Properties

Label 1860.2.s.a.433.11
Level $1860$
Weight $2$
Character 1860.433
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 433.11
Character \(\chi\) \(=\) 1860.433
Dual form 1860.2.s.a.1177.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{3} +(-2.16858 + 0.545223i) q^{5} +(-3.45556 + 3.45556i) q^{7} -1.00000i q^{9} +4.89678i q^{11} +(-3.25243 + 3.25243i) q^{13} +(1.14789 - 1.91895i) q^{15} +(1.38440 + 1.38440i) q^{17} +7.75672i q^{19} -4.88691i q^{21} +(2.52755 - 2.52755i) q^{23} +(4.40546 - 2.36472i) q^{25} +(0.707107 + 0.707107i) q^{27} -6.32793 q^{29} +(4.39095 - 3.42339i) q^{31} +(-3.46254 - 3.46254i) q^{33} +(5.60961 - 9.37772i) q^{35} +(1.06608 + 1.06608i) q^{37} -4.59963i q^{39} -0.549352 q^{41} +(-4.48876 + 4.48876i) q^{43} +(0.545223 + 2.16858i) q^{45} +(2.44703 - 2.44703i) q^{47} -16.8819i q^{49} -1.95783 q^{51} +(-8.49714 + 8.49714i) q^{53} +(-2.66984 - 10.6190i) q^{55} +(-5.48483 - 5.48483i) q^{57} +7.41481i q^{59} -11.9378i q^{61} +(3.45556 + 3.45556i) q^{63} +(5.27985 - 8.82646i) q^{65} +(-0.0563954 + 0.0563954i) q^{67} +3.57449i q^{69} +12.8374 q^{71} +(-8.55320 + 8.55320i) q^{73} +(-1.44302 + 4.78724i) q^{75} +(-16.9211 - 16.9211i) q^{77} -11.4113 q^{79} -1.00000 q^{81} +(-1.53224 + 1.53224i) q^{83} +(-3.75697 - 2.24737i) q^{85} +(4.47452 - 4.47452i) q^{87} +13.0869 q^{89} -22.4780i q^{91} +(-0.684169 + 5.52557i) q^{93} +(-4.22914 - 16.8211i) q^{95} +(-7.79226 + 7.79226i) q^{97} +4.89678 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) 0 0
\(5\) −2.16858 + 0.545223i −0.969818 + 0.243831i
\(6\) 0 0
\(7\) −3.45556 + 3.45556i −1.30608 + 1.30608i −0.381861 + 0.924220i \(0.624717\pi\)
−0.924220 + 0.381861i \(0.875283\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.89678i 1.47643i 0.674563 + 0.738217i \(0.264332\pi\)
−0.674563 + 0.738217i \(0.735668\pi\)
\(12\) 0 0
\(13\) −3.25243 + 3.25243i −0.902063 + 0.902063i −0.995614 0.0935519i \(-0.970178\pi\)
0.0935519 + 0.995614i \(0.470178\pi\)
\(14\) 0 0
\(15\) 1.14789 1.91895i 0.296383 0.495470i
\(16\) 0 0
\(17\) 1.38440 + 1.38440i 0.335765 + 0.335765i 0.854771 0.519006i \(-0.173698\pi\)
−0.519006 + 0.854771i \(0.673698\pi\)
\(18\) 0 0
\(19\) 7.75672i 1.77951i 0.456435 + 0.889757i \(0.349126\pi\)
−0.456435 + 0.889757i \(0.650874\pi\)
\(20\) 0 0
\(21\) 4.88691i 1.06641i
\(22\) 0 0
\(23\) 2.52755 2.52755i 0.527030 0.527030i −0.392656 0.919685i \(-0.628444\pi\)
0.919685 + 0.392656i \(0.128444\pi\)
\(24\) 0 0
\(25\) 4.40546 2.36472i 0.881093 0.472944i
\(26\) 0 0
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) 0 0
\(29\) −6.32793 −1.17507 −0.587534 0.809200i \(-0.699901\pi\)
−0.587534 + 0.809200i \(0.699901\pi\)
\(30\) 0 0
\(31\) 4.39095 3.42339i 0.788637 0.614858i
\(32\) 0 0
\(33\) −3.46254 3.46254i −0.602752 0.602752i
\(34\) 0 0
\(35\) 5.60961 9.37772i 0.948197 1.58512i
\(36\) 0 0
\(37\) 1.06608 + 1.06608i 0.175262 + 0.175262i 0.789287 0.614025i \(-0.210451\pi\)
−0.614025 + 0.789287i \(0.710451\pi\)
\(38\) 0 0
\(39\) 4.59963i 0.736531i
\(40\) 0 0
\(41\) −0.549352 −0.0857944 −0.0428972 0.999079i \(-0.513659\pi\)
−0.0428972 + 0.999079i \(0.513659\pi\)
\(42\) 0 0
\(43\) −4.48876 + 4.48876i −0.684530 + 0.684530i −0.961017 0.276488i \(-0.910829\pi\)
0.276488 + 0.961017i \(0.410829\pi\)
\(44\) 0 0
\(45\) 0.545223 + 2.16858i 0.0812771 + 0.323273i
\(46\) 0 0
\(47\) 2.44703 2.44703i 0.356937 0.356937i −0.505746 0.862683i \(-0.668783\pi\)
0.862683 + 0.505746i \(0.168783\pi\)
\(48\) 0 0
\(49\) 16.8819i 2.41169i
\(50\) 0 0
\(51\) −1.95783 −0.274151
\(52\) 0 0
\(53\) −8.49714 + 8.49714i −1.16717 + 1.16717i −0.184303 + 0.982870i \(0.559003\pi\)
−0.982870 + 0.184303i \(0.940997\pi\)
\(54\) 0 0
\(55\) −2.66984 10.6190i −0.360001 1.43187i
\(56\) 0 0
\(57\) −5.48483 5.48483i −0.726483 0.726483i
\(58\) 0 0
\(59\) 7.41481i 0.965326i 0.875806 + 0.482663i \(0.160330\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(60\) 0 0
\(61\) 11.9378i 1.52848i −0.644932 0.764240i \(-0.723114\pi\)
0.644932 0.764240i \(-0.276886\pi\)
\(62\) 0 0
\(63\) 3.45556 + 3.45556i 0.435360 + 0.435360i
\(64\) 0 0
\(65\) 5.27985 8.82646i 0.654885 1.09479i
\(66\) 0 0
\(67\) −0.0563954 + 0.0563954i −0.00688980 + 0.00688980i −0.710543 0.703653i \(-0.751551\pi\)
0.703653 + 0.710543i \(0.251551\pi\)
\(68\) 0 0
\(69\) 3.57449i 0.430318i
\(70\) 0 0
\(71\) 12.8374 1.52352 0.761761 0.647858i \(-0.224335\pi\)
0.761761 + 0.647858i \(0.224335\pi\)
\(72\) 0 0
\(73\) −8.55320 + 8.55320i −1.00108 + 1.00108i −0.00107691 + 0.999999i \(0.500343\pi\)
−0.999999 + 0.00107691i \(0.999657\pi\)
\(74\) 0 0
\(75\) −1.44302 + 4.78724i −0.166626 + 0.552783i
\(76\) 0 0
\(77\) −16.9211 16.9211i −1.92834 1.92834i
\(78\) 0 0
\(79\) −11.4113 −1.28387 −0.641937 0.766758i \(-0.721869\pi\)
−0.641937 + 0.766758i \(0.721869\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −1.53224 + 1.53224i −0.168185 + 0.168185i −0.786181 0.617996i \(-0.787945\pi\)
0.617996 + 0.786181i \(0.287945\pi\)
\(84\) 0 0
\(85\) −3.75697 2.24737i −0.407501 0.243761i
\(86\) 0 0
\(87\) 4.47452 4.47452i 0.479719 0.479719i
\(88\) 0 0
\(89\) 13.0869 1.38721 0.693604 0.720357i \(-0.256022\pi\)
0.693604 + 0.720357i \(0.256022\pi\)
\(90\) 0 0
\(91\) 22.4780i 2.35633i
\(92\) 0 0
\(93\) −0.684169 + 5.52557i −0.0709450 + 0.572975i
\(94\) 0 0
\(95\) −4.22914 16.8211i −0.433901 1.72580i
\(96\) 0 0
\(97\) −7.79226 + 7.79226i −0.791184 + 0.791184i −0.981687 0.190502i \(-0.938988\pi\)
0.190502 + 0.981687i \(0.438988\pi\)
\(98\) 0 0
\(99\) 4.89678 0.492145
\(100\) 0 0
\(101\) 17.2863 1.72005 0.860026 0.510251i \(-0.170447\pi\)
0.860026 + 0.510251i \(0.170447\pi\)
\(102\) 0 0
\(103\) −2.90798 2.90798i −0.286531 0.286531i 0.549176 0.835707i \(-0.314942\pi\)
−0.835707 + 0.549176i \(0.814942\pi\)
\(104\) 0 0
\(105\) 2.66446 + 10.5976i 0.260024 + 1.03422i
\(106\) 0 0
\(107\) 6.58266 6.58266i 0.636370 0.636370i −0.313288 0.949658i \(-0.601431\pi\)
0.949658 + 0.313288i \(0.101431\pi\)
\(108\) 0 0
\(109\) 2.19756i 0.210488i 0.994446 + 0.105244i \(0.0335624\pi\)
−0.994446 + 0.105244i \(0.966438\pi\)
\(110\) 0 0
\(111\) −1.50766 −0.143101
\(112\) 0 0
\(113\) 6.18137 + 6.18137i 0.581494 + 0.581494i 0.935314 0.353819i \(-0.115117\pi\)
−0.353819 + 0.935314i \(0.615117\pi\)
\(114\) 0 0
\(115\) −4.10310 + 6.85926i −0.382616 + 0.639629i
\(116\) 0 0
\(117\) 3.25243 + 3.25243i 0.300688 + 0.300688i
\(118\) 0 0
\(119\) −9.56774 −0.877073
\(120\) 0 0
\(121\) −12.9784 −1.17986
\(122\) 0 0
\(123\) 0.388451 0.388451i 0.0350254 0.0350254i
\(124\) 0 0
\(125\) −8.26429 + 7.53004i −0.739181 + 0.673507i
\(126\) 0 0
\(127\) −5.76550 5.76550i −0.511606 0.511606i 0.403412 0.915018i \(-0.367824\pi\)
−0.915018 + 0.403412i \(0.867824\pi\)
\(128\) 0 0
\(129\) 6.34807i 0.558916i
\(130\) 0 0
\(131\) 11.0306 0.963750 0.481875 0.876240i \(-0.339956\pi\)
0.481875 + 0.876240i \(0.339956\pi\)
\(132\) 0 0
\(133\) −26.8038 26.8038i −2.32419 2.32419i
\(134\) 0 0
\(135\) −1.91895 1.14789i −0.165157 0.0987942i
\(136\) 0 0
\(137\) 6.54010 + 6.54010i 0.558758 + 0.558758i 0.928954 0.370195i \(-0.120709\pi\)
−0.370195 + 0.928954i \(0.620709\pi\)
\(138\) 0 0
\(139\) 13.8817 1.17743 0.588713 0.808342i \(-0.299635\pi\)
0.588713 + 0.808342i \(0.299635\pi\)
\(140\) 0 0
\(141\) 3.46063i 0.291438i
\(142\) 0 0
\(143\) −15.9264 15.9264i −1.33184 1.33184i
\(144\) 0 0
\(145\) 13.7226 3.45014i 1.13960 0.286518i
\(146\) 0 0
\(147\) 11.9373 + 11.9373i 0.984570 + 0.984570i
\(148\) 0 0
\(149\) 7.50236i 0.614617i −0.951610 0.307309i \(-0.900572\pi\)
0.951610 0.307309i \(-0.0994284\pi\)
\(150\) 0 0
\(151\) 0.0322435i 0.00262394i −0.999999 0.00131197i \(-0.999582\pi\)
0.999999 0.00131197i \(-0.000417613\pi\)
\(152\) 0 0
\(153\) 1.38440 1.38440i 0.111922 0.111922i
\(154\) 0 0
\(155\) −7.65560 + 9.81793i −0.614913 + 0.788595i
\(156\) 0 0
\(157\) 1.46603 1.46603i 0.117002 0.117002i −0.646182 0.763183i \(-0.723635\pi\)
0.763183 + 0.646182i \(0.223635\pi\)
\(158\) 0 0
\(159\) 12.0168i 0.952992i
\(160\) 0 0
\(161\) 17.4682i 1.37669i
\(162\) 0 0
\(163\) 1.53082 + 1.53082i 0.119903 + 0.119903i 0.764512 0.644609i \(-0.222980\pi\)
−0.644609 + 0.764512i \(0.722980\pi\)
\(164\) 0 0
\(165\) 9.39666 + 5.62094i 0.731529 + 0.437590i
\(166\) 0 0
\(167\) 13.2302 + 13.2302i 1.02378 + 1.02378i 0.999710 + 0.0240724i \(0.00766322\pi\)
0.0240724 + 0.999710i \(0.492337\pi\)
\(168\) 0 0
\(169\) 8.15664i 0.627434i
\(170\) 0 0
\(171\) 7.75672 0.593171
\(172\) 0 0
\(173\) 5.17247 + 5.17247i 0.393256 + 0.393256i 0.875846 0.482590i \(-0.160304\pi\)
−0.482590 + 0.875846i \(0.660304\pi\)
\(174\) 0 0
\(175\) −7.05193 + 23.3948i −0.533076 + 1.76848i
\(176\) 0 0
\(177\) −5.24306 5.24306i −0.394093 0.394093i
\(178\) 0 0
\(179\) −14.5872 −1.09030 −0.545149 0.838339i \(-0.683527\pi\)
−0.545149 + 0.838339i \(0.683527\pi\)
\(180\) 0 0
\(181\) 11.4683i 0.852430i −0.904622 0.426215i \(-0.859847\pi\)
0.904622 0.426215i \(-0.140153\pi\)
\(182\) 0 0
\(183\) 8.44130 + 8.44130i 0.623999 + 0.623999i
\(184\) 0 0
\(185\) −2.89312 1.73062i −0.212706 0.127238i
\(186\) 0 0
\(187\) −6.77908 + 6.77908i −0.495735 + 0.495735i
\(188\) 0 0
\(189\) −4.88691 −0.355470
\(190\) 0 0
\(191\) 7.85426 0.568315 0.284157 0.958778i \(-0.408286\pi\)
0.284157 + 0.958778i \(0.408286\pi\)
\(192\) 0 0
\(193\) −0.841265 0.841265i −0.0605556 0.0605556i 0.676180 0.736736i \(-0.263634\pi\)
−0.736736 + 0.676180i \(0.763634\pi\)
\(194\) 0 0
\(195\) 2.50783 + 9.97467i 0.179589 + 0.714301i
\(196\) 0 0
\(197\) 7.79831 + 7.79831i 0.555607 + 0.555607i 0.928054 0.372447i \(-0.121481\pi\)
−0.372447 + 0.928054i \(0.621481\pi\)
\(198\) 0 0
\(199\) 1.59890 0.113343 0.0566715 0.998393i \(-0.481951\pi\)
0.0566715 + 0.998393i \(0.481951\pi\)
\(200\) 0 0
\(201\) 0.0797552i 0.00562550i
\(202\) 0 0
\(203\) 21.8666 21.8666i 1.53473 1.53473i
\(204\) 0 0
\(205\) 1.19131 0.299519i 0.0832049 0.0209193i
\(206\) 0 0
\(207\) −2.52755 2.52755i −0.175677 0.175677i
\(208\) 0 0
\(209\) −37.9829 −2.62733
\(210\) 0 0
\(211\) −1.96835 −0.135507 −0.0677535 0.997702i \(-0.521583\pi\)
−0.0677535 + 0.997702i \(0.521583\pi\)
\(212\) 0 0
\(213\) −9.07743 + 9.07743i −0.621975 + 0.621975i
\(214\) 0 0
\(215\) 7.28685 12.1816i 0.496959 0.830779i
\(216\) 0 0
\(217\) −3.34347 + 27.0029i −0.226969 + 1.83308i
\(218\) 0 0
\(219\) 12.0961i 0.817375i
\(220\) 0 0
\(221\) −9.00531 −0.605762
\(222\) 0 0
\(223\) 8.52099 8.52099i 0.570608 0.570608i −0.361691 0.932298i \(-0.617800\pi\)
0.932298 + 0.361691i \(0.117800\pi\)
\(224\) 0 0
\(225\) −2.36472 4.40546i −0.157648 0.293698i
\(226\) 0 0
\(227\) −0.864339 + 0.864339i −0.0573682 + 0.0573682i −0.735209 0.677841i \(-0.762916\pi\)
0.677841 + 0.735209i \(0.262916\pi\)
\(228\) 0 0
\(229\) 6.87180 0.454102 0.227051 0.973883i \(-0.427092\pi\)
0.227051 + 0.973883i \(0.427092\pi\)
\(230\) 0 0
\(231\) 23.9301 1.57448
\(232\) 0 0
\(233\) −5.13678 5.13678i −0.336521 0.336521i 0.518535 0.855056i \(-0.326478\pi\)
−0.855056 + 0.518535i \(0.826478\pi\)
\(234\) 0 0
\(235\) −3.97241 + 6.64077i −0.259131 + 0.433196i
\(236\) 0 0
\(237\) 8.06902 8.06902i 0.524139 0.524139i
\(238\) 0 0
\(239\) −2.47579 −0.160146 −0.0800729 0.996789i \(-0.525515\pi\)
−0.0800729 + 0.996789i \(0.525515\pi\)
\(240\) 0 0
\(241\) 22.5414i 1.45202i 0.687686 + 0.726009i \(0.258627\pi\)
−0.687686 + 0.726009i \(0.741373\pi\)
\(242\) 0 0
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 0 0
\(245\) 9.20438 + 36.6096i 0.588046 + 2.33890i
\(246\) 0 0
\(247\) −25.2282 25.2282i −1.60523 1.60523i
\(248\) 0 0
\(249\) 2.16692i 0.137323i
\(250\) 0 0
\(251\) 7.55545i 0.476896i −0.971155 0.238448i \(-0.923361\pi\)
0.971155 0.238448i \(-0.0766386\pi\)
\(252\) 0 0
\(253\) 12.3768 + 12.3768i 0.778124 + 0.778124i
\(254\) 0 0
\(255\) 4.24571 1.06745i 0.265877 0.0668466i
\(256\) 0 0
\(257\) 6.44599 6.44599i 0.402090 0.402090i −0.476879 0.878969i \(-0.658232\pi\)
0.878969 + 0.476879i \(0.158232\pi\)
\(258\) 0 0
\(259\) −7.36779 −0.457812
\(260\) 0 0
\(261\) 6.32793i 0.391689i
\(262\) 0 0
\(263\) 6.65661 6.65661i 0.410464 0.410464i −0.471436 0.881900i \(-0.656264\pi\)
0.881900 + 0.471436i \(0.156264\pi\)
\(264\) 0 0
\(265\) 13.7939 23.0596i 0.847351 1.41654i
\(266\) 0 0
\(267\) −9.25383 + 9.25383i −0.566325 + 0.566325i
\(268\) 0 0
\(269\) 9.08425 0.553877 0.276938 0.960888i \(-0.410680\pi\)
0.276938 + 0.960888i \(0.410680\pi\)
\(270\) 0 0
\(271\) 7.47607i 0.454139i 0.973879 + 0.227070i \(0.0729145\pi\)
−0.973879 + 0.227070i \(0.927086\pi\)
\(272\) 0 0
\(273\) 15.8943 + 15.8943i 0.961969 + 0.961969i
\(274\) 0 0
\(275\) 11.5795 + 21.5726i 0.698270 + 1.30088i
\(276\) 0 0
\(277\) −22.8243 22.8243i −1.37138 1.37138i −0.858398 0.512984i \(-0.828540\pi\)
−0.512984 0.858398i \(-0.671460\pi\)
\(278\) 0 0
\(279\) −3.42339 4.39095i −0.204953 0.262879i
\(280\) 0 0
\(281\) −22.3125 −1.33105 −0.665526 0.746374i \(-0.731793\pi\)
−0.665526 + 0.746374i \(0.731793\pi\)
\(282\) 0 0
\(283\) 4.02813 + 4.02813i 0.239448 + 0.239448i 0.816621 0.577174i \(-0.195844\pi\)
−0.577174 + 0.816621i \(0.695844\pi\)
\(284\) 0 0
\(285\) 14.8847 + 8.90382i 0.881696 + 0.527417i
\(286\) 0 0
\(287\) 1.89832 1.89832i 0.112054 0.112054i
\(288\) 0 0
\(289\) 13.1669i 0.774523i
\(290\) 0 0
\(291\) 11.0199i 0.645999i
\(292\) 0 0
\(293\) −15.2778 15.2778i −0.892540 0.892540i 0.102222 0.994762i \(-0.467405\pi\)
−0.994762 + 0.102222i \(0.967405\pi\)
\(294\) 0 0
\(295\) −4.04273 16.0796i −0.235377 0.936191i
\(296\) 0 0
\(297\) −3.46254 + 3.46254i −0.200917 + 0.200917i
\(298\) 0 0
\(299\) 16.4413i 0.950827i
\(300\) 0 0
\(301\) 31.0224i 1.78810i
\(302\) 0 0
\(303\) −12.2233 + 12.2233i −0.702208 + 0.702208i
\(304\) 0 0
\(305\) 6.50877 + 25.8881i 0.372691 + 1.48235i
\(306\) 0 0
\(307\) −9.43636 + 9.43636i −0.538561 + 0.538561i −0.923106 0.384545i \(-0.874358\pi\)
0.384545 + 0.923106i \(0.374358\pi\)
\(308\) 0 0
\(309\) 4.11250 0.233952
\(310\) 0 0
\(311\) 28.0760 1.59205 0.796023 0.605267i \(-0.206934\pi\)
0.796023 + 0.605267i \(0.206934\pi\)
\(312\) 0 0
\(313\) 7.01601 7.01601i 0.396569 0.396569i −0.480452 0.877021i \(-0.659527\pi\)
0.877021 + 0.480452i \(0.159527\pi\)
\(314\) 0 0
\(315\) −9.37772 5.60961i −0.528374 0.316066i
\(316\) 0 0
\(317\) −20.0745 + 20.0745i −1.12749 + 1.12749i −0.136911 + 0.990583i \(0.543717\pi\)
−0.990583 + 0.136911i \(0.956283\pi\)
\(318\) 0 0
\(319\) 30.9865i 1.73491i
\(320\) 0 0
\(321\) 9.30929i 0.519594i
\(322\) 0 0
\(323\) −10.7384 + 10.7384i −0.597499 + 0.597499i
\(324\) 0 0
\(325\) −6.63739 + 22.0196i −0.368176 + 1.22143i
\(326\) 0 0
\(327\) −1.55391 1.55391i −0.0859314 0.0859314i
\(328\) 0 0
\(329\) 16.9118i 0.932376i
\(330\) 0 0
\(331\) 9.46469i 0.520227i 0.965578 + 0.260113i \(0.0837599\pi\)
−0.965578 + 0.260113i \(0.916240\pi\)
\(332\) 0 0
\(333\) 1.06608 1.06608i 0.0584206 0.0584206i
\(334\) 0 0
\(335\) 0.0915498 0.153046i 0.00500190 0.00836179i
\(336\) 0 0
\(337\) 23.9610 + 23.9610i 1.30524 + 1.30524i 0.924810 + 0.380430i \(0.124224\pi\)
0.380430 + 0.924810i \(0.375776\pi\)
\(338\) 0 0
\(339\) −8.74178 −0.474788
\(340\) 0 0
\(341\) 16.7636 + 21.5015i 0.907798 + 1.16437i
\(342\) 0 0
\(343\) 34.1474 + 34.1474i 1.84379 + 1.84379i
\(344\) 0 0
\(345\) −1.94889 7.75156i −0.104925 0.417330i
\(346\) 0 0
\(347\) 10.6386 + 10.6386i 0.571108 + 0.571108i 0.932438 0.361330i \(-0.117677\pi\)
−0.361330 + 0.932438i \(0.617677\pi\)
\(348\) 0 0
\(349\) 7.28805i 0.390120i −0.980791 0.195060i \(-0.937510\pi\)
0.980791 0.195060i \(-0.0624902\pi\)
\(350\) 0 0
\(351\) −4.59963 −0.245510
\(352\) 0 0
\(353\) −6.91692 + 6.91692i −0.368151 + 0.368151i −0.866802 0.498652i \(-0.833829\pi\)
0.498652 + 0.866802i \(0.333829\pi\)
\(354\) 0 0
\(355\) −27.8390 + 6.99926i −1.47754 + 0.371482i
\(356\) 0 0
\(357\) 6.76541 6.76541i 0.358064 0.358064i
\(358\) 0 0
\(359\) 3.51255i 0.185385i 0.995695 + 0.0926925i \(0.0295474\pi\)
−0.995695 + 0.0926925i \(0.970453\pi\)
\(360\) 0 0
\(361\) −41.1667 −2.16667
\(362\) 0 0
\(363\) 9.17713 9.17713i 0.481675 0.481675i
\(364\) 0 0
\(365\) 13.8849 23.2117i 0.726768 1.21496i
\(366\) 0 0
\(367\) −10.6423 10.6423i −0.555524 0.555524i 0.372506 0.928030i \(-0.378499\pi\)
−0.928030 + 0.372506i \(0.878499\pi\)
\(368\) 0 0
\(369\) 0.549352i 0.0285981i
\(370\) 0 0
\(371\) 58.7248i 3.04884i
\(372\) 0 0
\(373\) 0.579797 + 0.579797i 0.0300207 + 0.0300207i 0.721958 0.691937i \(-0.243242\pi\)
−0.691937 + 0.721958i \(0.743242\pi\)
\(374\) 0 0
\(375\) 0.519196 11.1683i 0.0268112 0.576727i
\(376\) 0 0
\(377\) 20.5812 20.5812i 1.05998 1.05998i
\(378\) 0 0
\(379\) 28.3112i 1.45425i 0.686505 + 0.727125i \(0.259144\pi\)
−0.686505 + 0.727125i \(0.740856\pi\)
\(380\) 0 0
\(381\) 8.15366 0.417724
\(382\) 0 0
\(383\) 7.05626 7.05626i 0.360558 0.360558i −0.503460 0.864018i \(-0.667940\pi\)
0.864018 + 0.503460i \(0.167940\pi\)
\(384\) 0 0
\(385\) 45.9206 + 27.4690i 2.34033 + 1.39995i
\(386\) 0 0
\(387\) 4.48876 + 4.48876i 0.228177 + 0.228177i
\(388\) 0 0
\(389\) −17.6401 −0.894387 −0.447193 0.894437i \(-0.647576\pi\)
−0.447193 + 0.894437i \(0.647576\pi\)
\(390\) 0 0
\(391\) 6.99824 0.353916
\(392\) 0 0
\(393\) −7.79983 + 7.79983i −0.393449 + 0.393449i
\(394\) 0 0
\(395\) 24.7463 6.22171i 1.24512 0.313048i
\(396\) 0 0
\(397\) −7.53894 + 7.53894i −0.378368 + 0.378368i −0.870513 0.492145i \(-0.836213\pi\)
0.492145 + 0.870513i \(0.336213\pi\)
\(398\) 0 0
\(399\) 37.9064 1.89769
\(400\) 0 0
\(401\) 3.41386i 0.170480i 0.996360 + 0.0852401i \(0.0271657\pi\)
−0.996360 + 0.0852401i \(0.972834\pi\)
\(402\) 0 0
\(403\) −3.14693 + 25.4156i −0.156760 + 1.26604i
\(404\) 0 0
\(405\) 2.16858 0.545223i 0.107758 0.0270924i
\(406\) 0 0
\(407\) −5.22034 + 5.22034i −0.258762 + 0.258762i
\(408\) 0 0
\(409\) −31.5783 −1.56145 −0.780724 0.624876i \(-0.785150\pi\)
−0.780724 + 0.624876i \(0.785150\pi\)
\(410\) 0 0
\(411\) −9.24910 −0.456224
\(412\) 0 0
\(413\) −25.6224 25.6224i −1.26079 1.26079i
\(414\) 0 0
\(415\) 2.48737 4.15820i 0.122100 0.204118i
\(416\) 0 0
\(417\) −9.81581 + 9.81581i −0.480682 + 0.480682i
\(418\) 0 0
\(419\) 22.0057i 1.07505i −0.843248 0.537525i \(-0.819360\pi\)
0.843248 0.537525i \(-0.180640\pi\)
\(420\) 0 0
\(421\) 39.7439 1.93700 0.968498 0.249020i \(-0.0801084\pi\)
0.968498 + 0.249020i \(0.0801084\pi\)
\(422\) 0 0
\(423\) −2.44703 2.44703i −0.118979 0.118979i
\(424\) 0 0
\(425\) 9.37261 + 2.82520i 0.454638 + 0.137042i
\(426\) 0 0
\(427\) 41.2519 + 41.2519i 1.99632 + 1.99632i
\(428\) 0 0
\(429\) 22.5234 1.08744
\(430\) 0 0
\(431\) −12.4241 −0.598447 −0.299224 0.954183i \(-0.596728\pi\)
−0.299224 + 0.954183i \(0.596728\pi\)
\(432\) 0 0
\(433\) −21.3312 + 21.3312i −1.02511 + 1.02511i −0.0254333 + 0.999677i \(0.508097\pi\)
−0.999677 + 0.0254333i \(0.991903\pi\)
\(434\) 0 0
\(435\) −7.26374 + 12.1430i −0.348270 + 0.582211i
\(436\) 0 0
\(437\) 19.6055 + 19.6055i 0.937856 + 0.937856i
\(438\) 0 0
\(439\) 36.1648i 1.72605i 0.505159 + 0.863026i \(0.331434\pi\)
−0.505159 + 0.863026i \(0.668566\pi\)
\(440\) 0 0
\(441\) −16.8819 −0.803898
\(442\) 0 0
\(443\) 8.63713 + 8.63713i 0.410362 + 0.410362i 0.881865 0.471502i \(-0.156288\pi\)
−0.471502 + 0.881865i \(0.656288\pi\)
\(444\) 0 0
\(445\) −28.3799 + 7.13528i −1.34534 + 0.338245i
\(446\) 0 0
\(447\) 5.30497 + 5.30497i 0.250916 + 0.250916i
\(448\) 0 0
\(449\) −30.3951 −1.43443 −0.717216 0.696851i \(-0.754584\pi\)
−0.717216 + 0.696851i \(0.754584\pi\)
\(450\) 0 0
\(451\) 2.69005i 0.126670i
\(452\) 0 0
\(453\) 0.0227996 + 0.0227996i 0.00107122 + 0.00107122i
\(454\) 0 0
\(455\) 12.2555 + 48.7453i 0.574548 + 2.28521i
\(456\) 0 0
\(457\) −21.7509 21.7509i −1.01747 1.01747i −0.999845 0.0176210i \(-0.994391\pi\)
−0.0176210 0.999845i \(-0.505609\pi\)
\(458\) 0 0
\(459\) 1.95783i 0.0913837i
\(460\) 0 0
\(461\) 41.1546i 1.91676i 0.285494 + 0.958381i \(0.407842\pi\)
−0.285494 + 0.958381i \(0.592158\pi\)
\(462\) 0 0
\(463\) −12.2736 + 12.2736i −0.570403 + 0.570403i −0.932241 0.361838i \(-0.882149\pi\)
0.361838 + 0.932241i \(0.382149\pi\)
\(464\) 0 0
\(465\) −1.52900 12.3557i −0.0709055 0.572980i
\(466\) 0 0
\(467\) −5.31236 + 5.31236i −0.245827 + 0.245827i −0.819255 0.573429i \(-0.805613\pi\)
0.573429 + 0.819255i \(0.305613\pi\)
\(468\) 0 0
\(469\) 0.389756i 0.0179973i
\(470\) 0 0
\(471\) 2.07327i 0.0955314i
\(472\) 0 0
\(473\) −21.9805 21.9805i −1.01066 1.01066i
\(474\) 0 0
\(475\) 18.3425 + 34.1719i 0.841610 + 1.56792i
\(476\) 0 0
\(477\) 8.49714 + 8.49714i 0.389057 + 0.389057i
\(478\) 0 0
\(479\) 28.1222i 1.28494i 0.766312 + 0.642469i \(0.222090\pi\)
−0.766312 + 0.642469i \(0.777910\pi\)
\(480\) 0 0
\(481\) −6.93468 −0.316194
\(482\) 0 0
\(483\) −12.3519 12.3519i −0.562030 0.562030i
\(484\) 0 0
\(485\) 12.6496 21.1467i 0.574389 0.960220i
\(486\) 0 0
\(487\) −3.73712 3.73712i −0.169345 0.169345i 0.617346 0.786691i \(-0.288208\pi\)
−0.786691 + 0.617346i \(0.788208\pi\)
\(488\) 0 0
\(489\) −2.16490 −0.0979002
\(490\) 0 0
\(491\) 35.2715i 1.59178i −0.605441 0.795890i \(-0.707003\pi\)
0.605441 0.795890i \(-0.292997\pi\)
\(492\) 0 0
\(493\) −8.76036 8.76036i −0.394547 0.394547i
\(494\) 0 0
\(495\) −10.6190 + 2.66984i −0.477291 + 0.120000i
\(496\) 0 0
\(497\) −44.3606 + 44.3606i −1.98984 + 1.98984i
\(498\) 0 0
\(499\) 8.55558 0.383001 0.191500 0.981493i \(-0.438665\pi\)
0.191500 + 0.981493i \(0.438665\pi\)
\(500\) 0 0
\(501\) −18.7103 −0.835915
\(502\) 0 0
\(503\) 13.4456 + 13.4456i 0.599509 + 0.599509i 0.940182 0.340673i \(-0.110655\pi\)
−0.340673 + 0.940182i \(0.610655\pi\)
\(504\) 0 0
\(505\) −37.4867 + 9.42489i −1.66814 + 0.419402i
\(506\) 0 0
\(507\) 5.76761 + 5.76761i 0.256149 + 0.256149i
\(508\) 0 0
\(509\) 3.06081 0.135668 0.0678340 0.997697i \(-0.478391\pi\)
0.0678340 + 0.997697i \(0.478391\pi\)
\(510\) 0 0
\(511\) 59.1123i 2.61497i
\(512\) 0 0
\(513\) −5.48483 + 5.48483i −0.242161 + 0.242161i
\(514\) 0 0
\(515\) 7.89167 + 4.72068i 0.347749 + 0.208018i
\(516\) 0 0
\(517\) 11.9826 + 11.9826i 0.526993 + 0.526993i
\(518\) 0 0
\(519\) −7.31498 −0.321092
\(520\) 0 0
\(521\) 42.7863 1.87450 0.937250 0.348658i \(-0.113362\pi\)
0.937250 + 0.348658i \(0.113362\pi\)
\(522\) 0 0
\(523\) −11.3231 + 11.3231i −0.495126 + 0.495126i −0.909917 0.414791i \(-0.863855\pi\)
0.414791 + 0.909917i \(0.363855\pi\)
\(524\) 0 0
\(525\) −11.5562 21.5291i −0.504352 0.939606i
\(526\) 0 0
\(527\) 10.8181 + 1.33949i 0.471245 + 0.0583489i
\(528\) 0 0
\(529\) 10.2230i 0.444479i
\(530\) 0 0
\(531\) 7.41481 0.321775
\(532\) 0 0
\(533\) 1.78673 1.78673i 0.0773919 0.0773919i
\(534\) 0 0
\(535\) −10.6860 + 17.8640i −0.461996 + 0.772329i
\(536\) 0 0
\(537\) 10.3147 10.3147i 0.445113 0.445113i
\(538\) 0 0
\(539\) 82.6667 3.56071
\(540\) 0 0
\(541\) −19.2669 −0.828350 −0.414175 0.910197i \(-0.635930\pi\)
−0.414175 + 0.910197i \(0.635930\pi\)
\(542\) 0 0
\(543\) 8.10930 + 8.10930i 0.348003 + 0.348003i
\(544\) 0 0
\(545\) −1.19816 4.76558i −0.0513236 0.204135i
\(546\) 0 0
\(547\) 28.5347 28.5347i 1.22006 1.22006i 0.252443 0.967612i \(-0.418766\pi\)
0.967612 0.252443i \(-0.0812341\pi\)
\(548\) 0 0
\(549\) −11.9378 −0.509493
\(550\) 0 0
\(551\) 49.0840i 2.09105i
\(552\) 0 0
\(553\) 39.4325 39.4325i 1.67684 1.67684i
\(554\) 0 0
\(555\) 3.26948 0.822011i 0.138782 0.0348924i
\(556\) 0 0
\(557\) −16.5408 16.5408i −0.700857 0.700857i 0.263738 0.964594i \(-0.415045\pi\)
−0.964594 + 0.263738i \(0.915045\pi\)
\(558\) 0 0
\(559\) 29.1988i 1.23498i
\(560\) 0 0
\(561\) 9.58706i 0.404766i
\(562\) 0 0
\(563\) 7.01144 + 7.01144i 0.295497 + 0.295497i 0.839247 0.543750i \(-0.182996\pi\)
−0.543750 + 0.839247i \(0.682996\pi\)
\(564\) 0 0
\(565\) −16.7750 10.0346i −0.705730 0.422157i
\(566\) 0 0
\(567\) 3.45556 3.45556i 0.145120 0.145120i
\(568\) 0 0
\(569\) −20.8064 −0.872250 −0.436125 0.899886i \(-0.643649\pi\)
−0.436125 + 0.899886i \(0.643649\pi\)
\(570\) 0 0
\(571\) 40.6599i 1.70156i 0.525519 + 0.850782i \(0.323871\pi\)
−0.525519 + 0.850782i \(0.676129\pi\)
\(572\) 0 0
\(573\) −5.55380 + 5.55380i −0.232013 + 0.232013i
\(574\) 0 0
\(575\) 5.15808 17.1119i 0.215107 0.713617i
\(576\) 0 0
\(577\) 26.3995 26.3995i 1.09903 1.09903i 0.104502 0.994525i \(-0.466675\pi\)
0.994525 0.104502i \(-0.0333249\pi\)
\(578\) 0 0
\(579\) 1.18973 0.0494434
\(580\) 0 0
\(581\) 10.5895i 0.439328i
\(582\) 0 0
\(583\) −41.6086 41.6086i −1.72325 1.72325i
\(584\) 0 0
\(585\) −8.82646 5.27985i −0.364929 0.218295i
\(586\) 0 0
\(587\) −9.52719 9.52719i −0.393229 0.393229i 0.482607 0.875837i \(-0.339690\pi\)
−0.875837 + 0.482607i \(0.839690\pi\)
\(588\) 0 0
\(589\) 26.5543 + 34.0593i 1.09415 + 1.40339i
\(590\) 0 0
\(591\) −11.0285 −0.453651
\(592\) 0 0
\(593\) −3.70145 3.70145i −0.152000 0.152000i 0.627011 0.779011i \(-0.284278\pi\)
−0.779011 + 0.627011i \(0.784278\pi\)
\(594\) 0 0
\(595\) 20.7484 5.21655i 0.850601 0.213858i
\(596\) 0 0
\(597\) −1.13059 + 1.13059i −0.0462721 + 0.0462721i
\(598\) 0 0
\(599\) 7.27677i 0.297321i 0.988888 + 0.148660i \(0.0474961\pi\)
−0.988888 + 0.148660i \(0.952504\pi\)
\(600\) 0 0
\(601\) 27.9458i 1.13993i −0.821668 0.569966i \(-0.806956\pi\)
0.821668 0.569966i \(-0.193044\pi\)
\(602\) 0 0
\(603\) 0.0563954 + 0.0563954i 0.00229660 + 0.00229660i
\(604\) 0 0
\(605\) 28.1447 7.07614i 1.14425 0.287686i
\(606\) 0 0
\(607\) −2.94856 + 2.94856i −0.119678 + 0.119678i −0.764409 0.644731i \(-0.776969\pi\)
0.644731 + 0.764409i \(0.276969\pi\)
\(608\) 0 0
\(609\) 30.9240i 1.25310i
\(610\) 0 0
\(611\) 15.9176i 0.643958i
\(612\) 0 0
\(613\) 7.25229 7.25229i 0.292917 0.292917i −0.545314 0.838232i \(-0.683590\pi\)
0.838232 + 0.545314i \(0.183590\pi\)
\(614\) 0 0
\(615\) −0.630593 + 1.05418i −0.0254280 + 0.0425085i
\(616\) 0 0
\(617\) 24.7603 24.7603i 0.996812 0.996812i −0.00318330 0.999995i \(-0.501013\pi\)
0.999995 + 0.00318330i \(0.00101328\pi\)
\(618\) 0 0
\(619\) 34.7040 1.39487 0.697437 0.716647i \(-0.254324\pi\)
0.697437 + 0.716647i \(0.254324\pi\)
\(620\) 0 0
\(621\) 3.57449 0.143439
\(622\) 0 0
\(623\) −45.2226 + 45.2226i −1.81181 + 1.81181i
\(624\) 0 0
\(625\) 13.8162 20.8354i 0.552649 0.833414i
\(626\) 0 0
\(627\) 26.8580 26.8580i 1.07260 1.07260i
\(628\) 0 0
\(629\) 2.95174i 0.117694i
\(630\) 0 0
\(631\) 41.3611i 1.64656i −0.567635 0.823280i \(-0.692142\pi\)
0.567635 0.823280i \(-0.307858\pi\)
\(632\) 0 0
\(633\) 1.39184 1.39184i 0.0553205 0.0553205i
\(634\) 0 0
\(635\) 15.6464 + 9.35946i 0.620910 + 0.371419i
\(636\) 0 0
\(637\) 54.9071 + 54.9071i 2.17550 + 2.17550i
\(638\) 0 0
\(639\) 12.8374i 0.507841i
\(640\) 0 0
\(641\) 33.2226i 1.31221i 0.754668 + 0.656107i \(0.227798\pi\)
−0.754668 + 0.656107i \(0.772202\pi\)
\(642\) 0 0
\(643\) 17.7653 17.7653i 0.700596 0.700596i −0.263943 0.964538i \(-0.585023\pi\)
0.964538 + 0.263943i \(0.0850230\pi\)
\(644\) 0 0
\(645\) 3.46111 + 13.7663i 0.136281 + 0.542047i
\(646\) 0 0
\(647\) 12.0055 + 12.0055i 0.471985 + 0.471985i 0.902557 0.430571i \(-0.141688\pi\)
−0.430571 + 0.902557i \(0.641688\pi\)
\(648\) 0 0
\(649\) −36.3087 −1.42524
\(650\) 0 0
\(651\) −16.7298 21.4582i −0.655691 0.841011i
\(652\) 0 0
\(653\) −23.2656 23.2656i −0.910454 0.910454i 0.0858533 0.996308i \(-0.472638\pi\)
−0.996308 + 0.0858533i \(0.972638\pi\)
\(654\) 0 0
\(655\) −23.9208 + 6.01415i −0.934662 + 0.234992i
\(656\) 0 0
\(657\) 8.55320 + 8.55320i 0.333692 + 0.333692i
\(658\) 0 0
\(659\) 19.2928i 0.751543i −0.926712 0.375771i \(-0.877378\pi\)
0.926712 0.375771i \(-0.122622\pi\)
\(660\) 0 0
\(661\) 11.6552 0.453336 0.226668 0.973972i \(-0.427217\pi\)
0.226668 + 0.973972i \(0.427217\pi\)
\(662\) 0 0
\(663\) 6.36771 6.36771i 0.247301 0.247301i
\(664\) 0 0
\(665\) 72.7403 + 43.5122i 2.82075 + 1.68733i
\(666\) 0 0
\(667\) −15.9941 + 15.9941i −0.619295 + 0.619295i
\(668\) 0 0
\(669\) 12.0505i 0.465899i
\(670\) 0 0
\(671\) 58.4568 2.25670
\(672\) 0 0
\(673\) 5.90308 5.90308i 0.227547 0.227547i −0.584120 0.811667i \(-0.698560\pi\)
0.811667 + 0.584120i \(0.198560\pi\)
\(674\) 0 0
\(675\) 4.78724 + 1.44302i 0.184261 + 0.0555420i
\(676\) 0 0
\(677\) −0.318677 0.318677i −0.0122477 0.0122477i 0.700956 0.713204i \(-0.252757\pi\)
−0.713204 + 0.700956i \(0.752757\pi\)
\(678\) 0 0
\(679\) 53.8533i 2.06670i
\(680\) 0 0
\(681\) 1.22236i 0.0468409i
\(682\) 0 0
\(683\) −11.8614 11.8614i −0.453864 0.453864i 0.442771 0.896635i \(-0.353995\pi\)
−0.896635 + 0.442771i \(0.853995\pi\)
\(684\) 0 0
\(685\) −17.7485 10.6169i −0.678137 0.405651i
\(686\) 0 0
\(687\) −4.85910 + 4.85910i −0.185386 + 0.185386i
\(688\) 0 0
\(689\) 55.2728i 2.10572i
\(690\) 0 0
\(691\) −18.9159 −0.719593 −0.359797 0.933031i \(-0.617154\pi\)
−0.359797 + 0.933031i \(0.617154\pi\)
\(692\) 0 0
\(693\) −16.9211 + 16.9211i −0.642781 + 0.642781i
\(694\) 0 0
\(695\) −30.1035 + 7.56860i −1.14189 + 0.287093i
\(696\) 0 0
\(697\) −0.760520 0.760520i −0.0288068 0.0288068i
\(698\) 0 0
\(699\) 7.26450 0.274769
\(700\) 0 0
\(701\) −1.13129 −0.0427284 −0.0213642 0.999772i \(-0.506801\pi\)
−0.0213642 + 0.999772i \(0.506801\pi\)
\(702\) 0 0
\(703\) −8.26925 + 8.26925i −0.311881 + 0.311881i
\(704\) 0 0
\(705\) −1.88682 7.50465i −0.0710616 0.282641i
\(706\) 0 0
\(707\) −59.7339 + 59.7339i −2.24653 + 2.24653i
\(708\) 0 0
\(709\) −24.6940 −0.927402 −0.463701 0.885992i \(-0.653479\pi\)
−0.463701 + 0.885992i \(0.653479\pi\)
\(710\) 0 0
\(711\) 11.4113i 0.427958i
\(712\) 0 0
\(713\) 2.44555 19.7511i 0.0915867 0.739684i
\(714\) 0 0
\(715\) 43.2212 + 25.8543i 1.61638 + 0.966895i
\(716\) 0 0
\(717\) 1.75065 1.75065i 0.0653792 0.0653792i
\(718\) 0 0
\(719\) −15.2440 −0.568507 −0.284253 0.958749i \(-0.591746\pi\)
−0.284253 + 0.958749i \(0.591746\pi\)
\(720\) 0 0
\(721\) 20.0974 0.748466
\(722\) 0 0
\(723\) −15.9392 15.9392i −0.592784 0.592784i
\(724\) 0 0
\(725\) −27.8775 + 14.9638i −1.03534 + 0.555741i
\(726\) 0 0
\(727\) −14.6099 + 14.6099i −0.541852 + 0.541852i −0.924072 0.382220i \(-0.875160\pi\)
0.382220 + 0.924072i \(0.375160\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −12.4284 −0.459683
\(732\) 0 0
\(733\) −33.8807 33.8807i −1.25141 1.25141i −0.955087 0.296325i \(-0.904239\pi\)
−0.296325 0.955087i \(-0.595761\pi\)
\(734\) 0 0
\(735\) −32.3954 19.3784i −1.19492 0.714784i
\(736\) 0 0
\(737\) −0.276156 0.276156i −0.0101723 0.0101723i
\(738\) 0 0
\(739\) −21.3105 −0.783920 −0.391960 0.919982i \(-0.628203\pi\)
−0.391960 + 0.919982i \(0.628203\pi\)
\(740\) 0 0
\(741\) 35.6781 1.31067
\(742\) 0 0
\(743\) −21.4350 + 21.4350i −0.786373 + 0.786373i −0.980898 0.194525i \(-0.937684\pi\)
0.194525 + 0.980898i \(0.437684\pi\)
\(744\) 0 0
\(745\) 4.09046 + 16.2695i 0.149863 + 0.596067i
\(746\) 0 0
\(747\) 1.53224 + 1.53224i 0.0560618 + 0.0560618i
\(748\) 0 0
\(749\) 45.4936i 1.66230i
\(750\) 0 0
\(751\) −29.3802 −1.07210 −0.536049 0.844187i \(-0.680084\pi\)
−0.536049 + 0.844187i \(0.680084\pi\)
\(752\) 0 0
\(753\) 5.34251 + 5.34251i 0.194692 + 0.194692i
\(754\) 0 0
\(755\) 0.0175799 + 0.0699226i 0.000639798 + 0.00254474i
\(756\) 0 0
\(757\) 11.9078 + 11.9078i 0.432796 + 0.432796i 0.889578 0.456783i \(-0.150998\pi\)
−0.456783 + 0.889578i \(0.650998\pi\)
\(758\) 0 0
\(759\) −17.5035 −0.635336
\(760\) 0 0
\(761\) 9.76514i 0.353986i −0.984212 0.176993i \(-0.943363\pi\)
0.984212 0.176993i \(-0.0566370\pi\)
\(762\) 0 0
\(763\) −7.59381 7.59381i −0.274914 0.274914i
\(764\) 0 0
\(765\) −2.24737 + 3.75697i −0.0812537 + 0.135834i
\(766\) 0 0
\(767\) −24.1162 24.1162i −0.870785 0.870785i
\(768\) 0 0
\(769\) 32.1135i 1.15804i −0.815313 0.579021i \(-0.803435\pi\)
0.815313 0.579021i \(-0.196565\pi\)
\(770\) 0 0
\(771\) 9.11601i 0.328305i
\(772\) 0 0
\(773\) −4.82343 + 4.82343i −0.173487 + 0.173487i −0.788509 0.615023i \(-0.789147\pi\)
0.615023 + 0.788509i \(0.289147\pi\)
\(774\) 0 0
\(775\) 11.2488 25.4650i 0.404069 0.914728i
\(776\) 0 0
\(777\) 5.20981 5.20981i 0.186901 0.186901i
\(778\) 0 0
\(779\) 4.26117i 0.152672i
\(780\) 0 0
\(781\) 62.8620i 2.24938i
\(782\) 0 0
\(783\) −4.47452 4.47452i −0.159906 0.159906i
\(784\) 0 0
\(785\) −2.37988 + 3.97850i −0.0849416 + 0.141999i
\(786\) 0 0
\(787\) 4.31437 + 4.31437i 0.153791 + 0.153791i 0.779809 0.626018i \(-0.215316\pi\)
−0.626018 + 0.779809i \(0.715316\pi\)
\(788\) 0 0
\(789\) 9.41387i 0.335143i
\(790\) 0 0
\(791\) −42.7203 −1.51896
\(792\) 0 0
\(793\) 38.8269 + 38.8269i 1.37878 + 1.37878i
\(794\) 0 0
\(795\) 6.55182 + 26.0593i 0.232369 + 0.924229i
\(796\) 0 0
\(797\) 19.2281 + 19.2281i 0.681094 + 0.681094i 0.960247 0.279152i \(-0.0900535\pi\)
−0.279152 + 0.960247i \(0.590053\pi\)
\(798\) 0 0
\(799\) 6.77533 0.239694
\(800\) 0 0
\(801\) 13.0869i 0.462403i
\(802\) 0 0
\(803\) −41.8831 41.8831i −1.47802 1.47802i
\(804\) 0 0
\(805\) −9.52407 37.8811i −0.335679 1.33514i
\(806\) 0 0
\(807\) −6.42354 + 6.42354i −0.226119 + 0.226119i
\(808\) 0 0
\(809\) 13.2550 0.466022 0.233011 0.972474i \(-0.425142\pi\)
0.233011 + 0.972474i \(0.425142\pi\)
\(810\) 0 0
\(811\) −4.16919 −0.146400 −0.0732001 0.997317i \(-0.523321\pi\)
−0.0732001 + 0.997317i \(0.523321\pi\)
\(812\) 0 0
\(813\) −5.28638 5.28638i −0.185401 0.185401i
\(814\) 0 0
\(815\) −4.15433 2.48506i −0.145520 0.0870478i
\(816\) 0 0
\(817\) −34.8181 34.8181i −1.21813 1.21813i
\(818\) 0 0
\(819\) −22.4780 −0.785444
\(820\) 0 0
\(821\) 0.400642i 0.0139825i 0.999976 + 0.00699125i \(0.00222540\pi\)
−0.999976 + 0.00699125i \(0.997775\pi\)
\(822\) 0 0
\(823\) −3.00912 + 3.00912i −0.104891 + 0.104891i −0.757605 0.652713i \(-0.773631\pi\)
0.652713 + 0.757605i \(0.273631\pi\)
\(824\) 0 0
\(825\) −23.4421 7.06617i −0.816148 0.246012i
\(826\) 0 0
\(827\) −18.8781 18.8781i −0.656455 0.656455i 0.298085 0.954539i \(-0.403652\pi\)
−0.954539 + 0.298085i \(0.903652\pi\)
\(828\) 0 0
\(829\) −16.0434 −0.557211 −0.278606 0.960406i \(-0.589872\pi\)
−0.278606 + 0.960406i \(0.589872\pi\)
\(830\) 0 0
\(831\) 32.2785 1.11973
\(832\) 0 0
\(833\) 23.3712 23.3712i 0.809763 0.809763i
\(834\) 0 0
\(835\) −35.9041 21.4773i −1.24251 0.743252i
\(836\) 0 0
\(837\) 5.52557 + 0.684169i 0.190992 + 0.0236483i
\(838\) 0 0
\(839\) 17.6178i 0.608234i 0.952635 + 0.304117i \(0.0983614\pi\)
−0.952635 + 0.304117i \(0.901639\pi\)
\(840\) 0 0
\(841\) 11.0427 0.380783
\(842\) 0 0
\(843\) 15.7773 15.7773i 0.543400 0.543400i
\(844\) 0 0
\(845\) 4.44719 + 17.6883i 0.152988 + 0.608496i
\(846\) 0 0
\(847\) 44.8478 44.8478i 1.54099 1.54099i
\(848\) 0 0
\(849\) −5.69664 −0.195508
\(850\) 0 0
\(851\) 5.38911 0.184736
\(852\) 0 0
\(853\) 2.83296 + 2.83296i 0.0969988 + 0.0969988i 0.753941 0.656942i \(-0.228150\pi\)
−0.656942 + 0.753941i \(0.728150\pi\)
\(854\) 0 0
\(855\) −16.8211 + 4.22914i −0.575268 + 0.144634i
\(856\) 0 0
\(857\) −30.4896 + 30.4896i −1.04150 + 1.04150i −0.0424041 + 0.999101i \(0.513502\pi\)
−0.999101 + 0.0424041i \(0.986498\pi\)
\(858\) 0 0
\(859\) −45.0258 −1.53626 −0.768131 0.640293i \(-0.778813\pi\)
−0.768131 + 0.640293i \(0.778813\pi\)
\(860\) 0 0
\(861\) 2.68463i 0.0914920i
\(862\) 0 0
\(863\) 6.99688 6.99688i 0.238177 0.238177i −0.577918 0.816095i \(-0.696135\pi\)
0.816095 + 0.577918i \(0.196135\pi\)
\(864\) 0 0
\(865\) −14.0371 8.39676i −0.477274 0.285498i
\(866\) 0 0
\(867\) 9.31040 + 9.31040i 0.316198 + 0.316198i
\(868\) 0 0
\(869\) 55.8787i 1.89555i
\(870\) 0 0
\(871\) 0.366845i 0.0124301i
\(872\) 0 0
\(873\) 7.79226 + 7.79226i 0.263728 + 0.263728i
\(874\) 0 0
\(875\) 2.53726 54.5783i 0.0857752 1.84508i
\(876\) 0 0
\(877\) −16.0767 + 16.0767i −0.542871 + 0.542871i −0.924370 0.381498i \(-0.875408\pi\)
0.381498 + 0.924370i \(0.375408\pi\)
\(878\) 0 0
\(879\) 21.6061 0.728756
\(880\) 0 0
\(881\) 57.7504i 1.94566i −0.231520 0.972830i \(-0.574370\pi\)
0.231520 0.972830i \(-0.425630\pi\)
\(882\) 0 0
\(883\) −26.5193 + 26.5193i −0.892444 + 0.892444i −0.994753 0.102309i \(-0.967377\pi\)
0.102309 + 0.994753i \(0.467377\pi\)
\(884\) 0 0
\(885\) 14.2286 + 8.51136i 0.478290 + 0.286106i
\(886\) 0 0
\(887\) 34.8453 34.8453i 1.16999 1.16999i 0.187778 0.982211i \(-0.439871\pi\)
0.982211 0.187778i \(-0.0601286\pi\)
\(888\) 0 0
\(889\) 39.8462 1.33640
\(890\) 0 0
\(891\) 4.89678i 0.164048i
\(892\) 0 0
\(893\) 18.9810 + 18.9810i 0.635174 + 0.635174i
\(894\) 0 0
\(895\) 31.6335 7.95328i 1.05739 0.265849i
\(896\) 0 0
\(897\) −11.6258 11.6258i −0.388174 0.388174i
\(898\) 0 0
\(899\) −27.7856 + 21.6630i −0.926702 + 0.722500i
\(900\) 0 0
\(901\) −23.5268 −0.783792
\(902\) 0 0
\(903\) 21.9362 + 21.9362i 0.729990 + 0.729990i
\(904\) 0 0
\(905\) 6.25277 + 24.8699i 0.207849 + 0.826702i
\(906\) 0 0
\(907\) 29.5016 29.5016i 0.979585 0.979585i −0.0202110 0.999796i \(-0.506434\pi\)
0.999796 + 0.0202110i \(0.00643380\pi\)
\(908\) 0 0
\(909\) 17.2863i 0.573351i
\(910\) 0 0
\(911\) 38.8492i 1.28713i 0.765391 + 0.643566i \(0.222546\pi\)
−0.765391 + 0.643566i \(0.777454\pi\)
\(912\) 0 0
\(913\) −7.50305 7.50305i −0.248315 0.248315i
\(914\) 0 0
\(915\) −22.9080 13.7032i −0.757316 0.453015i
\(916\) 0 0
\(917\) −38.1170 + 38.1170i −1.25874 + 1.25874i
\(918\) 0 0
\(919\) 10.5864i 0.349214i 0.984638 + 0.174607i \(0.0558655\pi\)
−0.984638 + 0.174607i \(0.944134\pi\)
\(920\) 0 0
\(921\) 13.3450i 0.439734i
\(922\) 0 0
\(923\) −41.7529 + 41.7529i −1.37431 + 1.37431i
\(924\) 0 0
\(925\) 7.21753 + 2.17559i 0.237311 + 0.0715329i
\(926\) 0 0
\(927\) −2.90798 + 2.90798i −0.0955105 + 0.0955105i
\(928\) 0 0
\(929\) −15.4991 −0.508508 −0.254254 0.967138i \(-0.581830\pi\)
−0.254254 + 0.967138i \(0.581830\pi\)
\(930\) 0 0
\(931\) 130.948 4.29164
\(932\) 0 0
\(933\) −19.8527 + 19.8527i −0.649950 + 0.649950i
\(934\) 0 0
\(935\) 11.0048 18.3971i 0.359897 0.601648i
\(936\) 0 0
\(937\) 31.0188 31.0188i 1.01334 1.01334i 0.0134292 0.999910i \(-0.495725\pi\)
0.999910 0.0134292i \(-0.00427478\pi\)
\(938\) 0 0
\(939\) 9.92214i 0.323797i
\(940\) 0 0
\(941\) 30.1329i 0.982306i −0.871073 0.491153i \(-0.836576\pi\)
0.871073 0.491153i \(-0.163424\pi\)
\(942\) 0 0
\(943\) −1.38851 + 1.38851i −0.0452162 + 0.0452162i
\(944\) 0 0
\(945\) 10.5976 2.66446i 0.344741 0.0866747i
\(946\) 0 0
\(947\) −8.64543 8.64543i −0.280939 0.280939i 0.552545 0.833483i \(-0.313657\pi\)
−0.833483 + 0.552545i \(0.813657\pi\)
\(948\) 0 0
\(949\) 55.6374i 1.80607i
\(950\) 0 0
\(951\) 28.3896i 0.920595i
\(952\) 0 0
\(953\) 42.9489 42.9489i 1.39125 1.39125i 0.568716 0.822534i \(-0.307441\pi\)
0.822534 0.568716i \(-0.192559\pi\)
\(954\) 0 0
\(955\) −17.0326 + 4.28233i −0.551162 + 0.138573i
\(956\) 0 0
\(957\) 21.9107 + 21.9107i 0.708274 + 0.708274i
\(958\) 0 0
\(959\) −45.1995 −1.45957
\(960\) 0 0
\(961\) 7.56084 30.0638i 0.243898 0.969801i
\(962\) 0 0
\(963\) −6.58266 6.58266i −0.212123 0.212123i
\(964\) 0 0
\(965\) 2.28303 + 1.36567i 0.0734932 + 0.0439625i
\(966\) 0 0
\(967\) −15.5563 15.5563i −0.500258 0.500258i 0.411260 0.911518i \(-0.365089\pi\)
−0.911518 + 0.411260i \(0.865089\pi\)
\(968\) 0 0
\(969\) 15.1863i 0.487856i
\(970\) 0 0
\(971\) −27.6524 −0.887408 −0.443704 0.896173i \(-0.646336\pi\)
−0.443704 + 0.896173i \(0.646336\pi\)
\(972\) 0 0
\(973\) −47.9690 + 47.9690i −1.53781 + 1.53781i
\(974\) 0 0
\(975\) −10.8768 20.2635i −0.348338 0.648952i
\(976\) 0 0
\(977\) −17.2983 + 17.2983i −0.553422 + 0.553422i −0.927427 0.374005i \(-0.877984\pi\)
0.374005 + 0.927427i \(0.377984\pi\)
\(978\) 0 0
\(979\) 64.0836i 2.04812i
\(980\) 0 0
\(981\) 2.19756 0.0701627
\(982\) 0 0
\(983\) 18.0115 18.0115i 0.574479 0.574479i −0.358898 0.933377i \(-0.616847\pi\)
0.933377 + 0.358898i \(0.116847\pi\)
\(984\) 0 0
\(985\) −21.1631 12.6594i −0.674312 0.403363i
\(986\) 0 0
\(987\) −11.9584 11.9584i −0.380641 0.380641i
\(988\) 0 0
\(989\) 22.6911i 0.721535i
\(990\) 0 0
\(991\) 26.7453i 0.849593i 0.905289 + 0.424796i \(0.139654\pi\)
−0.905289 + 0.424796i \(0.860346\pi\)
\(992\) 0 0
\(993\) −6.69255 6.69255i −0.212382 0.212382i
\(994\) 0 0
\(995\) −3.46734 + 0.871758i −0.109922 + 0.0276366i
\(996\) 0 0
\(997\) −15.3742 + 15.3742i −0.486906 + 0.486906i −0.907328 0.420422i \(-0.861882\pi\)
0.420422 + 0.907328i \(0.361882\pi\)
\(998\) 0 0
\(999\) 1.50766i 0.0477002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.433.11 64
5.2 odd 4 inner 1860.2.s.a.1177.32 yes 64
31.30 odd 2 inner 1860.2.s.a.433.32 yes 64
155.92 even 4 inner 1860.2.s.a.1177.11 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.11 64 1.1 even 1 trivial
1860.2.s.a.433.32 yes 64 31.30 odd 2 inner
1860.2.s.a.1177.11 yes 64 155.92 even 4 inner
1860.2.s.a.1177.32 yes 64 5.2 odd 4 inner