\) 0 0
\(235\) 0.479826 23.5526i 0.0313004 1.53640i
\(236\) 0 0
\(237\) 2.61713 2.61713i 0.170001 0.170001i
\(238\) 0 0
\(239\) 15.3194 0.990930 0.495465 0.868628i \(-0.334998\pi\)
0.495465 + 0.868628i \(0.334998\pi\)
\(240\) 0 0
\(241\) 27.4249i 1.76659i −0.468817 0.883295i \(-0.655320\pi\)
0.468817 0.883295i \(-0.344680\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) −13.5854 14.1504i −0.867938 0.904037i
\(246\) 0 0
\(247\) 3.77032 + 3.77032i 0.239900 + 0.239900i
\(248\) 0 0
\(249\) 2.99539i 0.189825i
\(250\) 0 0
\(251\) 19.7833i 1.24871i 0.781141 + 0.624355i \(0.214638\pi\)
−0.781141 + 0.624355i \(0.785362\pi\)
\(252\) 0 0
\(253\) 8.14484 + 8.14484i 0.512062 + 0.512062i
\(254\) 0 0
\(255\) −7.53748 + 7.23649i −0.472015 + 0.453167i
\(256\) 0 0
\(257\) −12.7635 + 12.7635i −0.796166 + 0.796166i −0.982489 0.186322i \(-0.940343\pi\)
0.186322 + 0.982489i \(0.440343\pi\)
\(258\) 0 0
\(259\) −20.6523 −1.28327
\(260\) 0 0
\(261\) 8.33933i 0.516192i
\(262\) 0 0
\(263\) −5.18659 + 5.18659i −0.319819 + 0.319819i −0.848697 0.528879i \(-0.822613\pi\)
0.528879 + 0.848697i \(0.322613\pi\)
\(264\) 0 0
\(265\) −0.465969 + 22.8724i −0.0286242 + 1.40504i
\(266\) 0 0
\(267\) −13.1165 + 13.1165i −0.802718 + 0.802718i
\(268\) 0 0
\(269\) −27.5691 −1.68092 −0.840458 0.541876i \(-0.817714\pi\)
−0.840458 + 0.541876i \(0.817714\pi\)
\(270\) 0 0
\(271\) 7.47354i 0.453985i 0.973896 + 0.226993i \(0.0728893\pi\)
−0.973896 + 0.226993i \(0.927111\pi\)
\(272\) 0 0
\(273\) 2.34651 + 2.34651i 0.142018 + 0.142018i
\(274\) 0 0
\(275\) −11.7035 0.477059i −0.705750 0.0287678i
\(276\) 0 0
\(277\) −3.81276 3.81276i −0.229087 0.229087i 0.583224 0.812311i \(-0.301791\pi\)
−0.812311 + 0.583224i \(0.801791\pi\)
\(278\) 0 0
\(279\) 2.45509 4.99725i 0.146982 0.299178i
\(280\) 0 0
\(281\) 16.7586 0.999736 0.499868 0.866101i \(-0.333382\pi\)
0.499868 + 0.866101i \(0.333382\pi\)
\(282\) 0 0
\(283\) 5.44856 + 5.44856i 0.323883 + 0.323883i 0.850255 0.526372i \(-0.176448\pi\)
−0.526372 + 0.850255i \(0.676448\pi\)
\(284\) 0 0
\(285\) 14.2660 + 0.290634i 0.845044 + 0.0172157i
\(286\) 0 0
\(287\) −13.4398 + 13.4398i −0.793324 + 0.793324i
\(288\) 0 0
\(289\) 4.83608i 0.284475i
\(290\) 0 0
\(291\) 1.75209i 0.102710i
\(292\) 0 0
\(293\) −14.5237 14.5237i −0.848485 0.848485i 0.141459 0.989944i \(-0.454821\pi\)
−0.989944 + 0.141459i \(0.954821\pi\)
\(294\) 0 0
\(295\) 18.5524 + 19.3240i 1.08016 + 1.12509i
\(296\) 0 0
\(297\) 1.65650 1.65650i 0.0961201 0.0961201i
\(298\) 0 0
\(299\) 4.10843i 0.237597i
\(300\) 0 0
\(301\) 40.4079i 2.32907i
\(302\) 0 0
\(303\) −2.06696 + 2.06696i −0.118744 + 0.118744i
\(304\) 0 0
\(305\) 6.27674 + 6.53780i 0.359405 + 0.374354i
\(306\) 0 0
\(307\) 2.53470 2.53470i 0.144663 0.144663i −0.631066 0.775729i \(-0.717382\pi\)
0.775729 + 0.631066i \(0.217382\pi\)
\(308\) 0 0
\(309\) −11.3438 −0.645326
\(310\) 0 0
\(311\) −0.165410 −0.00937956 −0.00468978 0.999989i \(-0.501493\pi\)
−0.00468978 + 0.999989i \(0.501493\pi\)
\(312\) 0 0
\(313\) −9.84027 + 9.84027i −0.556205 + 0.556205i −0.928225 0.372020i \(-0.878665\pi\)
0.372020 + 0.928225i \(0.378665\pi\)
\(314\) 0 0
\(315\) 8.87866 + 0.180881i 0.500256 + 0.0101915i
\(316\) 0 0
\(317\) 1.46344 1.46344i 0.0821951 0.0821951i −0.664814 0.747009i \(-0.731489\pi\)
0.747009 + 0.664814i \(0.231489\pi\)
\(318\) 0 0
\(319\) 19.5361i 1.09381i
\(320\) 0 0
\(321\) 6.84183i 0.381874i
\(322\) 0 0
\(323\) 21.0853 21.0853i 1.17322 1.17322i
\(324\) 0 0
\(325\) 2.83144 + 3.07208i 0.157060 + 0.170408i
\(326\) 0 0
\(327\) −10.1450 10.1450i −0.561022 0.561022i
\(328\) 0 0
\(329\) 41.8404i 2.30674i
\(330\) 0 0
\(331\) 31.2427i 1.71725i −0.512601 0.858627i \(-0.671318\pi\)
0.512601 0.858627i \(-0.328682\pi\)
\(332\) 0 0
\(333\) 3.67706 3.67706i 0.201501 0.201501i
\(334\) 0 0
\(335\) 0.463590 22.7556i 0.0253286 1.24327i
\(336\) 0 0
\(337\) −6.37463 6.37463i −0.347248 0.347248i 0.511835 0.859084i \(-0.328966\pi\)
−0.859084 + 0.511835i \(0.828966\pi\)
\(338\) 0 0
\(339\) 5.27153 0.286310
\(340\) 0 0
\(341\) 5.75142 11.7068i 0.311457 0.633960i
\(342\) 0 0
\(343\) 4.97806 + 4.97806i 0.268790 + 0.268790i
\(344\) 0 0
\(345\) −7.61432 7.93102i −0.409941 0.426992i
\(346\) 0 0
\(347\) −26.1547 26.1547i −1.40406 1.40406i −0.786617 0.617441i \(-0.788169\pi\)
−0.617441 0.786617i \(-0.711831\pi\)
\(348\) 0 0
\(349\) 22.3736i 1.19763i −0.800887 0.598815i \(-0.795638\pi\)
0.800887 0.598815i \(-0.204362\pi\)
\(350\) 0 0
\(351\) −0.835576 −0.0445998
\(352\) 0 0
\(353\) −14.1703 + 14.1703i −0.754209 + 0.754209i −0.975262 0.221053i \(-0.929051\pi\)
0.221053 + 0.975262i \(0.429051\pi\)
\(354\) 0 0
\(355\) 4.08084 3.91789i 0.216589 0.207940i
\(356\) 0 0
\(357\) 13.1227 13.1227i 0.694529 0.694529i
\(358\) 0 0
\(359\) 21.6850i 1.14449i 0.820082 + 0.572246i \(0.193928\pi\)
−0.820082 + 0.572246i \(0.806072\pi\)
\(360\) 0 0
\(361\) −21.7206 −1.14319
\(362\) 0 0
\(363\) −3.89756 + 3.89756i −0.204569 + 0.204569i
\(364\) 0 0
\(365\) 0.693461 34.0390i 0.0362974 1.78168i
\(366\) 0 0
\(367\) −21.3190 21.3190i −1.11284 1.11284i −0.992765 0.120078i \(-0.961686\pi\)
−0.120078 0.992765i \(-0.538314\pi\)
\(368\) 0 0
\(369\) 4.78580i 0.249139i
\(370\) 0 0
\(371\) 40.6321i 2.10951i
\(372\) 0 0
\(373\) −18.5794 18.5794i −0.962003 0.962003i 0.0373012 0.999304i \(-0.488124\pi\)
−0.999304 + 0.0373012i \(0.988124\pi\)
\(374\) 0 0
\(375\) 11.1595 + 0.682796i 0.576273 + 0.0352594i
\(376\) 0 0
\(377\) −4.92722 + 4.92722i −0.253765 + 0.253765i
\(378\) 0 0
\(379\) 21.4565i 1.10214i 0.834458 + 0.551072i \(0.185781\pi\)
−0.834458 + 0.551072i \(0.814219\pi\)
\(380\) 0 0
\(381\) −18.6111 −0.953475
\(382\) 0 0
\(383\) 10.1362 10.1362i 0.517936 0.517936i −0.399010 0.916946i \(-0.630646\pi\)
0.916946 + 0.399010i \(0.130646\pi\)
\(384\) 0 0
\(385\) 20.7996 + 0.423740i 1.06005 + 0.0215958i
\(386\) 0 0
\(387\) 7.19448 + 7.19448i 0.365716 + 0.365716i
\(388\) 0 0
\(389\) −13.1383 −0.666139 −0.333069 0.942902i \(-0.608084\pi\)
−0.333069 + 0.942902i \(0.608084\pi\)
\(390\) 0 0
\(391\) −22.9762 −1.16195
\(392\) 0 0
\(393\) 14.0453 14.0453i 0.708489 0.708489i
\(394\) 0 0
\(395\) −5.97006 + 5.73166i −0.300386 + 0.288391i
\(396\) 0 0
\(397\) 18.6614 18.6614i 0.936591 0.936591i −0.0615154 0.998106i \(-0.519593\pi\)
0.998106 + 0.0615154i \(0.0195933\pi\)
\(398\) 0 0
\(399\) −25.3431 −1.26874
\(400\) 0 0
\(401\) 4.56354i 0.227892i −0.993487 0.113946i \(-0.963651\pi\)
0.993487 0.113946i \(-0.0363492\pi\)
\(402\) 0 0
\(403\) −4.40315 + 1.50202i −0.219337 + 0.0748207i
\(404\) 0 0
\(405\) −1.61302 + 1.54861i −0.0801514 + 0.0769508i
\(406\) 0 0
\(407\) 8.61406 8.61406i 0.426983 0.426983i
\(408\) 0 0
\(409\) −10.2634 −0.507495 −0.253747 0.967271i \(-0.581663\pi\)
−0.253747 + 0.967271i \(0.581663\pi\)
\(410\) 0 0
\(411\) 6.27119 0.309335
\(412\) 0 0
\(413\) −33.6431 33.6431i −1.65547 1.65547i
\(414\) 0 0
\(415\) 0.136425 6.69652i 0.00669684 0.328719i
\(416\) 0 0
\(417\) 3.41654 3.41654i 0.167309 0.167309i
\(418\) 0 0
\(419\) 10.7538i 0.525357i 0.964883 + 0.262678i \(0.0846058\pi\)
−0.964883 + 0.262678i \(0.915394\pi\)
\(420\) 0 0
\(421\) −17.7013 −0.862707 −0.431353 0.902183i \(-0.641964\pi\)
−0.431353 + 0.902183i \(0.641964\pi\)
\(422\) 0 0
\(423\) −7.44953 7.44953i −0.362209 0.362209i
\(424\) 0 0
\(425\) 17.1804 15.8346i 0.833372 0.768093i
\(426\) 0 0
\(427\) −11.3823 11.3823i −0.550829 0.550829i
\(428\) 0 0
\(429\) −1.95746 −0.0945072
\(430\) 0 0
\(431\) −18.4134 −0.886944 −0.443472 0.896288i \(-0.646254\pi\)
−0.443472 + 0.896288i \(0.646254\pi\)
\(432\) 0 0
\(433\) −4.04147 + 4.04147i −0.194221 + 0.194221i −0.797517 0.603296i \(-0.793854\pi\)
0.603296 + 0.797517i \(0.293854\pi\)
\(434\) 0 0
\(435\) −0.379814 + 18.6434i −0.0182107 + 0.893885i
\(436\) 0 0
\(437\) 22.1862 + 22.1862i 1.06131 + 1.06131i
\(438\) 0 0
\(439\) 23.6616i 1.12931i −0.825328 0.564654i \(-0.809010\pi\)
0.825328 0.564654i \(-0.190990\pi\)
\(440\) 0 0
\(441\) −8.77265 −0.417745
\(442\) 0 0
\(443\) 7.48906 + 7.48906i 0.355816 + 0.355816i 0.862268 0.506452i \(-0.169043\pi\)
−0.506452 + 0.862268i \(0.669043\pi\)
\(444\) 0 0
\(445\) 29.9207 28.7259i 1.41838 1.36174i
\(446\) 0 0
\(447\) −0.000145710 0 0.000145710i −6.89184e−6 0 6.89184e-6i
\(448\) 0 0
\(449\) −26.9184 −1.27036 −0.635179 0.772365i \(-0.719074\pi\)
−0.635179 + 0.772365i \(0.719074\pi\)
\(450\) 0 0
\(451\) 11.2115i 0.527927i
\(452\) 0 0
\(453\) 14.4049 + 14.4049i 0.676803 + 0.676803i
\(454\) 0 0
\(455\) −5.13901 5.35275i −0.240920 0.250941i
\(456\) 0 0
\(457\) 9.36231 + 9.36231i 0.437950 + 0.437950i 0.891322 0.453371i \(-0.149779\pi\)
−0.453371 + 0.891322i \(0.649779\pi\)
\(458\) 0 0
\(459\) 4.67291i 0.218113i
\(460\) 0 0
\(461\) 7.72661i 0.359864i −0.983679 0.179932i \(-0.942412\pi\)
0.983679 0.179932i \(-0.0575878\pi\)
\(462\) 0 0
\(463\) −15.3589 + 15.3589i −0.713789 + 0.713789i −0.967326 0.253537i \(-0.918406\pi\)
0.253537 + 0.967326i \(0.418406\pi\)
\(464\) 0 0
\(465\) −5.71621 + 11.0601i −0.265083 + 0.512898i
\(466\) 0 0
\(467\) −22.1773 + 22.1773i −1.02624 + 1.02624i −0.0265988 + 0.999646i \(0.508468\pi\)
−0.999646 + 0.0265988i \(0.991532\pi\)
\(468\) 0 0
\(469\) 40.4246i 1.86664i
\(470\) 0 0
\(471\) 3.71889i 0.171357i
\(472\) 0 0
\(473\) 16.8542 + 16.8542i 0.774955 + 0.774955i
\(474\) 0 0
\(475\) −31.8799 1.29949i −1.46275 0.0596246i
\(476\) 0 0
\(477\) 7.23439 + 7.23439i 0.331240 + 0.331240i
\(478\) 0 0
\(479\) 23.8060i 1.08772i −0.839175 0.543862i \(-0.816962\pi\)
0.839175 0.543862i \(-0.183038\pi\)
\(480\) 0 0
\(481\) −4.34512 −0.198120
\(482\) 0 0
\(483\) 13.8079 + 13.8079i 0.628281 + 0.628281i
\(484\) 0 0
\(485\) 0.0797990 3.91699i 0.00362349 0.177861i
\(486\) 0 0
\(487\) 3.40350 + 3.40350i 0.154227 + 0.154227i 0.780003 0.625776i \(-0.215218\pi\)
−0.625776 + 0.780003i \(0.715218\pi\)
\(488\) 0 0
\(489\) −1.97409 −0.0892716
\(490\) 0 0
\(491\) 3.39101i 0.153034i −0.997068 0.0765170i \(-0.975620\pi\)
0.997068 0.0765170i \(-0.0243799\pi\)
\(492\) 0 0
\(493\) 27.5552 + 27.5552i 1.24102 + 1.24102i
\(494\) 0 0
\(495\) −3.77873 + 3.62784i −0.169841 + 0.163059i
\(496\) 0 0
\(497\) −7.10475 + 7.10475i −0.318691 + 0.318691i
\(498\) 0 0
\(499\) −11.9195 −0.533590 −0.266795 0.963753i \(-0.585965\pi\)
−0.266795 + 0.963753i \(0.585965\pi\)
\(500\) 0 0
\(501\) −13.9866 −0.624873
\(502\) 0 0
\(503\) 13.7680 + 13.7680i 0.613886 + 0.613886i 0.943956 0.330070i \(-0.107072\pi\)
−0.330070 + 0.943956i \(0.607072\pi\)
\(504\) 0 0
\(505\) 4.71505 4.52677i 0.209817 0.201439i
\(506\) 0 0
\(507\) −8.69870 8.69870i −0.386323 0.386323i
\(508\) 0 0
\(509\) 8.50149 0.376822 0.188411 0.982090i \(-0.439666\pi\)
0.188411 + 0.982090i \(0.439666\pi\)
\(510\) 0 0
\(511\) 60.4692i 2.67500i
\(512\) 0 0
\(513\) 4.51224 4.51224i 0.199220 0.199220i
\(514\) 0 0
\(515\) 25.3603 + 0.516653i 1.11751 + 0.0227664i
\(516\) 0 0
\(517\) −17.4517 17.4517i −0.767523 0.767523i
\(518\) 0 0
\(519\) −1.15968 −0.0509043
\(520\) 0 0
\(521\) −13.4865 −0.590854 −0.295427 0.955365i \(-0.595462\pi\)
−0.295427 + 0.955365i \(0.595462\pi\)
\(522\) 0 0
\(523\) −30.2304 + 30.2304i −1.32188 + 1.32188i −0.409635 + 0.912250i \(0.634344\pi\)
−0.912250 + 0.409635i \(0.865656\pi\)
\(524\) 0 0
\(525\) −19.8409 0.808755i −0.865929 0.0352970i
\(526\) 0 0
\(527\) 8.39993 + 24.6244i 0.365907 + 1.07265i
\(528\) 0 0
\(529\) 1.17577i 0.0511204i
\(530\) 0 0
\(531\) 11.9801 0.519890
\(532\) 0 0
\(533\) −2.82765 + 2.82765i −0.122479 + 0.122479i
\(534\) 0 0
\(535\) −0.311611 + 15.2956i −0.0134721 + 0.661288i
\(536\) 0 0
\(537\) −4.55388 + 4.55388i −0.196514 + 0.196514i
\(538\) 0 0
\(539\) −20.5513 −0.885205
\(540\) 0 0
\(541\) 26.1455 1.12408 0.562041 0.827110i \(-0.310016\pi\)
0.562041 + 0.827110i \(0.310016\pi\)
\(542\) 0 0
\(543\) −12.2229 12.2229i −0.524535 0.524535i
\(544\) 0 0
\(545\) 22.2183 + 23.1424i 0.951726 + 0.991310i
\(546\) 0 0
\(547\) 12.6490 12.6490i 0.540831 0.540831i −0.382942 0.923773i \(-0.625089\pi\)
0.923773 + 0.382942i \(0.125089\pi\)
\(548\) 0 0
\(549\) 4.05315 0.172984
\(550\) 0 0
\(551\) 53.2155i 2.26706i
\(552\) 0 0
\(553\) 10.3939 10.3939i 0.441992 0.441992i
\(554\) 0 0
\(555\) −8.38791 + 8.05297i −0.356047 + 0.341830i
\(556\) 0 0
\(557\) 20.4859 + 20.4859i 0.868017 + 0.868017i 0.992253 0.124235i \(-0.0396478\pi\)
−0.124235 + 0.992253i \(0.539648\pi\)
\(558\) 0 0
\(559\) 8.50159i 0.359579i
\(560\) 0 0
\(561\) 10.9470i 0.462183i
\(562\) 0 0
\(563\) 19.2280 + 19.2280i 0.810365 + 0.810365i 0.984688 0.174323i \(-0.0557738\pi\)
−0.174323 + 0.984688i \(0.555774\pi\)
\(564\) 0 0
\(565\) −11.7851 0.240091i −0.495801 0.0101007i
\(566\) 0 0
\(567\) 2.80826 2.80826i 0.117936 0.117936i
\(568\) 0 0
\(569\) 32.1659 1.34847 0.674233 0.738518i \(-0.264474\pi\)
0.674233 + 0.738518i \(0.264474\pi\)
\(570\) 0 0
\(571\) 24.2190i 1.01353i −0.862084 0.506766i \(-0.830841\pi\)
0.862084 0.506766i \(-0.169159\pi\)
\(572\) 0 0
\(573\) −2.60613 + 2.60613i −0.108873 + 0.108873i
\(574\) 0 0
\(575\) 16.6614 + 18.0774i 0.694828 + 0.753880i
\(576\) 0 0
\(577\) −7.82073 + 7.82073i −0.325581 + 0.325581i −0.850903 0.525322i \(-0.823945\pi\)
0.525322 + 0.850903i \(0.323945\pi\)
\(578\) 0 0
\(579\) −7.32293 −0.304331
\(580\) 0 0
\(581\) 11.8961i 0.493535i
\(582\) 0 0
\(583\) 16.9476 + 16.9476i 0.701900 + 0.701900i
\(584\) 0 0
\(585\) 1.86802 + 0.0380563i 0.0772330 + 0.00157343i
\(586\) 0 0
\(587\) 13.1603 + 13.1603i 0.543182 + 0.543182i 0.924460 0.381279i \(-0.124516\pi\)
−0.381279 + 0.924460i \(0.624516\pi\)
\(588\) 0 0
\(589\) 15.6666 31.8888i 0.645530 1.31396i
\(590\) 0 0
\(591\) 2.42690 0.0998295
\(592\) 0 0
\(593\) −29.5952 29.5952i −1.21533 1.21533i −0.969249 0.246082i \(-0.920857\pi\)
−0.246082 0.969249i \(-0.579143\pi\)
\(594\) 0 0
\(595\) −29.9349 + 28.7396i −1.22721 + 1.17821i
\(596\) 0 0
\(597\) 4.87970 4.87970i 0.199713 0.199713i
\(598\) 0 0
\(599\) 32.1078i 1.31189i 0.754808 + 0.655946i \(0.227730\pi\)
−0.754808 + 0.655946i \(0.772270\pi\)
\(600\) 0 0
\(601\) 3.91825i 0.159829i 0.996802 + 0.0799144i \(0.0254647\pi\)
−0.996802 + 0.0799144i \(0.974535\pi\)
\(602\) 0 0
\(603\) −7.19745 7.19745i −0.293103 0.293103i
\(604\) 0 0
\(605\) 8.89092 8.53589i 0.361467 0.347033i
\(606\) 0 0
\(607\) 31.9631 31.9631i 1.29734 1.29734i 0.367197 0.930143i \(-0.380317\pi\)
0.930143 0.367197i \(-0.119683\pi\)
\(608\) 0 0
\(609\) 33.1195i 1.34207i
\(610\) 0 0
\(611\) 8.80298i 0.356131i
\(612\) 0 0
\(613\) −12.0660 + 12.0660i −0.487339 + 0.487339i −0.907466 0.420126i \(-0.861986\pi\)
0.420126 + 0.907466i \(0.361986\pi\)
\(614\) 0 0
\(615\) −0.217969 + 10.6991i −0.00878935 + 0.431431i
\(616\) 0 0
\(617\) 14.8193 14.8193i 0.596604 0.596604i −0.342803 0.939407i \(-0.611376\pi\)
0.939407 + 0.342803i \(0.111376\pi\)
\(618\) 0 0
\(619\) −11.9749 −0.481314 −0.240657 0.970610i \(-0.577363\pi\)
−0.240657 + 0.970610i \(0.577363\pi\)
\(620\) 0 0
\(621\) −4.91689 −0.197308
\(622\) 0 0
\(623\) −52.0920 + 52.0920i −2.08702 + 2.08702i
\(624\) 0 0
\(625\) −24.9171 2.03472i −0.996682 0.0813888i
\(626\) 0 0
\(627\) 10.5706 10.5706i 0.422149 0.422149i
\(628\) 0 0
\(629\) 24.2998i 0.968896i
\(630\) 0 0
\(631\) 28.8804i 1.14971i −0.818255 0.574855i \(-0.805058\pi\)
0.818255 0.574855i \(-0.194942\pi\)
\(632\) 0 0
\(633\) −12.3880 + 12.3880i −0.492377 + 0.492377i
\(634\) 0 0
\(635\) 41.6070 + 0.847641i 1.65113 + 0.0336376i
\(636\) 0 0
\(637\) 5.18324 + 5.18324i 0.205368 + 0.205368i
\(638\) 0 0
\(639\) 2.52995i 0.100083i
\(640\) 0 0
\(641\) 8.72732i 0.344708i −0.985035 0.172354i \(-0.944863\pi\)
0.985035 0.172354i \(-0.0551374\pi\)
\(642\) 0 0
\(643\) 0.343295 0.343295i 0.0135382 0.0135382i −0.700305 0.713843i \(-0.746953\pi\)
0.713843 + 0.700305i \(0.246953\pi\)
\(644\) 0 0
\(645\) −15.7563 16.4117i −0.620405 0.646209i
\(646\) 0 0
\(647\) −9.89103 9.89103i −0.388857 0.388857i 0.485423 0.874280i \(-0.338666\pi\)
−0.874280 + 0.485423i \(0.838666\pi\)
\(648\) 0 0
\(649\) 28.0651 1.10165
\(650\) 0 0
\(651\) 9.75034 19.8465i 0.382146 0.777845i
\(652\) 0 0
\(653\) 0.510799 + 0.510799i 0.0199891 + 0.0199891i 0.717031 0.697042i \(-0.245501\pi\)
−0.697042 + 0.717031i \(0.745501\pi\)
\(654\) 0 0
\(655\) −32.0393 + 30.7599i −1.25188 + 1.20189i
\(656\) 0 0
\(657\) −10.7663 10.7663i −0.420034 0.420034i
\(658\) 0 0
\(659\) 11.1578i 0.434647i 0.976100 + 0.217324i \(0.0697327\pi\)
−0.976100 + 0.217324i \(0.930267\pi\)
\(660\) 0 0
\(661\) 18.2481 0.709768 0.354884 0.934910i \(-0.384520\pi\)
0.354884 + 0.934910i \(0.384520\pi\)
\(662\) 0 0
\(663\) 2.76095 2.76095i 0.107226 0.107226i
\(664\) 0 0
\(665\) 56.6571 + 1.15425i 2.19707 + 0.0447598i
\(666\) 0 0
\(667\) −28.9939 + 28.9939i −1.12265 + 1.12265i
\(668\) 0 0
\(669\) 27.4764i 1.06230i
\(670\) 0 0
\(671\) 9.49513 0.366555
\(672\) 0 0
\(673\) 7.41450 7.41450i 0.285808 0.285808i −0.549612 0.835420i \(-0.685224\pi\)
0.835420 + 0.549612i \(0.185224\pi\)
\(674\) 0 0
\(675\) 3.67660 3.38860i 0.141512 0.130427i
\(676\) 0 0
\(677\) −1.48326 1.48326i −0.0570064 0.0570064i 0.678029 0.735035i \(-0.262834\pi\)
−0.735035 + 0.678029i \(0.762834\pi\)
\(678\) 0 0
\(679\) 6.95841i 0.267039i
\(680\) 0 0
\(681\) 13.6125i 0.521631i
\(682\) 0 0
\(683\) 21.0351 + 21.0351i 0.804885 + 0.804885i 0.983855 0.178970i \(-0.0572764\pi\)
−0.178970 + 0.983855i \(0.557276\pi\)
\(684\) 0 0
\(685\) −14.0199 0.285621i −0.535673 0.0109130i
\(686\) 0 0
\(687\) 0.688842 0.688842i 0.0262810 0.0262810i
\(688\) 0 0
\(689\) 8.54875i 0.325682i
\(690\) 0 0
\(691\) −15.3014 −0.582094 −0.291047 0.956709i \(-0.594004\pi\)
−0.291047 + 0.956709i \(0.594004\pi\)
\(692\) 0 0
\(693\) 6.57877 6.57877i 0.249907 0.249907i
\(694\) 0 0
\(695\) −7.79363 + 7.48242i −0.295629 + 0.283824i
\(696\) 0 0
\(697\) 15.8134 + 15.8134i 0.598977 + 0.598977i
\(698\) 0 0
\(699\) 27.7390 1.04918
\(700\) 0 0
\(701\) −16.8005 −0.634547 −0.317273 0.948334i \(-0.602767\pi\)
−0.317273 + 0.948334i \(0.602767\pi\)
\(702\) 0 0
\(703\) 23.4643 23.4643i 0.884972 0.884972i
\(704\) 0 0
\(705\) 16.3149 + 16.9935i 0.614455 + 0.640012i
\(706\) 0 0
\(707\) −8.20889 + 8.20889i −0.308727 + 0.308727i
\(708\) 0 0
\(709\) 7.82240 0.293776 0.146888 0.989153i \(-0.453074\pi\)
0.146888 + 0.989153i \(0.453074\pi\)
\(710\) 0 0
\(711\) 3.70118i 0.138805i
\(712\) 0 0
\(713\) −25.9100 + 8.83850i −0.970338 + 0.331005i
\(714\) 0 0
\(715\) 4.37611 + 0.0891525i 0.163657 + 0.00333412i
\(716\) 0 0
\(717\) −10.8325 + 10.8325i −0.404546 + 0.404546i
\(718\) 0 0
\(719\) 17.4492 0.650746 0.325373 0.945586i \(-0.394510\pi\)
0.325373 + 0.945586i \(0.394510\pi\)
\(720\) 0 0
\(721\) −45.0517 −1.67781
\(722\) 0 0
\(723\) 19.3923 + 19.3923i 0.721208 + 0.721208i
\(724\) 0 0
\(725\) 1.69823 41.6621i 0.0630706 1.54729i
\(726\) 0 0
\(727\) 31.7736 31.7736i 1.17842 1.17842i 0.198268 0.980148i \(-0.436468\pi\)
0.980148 0.198268i \(-0.0635317\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −47.5447 −1.75850
\(732\) 0 0
\(733\) 11.9121 + 11.9121i 0.439982 + 0.439982i 0.892006 0.452024i \(-0.149298\pi\)
−0.452024 + 0.892006i \(0.649298\pi\)
\(734\) 0 0
\(735\) 19.6122 + 0.399550i 0.723406 + 0.0147376i
\(736\) 0 0
\(737\) −16.8611 16.8611i −0.621087 0.621087i
\(738\) 0 0
\(739\) −5.48940 −0.201931 −0.100965 0.994890i \(-0.532193\pi\)
−0.100965 + 0.994890i \(0.532193\pi\)
\(740\) 0 0
\(741\) −5.33204 −0.195877
\(742\) 0 0
\(743\) −25.0099 + 25.0099i −0.917524 + 0.917524i −0.996849 0.0793249i \(-0.974724\pi\)
0.0793249 + 0.996849i \(0.474724\pi\)
\(744\) 0 0
\(745\) 0.000319113 0 0.000332386i 1.16914e−5 0 1.21777e-5i
\(746\) 0 0
\(747\) −2.11806 2.11806i −0.0774959 0.0774959i
\(748\) 0 0
\(749\) 27.1722i 0.992851i
\(750\) 0 0
\(751\) 48.8733 1.78341 0.891706 0.452615i \(-0.149509\pi\)
0.891706 + 0.452615i \(0.149509\pi\)
\(752\) 0 0
\(753\) −13.9889 13.9889i −0.509784 0.509784i
\(754\) 0 0
\(755\) −31.5476 32.8598i −1.14814 1.19589i
\(756\) 0 0
\(757\) 16.3606 + 16.3606i 0.594635 + 0.594635i 0.938880 0.344245i \(-0.111865\pi\)
−0.344245 + 0.938880i \(0.611865\pi\)
\(758\) 0 0
\(759\) −11.5185 −0.418097
\(760\) 0 0
\(761\) 11.3566i 0.411677i −0.978586 0.205838i \(-0.934008\pi\)
0.978586 0.205838i \(-0.0659921\pi\)
\(762\) 0 0
\(763\) −40.2908 40.2908i −1.45863 1.45863i
\(764\) 0 0
\(765\) 0.212827 10.4468i 0.00769479 0.377704i
\(766\) 0 0
\(767\) −7.07832 7.07832i −0.255583 0.255583i
\(768\) 0 0
\(769\) 45.6650i 1.64672i 0.567517 + 0.823362i \(0.307904\pi\)
−0.567517 + 0.823362i \(0.692096\pi\)
\(770\) 0 0
\(771\) 18.0503i 0.650067i
\(772\) 0 0
\(773\) −26.0941 + 26.0941i −0.938541 + 0.938541i −0.998218 0.0596768i \(-0.980993\pi\)
0.0596768 + 0.998218i \(0.480993\pi\)
\(774\) 0 0
\(775\) 13.2829 24.4656i 0.477136 0.878829i
\(776\) 0 0
\(777\) 14.6034 14.6034i 0.523892 0.523892i
\(778\) 0 0
\(779\) 30.5395i 1.09419i
\(780\) 0 0
\(781\) 5.92678i 0.212077i
\(782\) 0 0
\(783\) 5.89680 + 5.89680i 0.210734 + 0.210734i
\(784\) 0 0
\(785\) 0.169376 8.31396i 0.00604530 0.296738i
\(786\) 0 0
\(787\) −3.78155 3.78155i −0.134798 0.134798i 0.636489 0.771286i \(-0.280386\pi\)
−0.771286 + 0.636489i \(0.780386\pi\)
\(788\) 0 0
\(789\) 7.33495i 0.261131i
\(790\) 0 0
\(791\) 20.9358 0.744390
\(792\) 0 0
\(793\) −2.39477 2.39477i −0.0850408 0.0850408i
\(794\) 0 0
\(795\) −15.8437 16.5027i −0.561919 0.585291i
\(796\) 0 0
\(797\) 9.39731 + 9.39731i 0.332870 + 0.332870i 0.853675 0.520805i \(-0.174368\pi\)
−0.520805 + 0.853675i \(0.674368\pi\)
\(798\) 0 0
\(799\) 49.2302 1.74164
\(800\) 0 0
\(801\) 18.5496i 0.655416i
\(802\) 0 0
\(803\) −25.2217 25.2217i −0.890055 0.890055i
\(804\) 0 0
\(805\) −30.2401 31.4979i −1.06582 1.11015i
\(806\) 0 0
\(807\) 19.4943 19.4943i 0.686231 0.686231i
\(808\) 0 0
\(809\) 17.9124 0.629766 0.314883 0.949131i \(-0.398035\pi\)
0.314883 + 0.949131i \(0.398035\pi\)
\(810\) 0 0
\(811\) −41.0739 −1.44230 −0.721151 0.692778i \(-0.756386\pi\)
−0.721151 + 0.692778i \(0.756386\pi\)
\(812\) 0 0
\(813\) −5.28459 5.28459i −0.185339 0.185339i
\(814\) 0 0
\(815\) 4.41329 + 0.0899099i 0.154591 + 0.00314941i
\(816\) 0 0
\(817\) 45.9099 + 45.9099i 1.60618 + 1.60618i
\(818\) 0 0
\(819\) −3.31847 −0.115957
\(820\) 0 0
\(821\) 15.5381i 0.542283i −0.962540 0.271141i \(-0.912599\pi\)
0.962540 0.271141i \(-0.0874011\pi\)
\(822\) 0 0
\(823\) −11.6096 + 11.6096i −0.404684 + 0.404684i −0.879880 0.475196i \(-0.842377\pi\)
0.475196 + 0.879880i \(0.342377\pi\)
\(824\) 0 0
\(825\) 8.61298 7.93832i 0.299866 0.276377i
\(826\) 0 0
\(827\) −1.46239 1.46239i −0.0508522 0.0508522i 0.681223 0.732076i \(-0.261448\pi\)
−0.732076 + 0.681223i \(0.761448\pi\)
\(828\) 0 0
\(829\) 35.4345 1.23069 0.615346 0.788257i \(-0.289016\pi\)
0.615346 + 0.788257i \(0.289016\pi\)
\(830\) 0 0
\(831\) 5.39206 0.187049
\(832\) 0 0
\(833\) 28.9870 28.9870i 1.00434 1.00434i
\(834\) 0 0
\(835\) 31.2684 + 0.637017i 1.08209 + 0.0220449i
\(836\) 0 0
\(837\) 1.79758 + 5.26960i 0.0621335 + 0.182144i
\(838\) 0 0
\(839\) 5.36395i 0.185184i 0.995704 + 0.0925921i \(0.0295152\pi\)
−0.995704 + 0.0925921i \(0.970485\pi\)
\(840\) 0 0
\(841\) 40.5444 1.39808
\(842\) 0 0
\(843\) −11.8501 + 11.8501i −0.408141 + 0.408141i
\(844\) 0 0
\(845\) 19.0507 + 19.8430i 0.655363 + 0.682621i
\(846\) 0 0
\(847\) −15.4791 + 15.4791i −0.531868 + 0.531868i
\(848\) 0 0
\(849\) −7.70542 −0.264449
\(850\) 0 0
\(851\) −25.5685 −0.876477
\(852\) 0 0
\(853\) 34.2256 + 34.2256i 1.17186 + 1.17186i 0.981766 + 0.190095i \(0.0608796\pi\)
0.190095 + 0.981766i \(0.439120\pi\)
\(854\) 0 0
\(855\) −10.2931 + 9.88207i −0.352016 + 0.337960i
\(856\) 0 0
\(857\) 17.9008 17.9008i 0.611479 0.611479i −0.331852 0.943331i \(-0.607674\pi\)
0.943331 + 0.331852i \(0.107674\pi\)
\(858\) 0 0
\(859\) −6.95037 −0.237144 −0.118572 0.992945i \(-0.537832\pi\)
−0.118572 + 0.992945i \(0.537832\pi\)
\(860\) 0 0
\(861\) 19.0067i 0.647746i
\(862\) 0 0
\(863\) 18.6267 18.6267i 0.634062 0.634062i −0.315023 0.949084i \(-0.602012\pi\)
0.949084 + 0.315023i \(0.102012\pi\)
\(864\) 0 0
\(865\) 2.59258 + 0.0528175i 0.0881505 + 0.00179585i
\(866\) 0 0
\(867\) −3.41962 3.41962i −0.116136 0.116136i
\(868\) 0 0
\(869\) 8.67057i 0.294129i
\(870\) 0 0
\(871\) 8.50511i 0.288185i
\(872\) 0 0
\(873\) −1.23892 1.23892i −0.0419310 0.0419310i
\(874\) 0 0
\(875\) 44.3196 + 2.71171i 1.49828 + 0.0916725i
\(876\) 0 0
\(877\) −7.89446 + 7.89446i −0.266577 + 0.266577i −0.827719 0.561142i \(-0.810362\pi\)
0.561142 + 0.827719i \(0.310362\pi\)
\(878\) 0 0
\(879\) 20.5397 0.692785
\(880\) 0 0
\(881\) 39.7745i 1.34004i 0.742344 + 0.670018i \(0.233714\pi\)
−0.742344 + 0.670018i \(0.766286\pi\)
\(882\) 0 0
\(883\) 13.3850 13.3850i 0.450442 0.450442i −0.445059 0.895501i \(-0.646817\pi\)
0.895501 + 0.445059i \(0.146817\pi\)
\(884\) 0 0
\(885\) −26.7827 0.545631i −0.900290 0.0183412i
\(886\) 0 0
\(887\) −5.66657 + 5.66657i −0.190265 + 0.190265i −0.795811 0.605546i \(-0.792955\pi\)
0.605546 + 0.795811i \(0.292955\pi\)
\(888\) 0 0
\(889\) −73.9136 −2.47898
\(890\) 0 0
\(891\) 2.34265i 0.0784818i
\(892\) 0 0
\(893\) −47.5375 47.5375i −1.59078 1.59078i
\(894\) 0 0
\(895\) 10.3881 9.97327i 0.347235 0.333369i
\(896\) 0 0
\(897\) 2.90510 + 2.90510i 0.0969985 + 0.0969985i
\(898\) 0 0
\(899\) 41.6737 + 20.4738i 1.38990 + 0.682839i
\(900\) 0 0
\(901\) −47.8084 −1.59273
\(902\) 0 0
\(903\) 28.5727 + 28.5727i 0.950841 + 0.950841i
\(904\) 0 0
\(905\) 26.7689 + 27.8823i 0.889828 + 0.926838i
\(906\) 0 0
\(907\) 14.7632 14.7632i 0.490205 0.490205i −0.418166 0.908371i \(-0.637327\pi\)
0.908371 + 0.418166i \(0.137327\pi\)
\(908\) 0 0
\(909\) 2.92312i 0.0969539i
\(910\) 0 0
\(911\) 33.3950i 1.10643i 0.833040 + 0.553213i \(0.186598\pi\)
−0.833040 + 0.553213i \(0.813402\pi\)
\(912\) 0 0
\(913\) −4.96188 4.96188i −0.164214 0.164214i
\(914\) 0 0
\(915\) −9.06125 0.184601i −0.299556 0.00610271i
\(916\) 0 0
\(917\) 55.7804 55.7804i 1.84203 1.84203i
\(918\) 0 0
\(919\) 5.95382i 0.196398i −0.995167 0.0981992i \(-0.968692\pi\)
0.995167 0.0981992i \(-0.0313082\pi\)
\(920\) 0 0
\(921\) 3.58461i 0.118117i
\(922\) 0 0
\(923\) −1.49480 + 1.49480i −0.0492018 + 0.0492018i
\(924\) 0 0
\(925\) 19.1188 17.6212i 0.628623 0.579382i
\(926\) 0 0
\(927\) 8.02128 8.02128i 0.263453 0.263453i
\(928\) 0 0
\(929\) 20.0037 0.656299 0.328150 0.944626i \(-0.393575\pi\)
0.328150 + 0.944626i \(0.393575\pi\)
\(930\) 0 0
\(931\) −55.9806 −1.83469
\(932\) 0 0
\(933\) 0.116963 0.116963i 0.00382919 0.00382919i
\(934\) 0 0
\(935\) 0.498580 24.4731i 0.0163053 0.800358i
\(936\) 0 0
\(937\) 8.95779 8.95779i 0.292638 0.292638i −0.545483 0.838122i \(-0.683654\pi\)
0.838122 + 0.545483i \(0.183654\pi\)
\(938\) 0 0
\(939\) 13.9162i 0.454139i
\(940\) 0 0
\(941\) 57.1162i 1.86193i 0.365102 + 0.930967i \(0.381034\pi\)
−0.365102 + 0.930967i \(0.618966\pi\)
\(942\) 0 0
\(943\) −16.6391 + 16.6391i −0.541843 + 0.541843i
\(944\) 0 0
\(945\) −6.40606 + 6.15026i −0.208389 + 0.200068i
\(946\) 0 0
\(947\) −14.7498 14.7498i −0.479304 0.479304i 0.425605 0.904909i \(-0.360061\pi\)
−0.904909 + 0.425605i \(0.860061\pi\)
\(948\) 0 0
\(949\) 12.7224i 0.412986i
\(950\) 0 0
\(951\) 2.06962i 0.0671120i
\(952\) 0 0
\(953\) 10.6476 10.6476i 0.344910 0.344910i −0.513299 0.858210i \(-0.671577\pi\)
0.858210 + 0.513299i \(0.171577\pi\)
\(954\) 0 0
\(955\) 5.94496 5.70757i 0.192374 0.184693i
\(956\) 0 0
\(957\) 13.8141 + 13.8141i 0.446548 + 0.446548i
\(958\) 0 0
\(959\) 24.9059 0.804254
\(960\) 0 0
\(961\) 18.9451 + 24.5374i 0.611131 + 0.791529i
\(962\) 0 0
\(963\) 4.83791 + 4.83791i 0.155899 + 0.155899i
\(964\) 0 0
\(965\) 16.3712 + 0.333522i 0.527007 + 0.0107365i
\(966\) 0 0
\(967\) −27.1563 27.1563i −0.873286 0.873286i 0.119543 0.992829i \(-0.461857\pi\)
−0.992829 + 0.119543i \(0.961857\pi\)
\(968\) 0 0
\(969\) 29.8191i 0.957927i
\(970\) 0 0
\(971\) 29.6682 0.952097 0.476048 0.879419i \(-0.342069\pi\)
0.476048 + 0.879419i \(0.342069\pi\)
\(972\) 0 0
\(973\) 13.5687 13.5687i 0.434993 0.434993i
\(974\) 0 0
\(975\) −4.17441 0.170157i −0.133688 0.00544940i
\(976\) 0 0
\(977\) −36.3083 + 36.3083i −1.16161 + 1.16161i −0.177481 + 0.984124i \(0.556795\pi\)
−0.984124 + 0.177481i \(0.943205\pi\)
\(978\) 0 0
\(979\) 43.4551i 1.38883i
\(980\) 0 0
\(981\) 14.3473 0.458073
\(982\) 0 0
\(983\) 15.6642 15.6642i 0.499610 0.499610i −0.411707 0.911316i \(-0.635067\pi\)
0.911316 + 0.411707i \(0.135067\pi\)
\(984\) 0 0
\(985\) −5.42560 0.110533i −0.172874 0.00352188i
\(986\) 0 0
\(987\) −29.5857 29.5857i −0.941722 0.941722i
\(988\) 0 0
\(989\) 50.0270i 1.59077i
\(990\) 0 0
\(991\) 30.4752i 0.968077i 0.875047 + 0.484038i \(0.160830\pi\)
−0.875047 + 0.484038i \(0.839170\pi\)
\(992\) 0 0
\(993\) 22.0919 + 22.0919i 0.701066 + 0.701066i
\(994\) 0 0
\(995\) −11.1313 + 10.6868i −0.352886 + 0.338795i
\(996\) 0 0
\(997\) −7.01162 + 7.01162i −0.222060 + 0.222060i −0.809366 0.587305i \(-0.800189\pi\)
0.587305 + 0.809366i \(0.300189\pi\)
\(998\) 0 0
\(999\) 5.20014i 0.164525i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.433.2 64
5.2 odd 4 inner 1860.2.s.a.1177.30 yes 64
31.30 odd 2 inner 1860.2.s.a.433.30 yes 64
155.92 even 4 inner 1860.2.s.a.1177.2 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.2 64 1.1 even 1 trivial
1860.2.s.a.433.30 yes 64 31.30 odd 2 inner
1860.2.s.a.1177.2 yes 64 155.92 even 4 inner
1860.2.s.a.1177.30 yes 64 5.2 odd 4 inner