Properties

Label 1860.2.s.a.1177.6
Level $1860$
Weight $2$
Character 1860.1177
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1177.6
Character \(\chi\) \(=\) 1860.1177
Dual form 1860.2.s.a.433.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-0.193900 + 2.22765i) q^{5} +(-2.45774 - 2.45774i) q^{7} +1.00000i q^{9} -2.71402i q^{11} +(3.28292 + 3.28292i) q^{13} +(1.71229 - 1.43807i) q^{15} +(-1.47309 + 1.47309i) q^{17} -2.29182i q^{19} +3.47577i q^{21} +(1.10448 + 1.10448i) q^{23} +(-4.92481 - 0.863882i) q^{25} +(0.707107 - 0.707107i) q^{27} +1.82309 q^{29} +(-5.56269 - 0.237761i) q^{31} +(-1.91910 + 1.91910i) q^{33} +(5.95153 - 4.99842i) q^{35} +(-4.28242 + 4.28242i) q^{37} -4.64275i q^{39} +6.87600 q^{41} +(4.47584 + 4.47584i) q^{43} +(-2.22765 - 0.193900i) q^{45} +(-1.11839 - 1.11839i) q^{47} +5.08097i q^{49} +2.08327 q^{51} +(6.61030 + 6.61030i) q^{53} +(6.04587 + 0.526249i) q^{55} +(-1.62056 + 1.62056i) q^{57} +6.91537i q^{59} +9.59089i q^{61} +(2.45774 - 2.45774i) q^{63} +(-7.94974 + 6.67662i) q^{65} +(0.811325 + 0.811325i) q^{67} -1.56197i q^{69} -0.0283312 q^{71} +(6.32948 + 6.32948i) q^{73} +(2.87151 + 4.09322i) q^{75} +(-6.67036 + 6.67036i) q^{77} -8.59322 q^{79} -1.00000 q^{81} +(10.5286 + 10.5286i) q^{83} +(-2.99590 - 3.56717i) q^{85} +(-1.28912 - 1.28912i) q^{87} +1.53775 q^{89} -16.1371i q^{91} +(3.76529 + 4.10154i) q^{93} +(5.10537 + 0.444385i) q^{95} +(6.71200 + 6.71200i) q^{97} +2.71402 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −0.193900 + 2.22765i −0.0867148 + 0.996233i
\(6\) 0 0
\(7\) −2.45774 2.45774i −0.928938 0.928938i 0.0686991 0.997637i \(-0.478115\pi\)
−0.997637 + 0.0686991i \(0.978115\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 2.71402i 0.818308i −0.912465 0.409154i \(-0.865824\pi\)
0.912465 0.409154i \(-0.134176\pi\)
\(12\) 0 0
\(13\) 3.28292 + 3.28292i 0.910518 + 0.910518i 0.996313 0.0857948i \(-0.0273429\pi\)
−0.0857948 + 0.996313i \(0.527343\pi\)
\(14\) 0 0
\(15\) 1.71229 1.43807i 0.442112 0.371309i
\(16\) 0 0
\(17\) −1.47309 + 1.47309i −0.357278 + 0.357278i −0.862809 0.505531i \(-0.831297\pi\)
0.505531 + 0.862809i \(0.331297\pi\)
\(18\) 0 0
\(19\) 2.29182i 0.525780i −0.964826 0.262890i \(-0.915324\pi\)
0.964826 0.262890i \(-0.0846757\pi\)
\(20\) 0 0
\(21\) 3.47577i 0.758475i
\(22\) 0 0
\(23\) 1.10448 + 1.10448i 0.230299 + 0.230299i 0.812818 0.582518i \(-0.197933\pi\)
−0.582518 + 0.812818i \(0.697933\pi\)
\(24\) 0 0
\(25\) −4.92481 0.863882i −0.984961 0.172776i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 1.82309 0.338540 0.169270 0.985570i \(-0.445859\pi\)
0.169270 + 0.985570i \(0.445859\pi\)
\(30\) 0 0
\(31\) −5.56269 0.237761i −0.999088 0.0427032i
\(32\) 0 0
\(33\) −1.91910 + 1.91910i −0.334073 + 0.334073i
\(34\) 0 0
\(35\) 5.95153 4.99842i 1.00599 0.844887i
\(36\) 0 0
\(37\) −4.28242 + 4.28242i −0.704025 + 0.704025i −0.965272 0.261247i \(-0.915866\pi\)
0.261247 + 0.965272i \(0.415866\pi\)
\(38\) 0 0
\(39\) 4.64275i 0.743435i
\(40\) 0 0
\(41\) 6.87600 1.07385 0.536925 0.843630i \(-0.319586\pi\)
0.536925 + 0.843630i \(0.319586\pi\)
\(42\) 0 0
\(43\) 4.47584 + 4.47584i 0.682560 + 0.682560i 0.960576 0.278017i \(-0.0896770\pi\)
−0.278017 + 0.960576i \(0.589677\pi\)
\(44\) 0 0
\(45\) −2.22765 0.193900i −0.332078 0.0289049i
\(46\) 0 0
\(47\) −1.11839 1.11839i −0.163134 0.163134i 0.620819 0.783954i \(-0.286800\pi\)
−0.783954 + 0.620819i \(0.786800\pi\)
\(48\) 0 0
\(49\) 5.08097i 0.725853i
\(50\) 0 0
\(51\) 2.08327 0.291716
\(52\) 0 0
\(53\) 6.61030 + 6.61030i 0.907995 + 0.907995i 0.996110 0.0881152i \(-0.0280844\pi\)
−0.0881152 + 0.996110i \(0.528084\pi\)
\(54\) 0 0
\(55\) 6.04587 + 0.526249i 0.815225 + 0.0709594i
\(56\) 0 0
\(57\) −1.62056 + 1.62056i −0.214649 + 0.214649i
\(58\) 0 0
\(59\) 6.91537i 0.900304i 0.892952 + 0.450152i \(0.148630\pi\)
−0.892952 + 0.450152i \(0.851370\pi\)
\(60\) 0 0
\(61\) 9.59089i 1.22799i 0.789311 + 0.613994i \(0.210438\pi\)
−0.789311 + 0.613994i \(0.789562\pi\)
\(62\) 0 0
\(63\) 2.45774 2.45774i 0.309646 0.309646i
\(64\) 0 0
\(65\) −7.94974 + 6.67662i −0.986044 + 0.828133i
\(66\) 0 0
\(67\) 0.811325 + 0.811325i 0.0991191 + 0.0991191i 0.754927 0.655808i \(-0.227672\pi\)
−0.655808 + 0.754927i \(0.727672\pi\)
\(68\) 0 0
\(69\) 1.56197i 0.188039i
\(70\) 0 0
\(71\) −0.0283312 −0.00336229 −0.00168115 0.999999i \(-0.500535\pi\)
−0.00168115 + 0.999999i \(0.500535\pi\)
\(72\) 0 0
\(73\) 6.32948 + 6.32948i 0.740809 + 0.740809i 0.972734 0.231925i \(-0.0745022\pi\)
−0.231925 + 0.972734i \(0.574502\pi\)
\(74\) 0 0
\(75\) 2.87151 + 4.09322i 0.331573 + 0.472644i
\(76\) 0 0
\(77\) −6.67036 + 6.67036i −0.760158 + 0.760158i
\(78\) 0 0
\(79\) −8.59322 −0.966813 −0.483406 0.875396i \(-0.660601\pi\)
−0.483406 + 0.875396i \(0.660601\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 10.5286 + 10.5286i 1.15566 + 1.15566i 0.985398 + 0.170265i \(0.0544623\pi\)
0.170265 + 0.985398i \(0.445538\pi\)
\(84\) 0 0
\(85\) −2.99590 3.56717i −0.324951 0.386913i
\(86\) 0 0
\(87\) −1.28912 1.28912i −0.138208 0.138208i
\(88\) 0 0
\(89\) 1.53775 0.163001 0.0815006 0.996673i \(-0.474029\pi\)
0.0815006 + 0.996673i \(0.474029\pi\)
\(90\) 0 0
\(91\) 16.1371i 1.69163i
\(92\) 0 0
\(93\) 3.76529 + 4.10154i 0.390442 + 0.425309i
\(94\) 0 0
\(95\) 5.10537 + 0.444385i 0.523800 + 0.0455929i
\(96\) 0 0
\(97\) 6.71200 + 6.71200i 0.681500 + 0.681500i 0.960338 0.278838i \(-0.0899493\pi\)
−0.278838 + 0.960338i \(0.589949\pi\)
\(98\) 0 0
\(99\) 2.71402 0.272769
\(100\) 0 0
\(101\) −17.2493 −1.71637 −0.858186 0.513339i \(-0.828408\pi\)
−0.858186 + 0.513339i \(0.828408\pi\)
\(102\) 0 0
\(103\) −12.4100 + 12.4100i −1.22280 + 1.22280i −0.256162 + 0.966634i \(0.582458\pi\)
−0.966634 + 0.256162i \(0.917542\pi\)
\(104\) 0 0
\(105\) −7.74278 0.673952i −0.755618 0.0657710i
\(106\) 0 0
\(107\) 8.58946 + 8.58946i 0.830375 + 0.830375i 0.987568 0.157193i \(-0.0502445\pi\)
−0.157193 + 0.987568i \(0.550244\pi\)
\(108\) 0 0
\(109\) 3.26217i 0.312460i −0.987721 0.156230i \(-0.950066\pi\)
0.987721 0.156230i \(-0.0499340\pi\)
\(110\) 0 0
\(111\) 6.05625 0.574834
\(112\) 0 0
\(113\) 7.70976 7.70976i 0.725273 0.725273i −0.244401 0.969674i \(-0.578591\pi\)
0.969674 + 0.244401i \(0.0785914\pi\)
\(114\) 0 0
\(115\) −2.67454 + 2.24622i −0.249402 + 0.209461i
\(116\) 0 0
\(117\) −3.28292 + 3.28292i −0.303506 + 0.303506i
\(118\) 0 0
\(119\) 7.24097 0.663778
\(120\) 0 0
\(121\) 3.63409 0.330372
\(122\) 0 0
\(123\) −4.86206 4.86206i −0.438398 0.438398i
\(124\) 0 0
\(125\) 2.87934 10.8032i 0.257536 0.966269i
\(126\) 0 0
\(127\) −4.70529 + 4.70529i −0.417527 + 0.417527i −0.884350 0.466824i \(-0.845398\pi\)
0.466824 + 0.884350i \(0.345398\pi\)
\(128\) 0 0
\(129\) 6.32980i 0.557308i
\(130\) 0 0
\(131\) 1.20032 0.104872 0.0524361 0.998624i \(-0.483301\pi\)
0.0524361 + 0.998624i \(0.483301\pi\)
\(132\) 0 0
\(133\) −5.63271 + 5.63271i −0.488417 + 0.488417i
\(134\) 0 0
\(135\) 1.43807 + 1.71229i 0.123770 + 0.147371i
\(136\) 0 0
\(137\) −4.78518 + 4.78518i −0.408825 + 0.408825i −0.881329 0.472504i \(-0.843350\pi\)
0.472504 + 0.881329i \(0.343350\pi\)
\(138\) 0 0
\(139\) −2.07578 −0.176066 −0.0880328 0.996118i \(-0.528058\pi\)
−0.0880328 + 0.996118i \(0.528058\pi\)
\(140\) 0 0
\(141\) 1.58165i 0.133199i
\(142\) 0 0
\(143\) 8.90991 8.90991i 0.745084 0.745084i
\(144\) 0 0
\(145\) −0.353498 + 4.06121i −0.0293564 + 0.337265i
\(146\) 0 0
\(147\) 3.59279 3.59279i 0.296328 0.296328i
\(148\) 0 0
\(149\) 2.77646i 0.227457i −0.993512 0.113728i \(-0.963721\pi\)
0.993512 0.113728i \(-0.0362794\pi\)
\(150\) 0 0
\(151\) 9.22131i 0.750419i 0.926940 + 0.375210i \(0.122429\pi\)
−0.926940 + 0.375210i \(0.877571\pi\)
\(152\) 0 0
\(153\) −1.47309 1.47309i −0.119093 0.119093i
\(154\) 0 0
\(155\) 1.60825 12.3456i 0.129178 0.991621i
\(156\) 0 0
\(157\) 10.7087 + 10.7087i 0.854645 + 0.854645i 0.990701 0.136056i \(-0.0434427\pi\)
−0.136056 + 0.990701i \(0.543443\pi\)
\(158\) 0 0
\(159\) 9.34838i 0.741375i
\(160\) 0 0
\(161\) 5.42903i 0.427868i
\(162\) 0 0
\(163\) −11.6845 + 11.6845i −0.915197 + 0.915197i −0.996675 0.0814778i \(-0.974036\pi\)
0.0814778 + 0.996675i \(0.474036\pi\)
\(164\) 0 0
\(165\) −3.90296 4.64719i −0.303845 0.361783i
\(166\) 0 0
\(167\) −8.18179 + 8.18179i −0.633126 + 0.633126i −0.948851 0.315725i \(-0.897752\pi\)
0.315725 + 0.948851i \(0.397752\pi\)
\(168\) 0 0
\(169\) 8.55512i 0.658086i
\(170\) 0 0
\(171\) 2.29182 0.175260
\(172\) 0 0
\(173\) 4.12255 4.12255i 0.313432 0.313432i −0.532806 0.846238i \(-0.678862\pi\)
0.846238 + 0.532806i \(0.178862\pi\)
\(174\) 0 0
\(175\) 9.98069 + 14.2271i 0.754470 + 1.07547i
\(176\) 0 0
\(177\) 4.88990 4.88990i 0.367548 0.367548i
\(178\) 0 0
\(179\) 24.6854 1.84507 0.922537 0.385908i \(-0.126112\pi\)
0.922537 + 0.385908i \(0.126112\pi\)
\(180\) 0 0
\(181\) 11.9435i 0.887754i −0.896088 0.443877i \(-0.853603\pi\)
0.896088 0.443877i \(-0.146397\pi\)
\(182\) 0 0
\(183\) 6.78178 6.78178i 0.501324 0.501324i
\(184\) 0 0
\(185\) −8.70935 10.3701i −0.640324 0.762423i
\(186\) 0 0
\(187\) 3.99801 + 3.99801i 0.292363 + 0.292363i
\(188\) 0 0
\(189\) −3.47577 −0.252825
\(190\) 0 0
\(191\) −20.6436 −1.49372 −0.746858 0.664984i \(-0.768438\pi\)
−0.746858 + 0.664984i \(0.768438\pi\)
\(192\) 0 0
\(193\) −4.72497 + 4.72497i −0.340111 + 0.340111i −0.856409 0.516298i \(-0.827310\pi\)
0.516298 + 0.856409i \(0.327310\pi\)
\(194\) 0 0
\(195\) 10.3424 + 0.900230i 0.740634 + 0.0644668i
\(196\) 0 0
\(197\) 15.9430 15.9430i 1.13589 1.13589i 0.146710 0.989180i \(-0.453132\pi\)
0.989180 0.146710i \(-0.0468684\pi\)
\(198\) 0 0
\(199\) 18.6097 1.31921 0.659605 0.751613i \(-0.270724\pi\)
0.659605 + 0.751613i \(0.270724\pi\)
\(200\) 0 0
\(201\) 1.14739i 0.0809304i
\(202\) 0 0
\(203\) −4.48069 4.48069i −0.314483 0.314483i
\(204\) 0 0
\(205\) −1.33326 + 15.3173i −0.0931187 + 1.06981i
\(206\) 0 0
\(207\) −1.10448 + 1.10448i −0.0767664 + 0.0767664i
\(208\) 0 0
\(209\) −6.22005 −0.430250
\(210\) 0 0
\(211\) −15.1401 −1.04229 −0.521145 0.853468i \(-0.674495\pi\)
−0.521145 + 0.853468i \(0.674495\pi\)
\(212\) 0 0
\(213\) 0.0200332 + 0.0200332i 0.00137265 + 0.00137265i
\(214\) 0 0
\(215\) −10.8385 + 9.10272i −0.739177 + 0.620801i
\(216\) 0 0
\(217\) 13.0873 + 14.2560i 0.888422 + 0.967760i
\(218\) 0 0
\(219\) 8.95123i 0.604868i
\(220\) 0 0
\(221\) −9.67210 −0.650616
\(222\) 0 0
\(223\) 17.6458 + 17.6458i 1.18165 + 1.18165i 0.979317 + 0.202330i \(0.0648513\pi\)
0.202330 + 0.979317i \(0.435149\pi\)
\(224\) 0 0
\(225\) 0.863882 4.92481i 0.0575921 0.328320i
\(226\) 0 0
\(227\) −1.13568 1.13568i −0.0753776 0.0753776i 0.668413 0.743790i \(-0.266974\pi\)
−0.743790 + 0.668413i \(0.766974\pi\)
\(228\) 0 0
\(229\) 1.59282 0.105256 0.0526282 0.998614i \(-0.483240\pi\)
0.0526282 + 0.998614i \(0.483240\pi\)
\(230\) 0 0
\(231\) 9.43331 0.620666
\(232\) 0 0
\(233\) 7.52086 7.52086i 0.492708 0.492708i −0.416450 0.909158i \(-0.636726\pi\)
0.909158 + 0.416450i \(0.136726\pi\)
\(234\) 0 0
\(235\) 2.70824 2.27453i 0.176666 0.148374i
\(236\) 0 0
\(237\) 6.07632 + 6.07632i 0.394700 + 0.394700i
\(238\) 0 0
\(239\) 4.96761 0.321328 0.160664 0.987009i \(-0.448636\pi\)
0.160664 + 0.987009i \(0.448636\pi\)
\(240\) 0 0
\(241\) 3.16154i 0.203653i 0.994802 + 0.101826i \(0.0324686\pi\)
−0.994802 + 0.101826i \(0.967531\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −11.3186 0.985201i −0.723119 0.0629422i
\(246\) 0 0
\(247\) 7.52387 7.52387i 0.478732 0.478732i
\(248\) 0 0
\(249\) 14.8897i 0.943595i
\(250\) 0 0
\(251\) 20.1749i 1.27343i −0.771099 0.636715i \(-0.780293\pi\)
0.771099 0.636715i \(-0.219707\pi\)
\(252\) 0 0
\(253\) 2.99757 2.99757i 0.188456 0.188456i
\(254\) 0 0
\(255\) −0.403947 + 4.64079i −0.0252961 + 0.290617i
\(256\) 0 0
\(257\) −2.75948 2.75948i −0.172132 0.172132i 0.615784 0.787915i \(-0.288840\pi\)
−0.787915 + 0.615784i \(0.788840\pi\)
\(258\) 0 0
\(259\) 21.0501 1.30799
\(260\) 0 0
\(261\) 1.82309i 0.112847i
\(262\) 0 0
\(263\) −15.0096 15.0096i −0.925534 0.925534i 0.0718793 0.997413i \(-0.477100\pi\)
−0.997413 + 0.0718793i \(0.977100\pi\)
\(264\) 0 0
\(265\) −16.0072 + 13.4437i −0.983311 + 0.825838i
\(266\) 0 0
\(267\) −1.08735 1.08735i −0.0665450 0.0665450i
\(268\) 0 0
\(269\) 6.88799 0.419968 0.209984 0.977705i \(-0.432659\pi\)
0.209984 + 0.977705i \(0.432659\pi\)
\(270\) 0 0
\(271\) 0.519309i 0.0315458i 0.999876 + 0.0157729i \(0.00502088\pi\)
−0.999876 + 0.0157729i \(0.994979\pi\)
\(272\) 0 0
\(273\) −11.4107 + 11.4107i −0.690605 + 0.690605i
\(274\) 0 0
\(275\) −2.34459 + 13.3660i −0.141384 + 0.806001i
\(276\) 0 0
\(277\) −4.28182 + 4.28182i −0.257270 + 0.257270i −0.823943 0.566673i \(-0.808230\pi\)
0.566673 + 0.823943i \(0.308230\pi\)
\(278\) 0 0
\(279\) 0.237761 5.56269i 0.0142344 0.333029i
\(280\) 0 0
\(281\) −11.5724 −0.690353 −0.345176 0.938538i \(-0.612181\pi\)
−0.345176 + 0.938538i \(0.612181\pi\)
\(282\) 0 0
\(283\) −2.45482 + 2.45482i −0.145924 + 0.145924i −0.776294 0.630371i \(-0.782903\pi\)
0.630371 + 0.776294i \(0.282903\pi\)
\(284\) 0 0
\(285\) −3.29581 3.92427i −0.195227 0.232454i
\(286\) 0 0
\(287\) −16.8994 16.8994i −0.997541 0.997541i
\(288\) 0 0
\(289\) 12.6600i 0.744705i
\(290\) 0 0
\(291\) 9.49220i 0.556442i
\(292\) 0 0
\(293\) 10.3416 10.3416i 0.604163 0.604163i −0.337251 0.941415i \(-0.609497\pi\)
0.941415 + 0.337251i \(0.109497\pi\)
\(294\) 0 0
\(295\) −15.4050 1.34089i −0.896913 0.0780697i
\(296\) 0 0
\(297\) −1.91910 1.91910i −0.111358 0.111358i
\(298\) 0 0
\(299\) 7.25181i 0.419383i
\(300\) 0 0
\(301\) 22.0009i 1.26811i
\(302\) 0 0
\(303\) 12.1971 + 12.1971i 0.700706 + 0.700706i
\(304\) 0 0
\(305\) −21.3651 1.85968i −1.22336 0.106485i
\(306\) 0 0
\(307\) −20.9033 20.9033i −1.19301 1.19301i −0.976217 0.216795i \(-0.930440\pi\)
−0.216795 0.976217i \(-0.569560\pi\)
\(308\) 0 0
\(309\) 17.5504 0.998409
\(310\) 0 0
\(311\) 20.4650 1.16046 0.580232 0.814452i \(-0.302962\pi\)
0.580232 + 0.814452i \(0.302962\pi\)
\(312\) 0 0
\(313\) −20.4512 20.4512i −1.15597 1.15597i −0.985334 0.170637i \(-0.945418\pi\)
−0.170637 0.985334i \(-0.554582\pi\)
\(314\) 0 0
\(315\) 4.99842 + 5.95153i 0.281629 + 0.335331i
\(316\) 0 0
\(317\) −15.9401 15.9401i −0.895286 0.895286i 0.0997288 0.995015i \(-0.468202\pi\)
−0.995015 + 0.0997288i \(0.968202\pi\)
\(318\) 0 0
\(319\) 4.94791i 0.277030i
\(320\) 0 0
\(321\) 12.1473i 0.677998i
\(322\) 0 0
\(323\) 3.37607 + 3.37607i 0.187850 + 0.187850i
\(324\) 0 0
\(325\) −13.3317 19.0038i −0.739509 1.05414i
\(326\) 0 0
\(327\) −2.30670 + 2.30670i −0.127561 + 0.127561i
\(328\) 0 0
\(329\) 5.49744i 0.303083i
\(330\) 0 0
\(331\) 17.8576i 0.981545i −0.871288 0.490772i \(-0.836715\pi\)
0.871288 0.490772i \(-0.163285\pi\)
\(332\) 0 0
\(333\) −4.28242 4.28242i −0.234675 0.234675i
\(334\) 0 0
\(335\) −1.96466 + 1.65003i −0.107341 + 0.0901507i
\(336\) 0 0
\(337\) −10.9905 + 10.9905i −0.598691 + 0.598691i −0.939964 0.341273i \(-0.889142\pi\)
0.341273 + 0.939964i \(0.389142\pi\)
\(338\) 0 0
\(339\) −10.9032 −0.592183
\(340\) 0 0
\(341\) −0.645289 + 15.0972i −0.0349444 + 0.817561i
\(342\) 0 0
\(343\) −4.71647 + 4.71647i −0.254666 + 0.254666i
\(344\) 0 0
\(345\) 3.47951 + 0.302865i 0.187330 + 0.0163057i
\(346\) 0 0
\(347\) −0.520869 + 0.520869i −0.0279617 + 0.0279617i −0.720949 0.692988i \(-0.756294\pi\)
0.692988 + 0.720949i \(0.256294\pi\)
\(348\) 0 0
\(349\) 15.6728i 0.838947i 0.907768 + 0.419474i \(0.137785\pi\)
−0.907768 + 0.419474i \(0.862215\pi\)
\(350\) 0 0
\(351\) 4.64275 0.247812
\(352\) 0 0
\(353\) −5.62429 5.62429i −0.299351 0.299351i 0.541409 0.840760i \(-0.317891\pi\)
−0.840760 + 0.541409i \(0.817891\pi\)
\(354\) 0 0
\(355\) 0.00549342 0.0631118i 0.000291560 0.00334963i
\(356\) 0 0
\(357\) −5.12014 5.12014i −0.270986 0.270986i
\(358\) 0 0
\(359\) 5.19621i 0.274245i 0.990554 + 0.137123i \(0.0437854\pi\)
−0.990554 + 0.137123i \(0.956215\pi\)
\(360\) 0 0
\(361\) 13.7475 0.723555
\(362\) 0 0
\(363\) −2.56969 2.56969i −0.134874 0.134874i
\(364\) 0 0
\(365\) −15.3271 + 12.8725i −0.802258 + 0.673780i
\(366\) 0 0
\(367\) −8.10340 + 8.10340i −0.422994 + 0.422994i −0.886233 0.463239i \(-0.846687\pi\)
0.463239 + 0.886233i \(0.346687\pi\)
\(368\) 0 0
\(369\) 6.87600i 0.357950i
\(370\) 0 0
\(371\) 32.4928i 1.68694i
\(372\) 0 0
\(373\) −19.1745 + 19.1745i −0.992820 + 0.992820i −0.999974 0.00715443i \(-0.997723\pi\)
0.00715443 + 0.999974i \(0.497723\pi\)
\(374\) 0 0
\(375\) −9.67503 + 5.60302i −0.499616 + 0.289339i
\(376\) 0 0
\(377\) 5.98507 + 5.98507i 0.308247 + 0.308247i
\(378\) 0 0
\(379\) 33.6200i 1.72695i −0.504396 0.863473i \(-0.668285\pi\)
0.504396 0.863473i \(-0.331715\pi\)
\(380\) 0 0
\(381\) 6.65428 0.340909
\(382\) 0 0
\(383\) 5.51918 + 5.51918i 0.282017 + 0.282017i 0.833913 0.551896i \(-0.186095\pi\)
−0.551896 + 0.833913i \(0.686095\pi\)
\(384\) 0 0
\(385\) −13.5658 16.1526i −0.691377 0.823211i
\(386\) 0 0
\(387\) −4.47584 + 4.47584i −0.227520 + 0.227520i
\(388\) 0 0
\(389\) −28.8415 −1.46232 −0.731160 0.682206i \(-0.761021\pi\)
−0.731160 + 0.682206i \(0.761021\pi\)
\(390\) 0 0
\(391\) −3.25400 −0.164562
\(392\) 0 0
\(393\) −0.848752 0.848752i −0.0428139 0.0428139i
\(394\) 0 0
\(395\) 1.66623 19.1426i 0.0838370 0.963171i
\(396\) 0 0
\(397\) −10.1875 10.1875i −0.511297 0.511297i 0.403627 0.914924i \(-0.367749\pi\)
−0.914924 + 0.403627i \(0.867749\pi\)
\(398\) 0 0
\(399\) 7.96585 0.398791
\(400\) 0 0
\(401\) 29.9852i 1.49739i −0.662916 0.748694i \(-0.730681\pi\)
0.662916 0.748694i \(-0.269319\pi\)
\(402\) 0 0
\(403\) −17.4813 19.0424i −0.870805 0.948569i
\(404\) 0 0
\(405\) 0.193900 2.22765i 0.00963498 0.110693i
\(406\) 0 0
\(407\) 11.6226 + 11.6226i 0.576109 + 0.576109i
\(408\) 0 0
\(409\) 24.5560 1.21422 0.607108 0.794620i \(-0.292330\pi\)
0.607108 + 0.794620i \(0.292330\pi\)
\(410\) 0 0
\(411\) 6.76726 0.333804
\(412\) 0 0
\(413\) 16.9962 16.9962i 0.836327 0.836327i
\(414\) 0 0
\(415\) −25.4955 + 21.4125i −1.25152 + 1.05110i
\(416\) 0 0
\(417\) 1.46780 + 1.46780i 0.0718785 + 0.0718785i
\(418\) 0 0
\(419\) 6.12061i 0.299011i 0.988761 + 0.149506i \(0.0477682\pi\)
−0.988761 + 0.149506i \(0.952232\pi\)
\(420\) 0 0
\(421\) 4.79546 0.233717 0.116858 0.993149i \(-0.462718\pi\)
0.116858 + 0.993149i \(0.462718\pi\)
\(422\) 0 0
\(423\) 1.11839 1.11839i 0.0543781 0.0543781i
\(424\) 0 0
\(425\) 8.52728 5.98212i 0.413634 0.290176i
\(426\) 0 0
\(427\) 23.5719 23.5719i 1.14072 1.14072i
\(428\) 0 0
\(429\) −12.6005 −0.608359
\(430\) 0 0
\(431\) 23.2078 1.11788 0.558941 0.829207i \(-0.311208\pi\)
0.558941 + 0.829207i \(0.311208\pi\)
\(432\) 0 0
\(433\) −22.0504 22.0504i −1.05967 1.05967i −0.998103 0.0615709i \(-0.980389\pi\)
−0.0615709 0.998103i \(-0.519611\pi\)
\(434\) 0 0
\(435\) 3.12167 2.62175i 0.149673 0.125703i
\(436\) 0 0
\(437\) 2.53126 2.53126i 0.121087 0.121087i
\(438\) 0 0
\(439\) 21.0653i 1.00539i 0.864463 + 0.502696i \(0.167659\pi\)
−0.864463 + 0.502696i \(0.832341\pi\)
\(440\) 0 0
\(441\) −5.08097 −0.241951
\(442\) 0 0
\(443\) −17.4338 + 17.4338i −0.828306 + 0.828306i −0.987282 0.158976i \(-0.949181\pi\)
0.158976 + 0.987282i \(0.449181\pi\)
\(444\) 0 0
\(445\) −0.298170 + 3.42556i −0.0141346 + 0.162387i
\(446\) 0 0
\(447\) −1.96326 + 1.96326i −0.0928589 + 0.0928589i
\(448\) 0 0
\(449\) −18.2055 −0.859172 −0.429586 0.903026i \(-0.641340\pi\)
−0.429586 + 0.903026i \(0.641340\pi\)
\(450\) 0 0
\(451\) 18.6616i 0.878740i
\(452\) 0 0
\(453\) 6.52045 6.52045i 0.306357 0.306357i
\(454\) 0 0
\(455\) 35.9478 + 3.12899i 1.68526 + 0.146689i
\(456\) 0 0
\(457\) −9.67798 + 9.67798i −0.452717 + 0.452717i −0.896255 0.443539i \(-0.853723\pi\)
0.443539 + 0.896255i \(0.353723\pi\)
\(458\) 0 0
\(459\) 2.08327i 0.0972387i
\(460\) 0 0
\(461\) 10.8514i 0.505399i 0.967545 + 0.252700i \(0.0813185\pi\)
−0.967545 + 0.252700i \(0.918682\pi\)
\(462\) 0 0
\(463\) 0.429617 + 0.429617i 0.0199660 + 0.0199660i 0.717019 0.697053i \(-0.245506\pi\)
−0.697053 + 0.717019i \(0.745506\pi\)
\(464\) 0 0
\(465\) −9.86686 + 7.59244i −0.457564 + 0.352091i
\(466\) 0 0
\(467\) 16.3811 + 16.3811i 0.758026 + 0.758026i 0.975963 0.217937i \(-0.0699328\pi\)
−0.217937 + 0.975963i \(0.569933\pi\)
\(468\) 0 0
\(469\) 3.98805i 0.184151i
\(470\) 0 0
\(471\) 15.1444i 0.697815i
\(472\) 0 0
\(473\) 12.1475 12.1475i 0.558544 0.558544i
\(474\) 0 0
\(475\) −1.97986 + 11.2868i −0.0908424 + 0.517873i
\(476\) 0 0
\(477\) −6.61030 + 6.61030i −0.302665 + 0.302665i
\(478\) 0 0
\(479\) 22.1802i 1.01344i 0.862110 + 0.506720i \(0.169142\pi\)
−0.862110 + 0.506720i \(0.830858\pi\)
\(480\) 0 0
\(481\) −28.1177 −1.28206
\(482\) 0 0
\(483\) −3.83891 + 3.83891i −0.174676 + 0.174676i
\(484\) 0 0
\(485\) −16.2534 + 13.6505i −0.738029 + 0.619837i
\(486\) 0 0
\(487\) 19.7412 19.7412i 0.894558 0.894558i −0.100390 0.994948i \(-0.532009\pi\)
0.994948 + 0.100390i \(0.0320091\pi\)
\(488\) 0 0
\(489\) 16.5243 0.747255
\(490\) 0 0
\(491\) 5.14521i 0.232200i 0.993238 + 0.116100i \(0.0370393\pi\)
−0.993238 + 0.116100i \(0.962961\pi\)
\(492\) 0 0
\(493\) −2.68559 + 2.68559i −0.120953 + 0.120953i
\(494\) 0 0
\(495\) −0.526249 + 6.04587i −0.0236531 + 0.271742i
\(496\) 0 0
\(497\) 0.0696306 + 0.0696306i 0.00312336 + 0.00312336i
\(498\) 0 0
\(499\) −28.2886 −1.26637 −0.633186 0.773999i \(-0.718253\pi\)
−0.633186 + 0.773999i \(0.718253\pi\)
\(500\) 0 0
\(501\) 11.5708 0.516945
\(502\) 0 0
\(503\) 12.7296 12.7296i 0.567586 0.567586i −0.363866 0.931451i \(-0.618543\pi\)
0.931451 + 0.363866i \(0.118543\pi\)
\(504\) 0 0
\(505\) 3.34465 38.4254i 0.148835 1.70991i
\(506\) 0 0
\(507\) 6.04938 6.04938i 0.268663 0.268663i
\(508\) 0 0
\(509\) −3.78823 −0.167910 −0.0839551 0.996470i \(-0.526755\pi\)
−0.0839551 + 0.996470i \(0.526755\pi\)
\(510\) 0 0
\(511\) 31.1124i 1.37633i
\(512\) 0 0
\(513\) −1.62056 1.62056i −0.0715496 0.0715496i
\(514\) 0 0
\(515\) −25.2388 30.0514i −1.11216 1.32422i
\(516\) 0 0
\(517\) −3.03534 + 3.03534i −0.133494 + 0.133494i
\(518\) 0 0
\(519\) −5.83017 −0.255916
\(520\) 0 0
\(521\) 14.7857 0.647775 0.323888 0.946096i \(-0.395010\pi\)
0.323888 + 0.946096i \(0.395010\pi\)
\(522\) 0 0
\(523\) 31.9997 + 31.9997i 1.39925 + 1.39925i 0.802222 + 0.597025i \(0.203651\pi\)
0.597025 + 0.802222i \(0.296349\pi\)
\(524\) 0 0
\(525\) 3.00265 17.1175i 0.131047 0.747068i
\(526\) 0 0
\(527\) 8.54461 7.84412i 0.372209 0.341695i
\(528\) 0 0
\(529\) 20.5603i 0.893924i
\(530\) 0 0
\(531\) −6.91537 −0.300101
\(532\) 0 0
\(533\) 22.5733 + 22.5733i 0.977760 + 0.977760i
\(534\) 0 0
\(535\) −20.7998 + 17.4688i −0.899253 + 0.755241i
\(536\) 0 0
\(537\) −17.4552 17.4552i −0.753248 0.753248i
\(538\) 0 0
\(539\) 13.7899 0.593971
\(540\) 0 0
\(541\) 22.6350 0.973155 0.486578 0.873637i \(-0.338245\pi\)
0.486578 + 0.873637i \(0.338245\pi\)
\(542\) 0 0
\(543\) −8.44533 + 8.44533i −0.362424 + 0.362424i
\(544\) 0 0
\(545\) 7.26696 + 0.632536i 0.311283 + 0.0270949i
\(546\) 0 0
\(547\) −26.8240 26.8240i −1.14691 1.14691i −0.987157 0.159756i \(-0.948929\pi\)
−0.159756 0.987157i \(-0.551071\pi\)
\(548\) 0 0
\(549\) −9.59089 −0.409329
\(550\) 0 0
\(551\) 4.17821i 0.177998i
\(552\) 0 0
\(553\) 21.1199 + 21.1199i 0.898110 + 0.898110i
\(554\) 0 0
\(555\) −1.17431 + 13.4912i −0.0498466 + 0.572669i
\(556\) 0 0
\(557\) −18.2347 + 18.2347i −0.772629 + 0.772629i −0.978565 0.205936i \(-0.933976\pi\)
0.205936 + 0.978565i \(0.433976\pi\)
\(558\) 0 0
\(559\) 29.3877i 1.24297i
\(560\) 0 0
\(561\) 5.65404i 0.238714i
\(562\) 0 0
\(563\) 2.15091 2.15091i 0.0906500 0.0906500i −0.660328 0.750978i \(-0.729583\pi\)
0.750978 + 0.660328i \(0.229583\pi\)
\(564\) 0 0
\(565\) 15.6797 + 18.6695i 0.659649 + 0.785433i
\(566\) 0 0
\(567\) 2.45774 + 2.45774i 0.103215 + 0.103215i
\(568\) 0 0
\(569\) 36.5551 1.53247 0.766236 0.642560i \(-0.222128\pi\)
0.766236 + 0.642560i \(0.222128\pi\)
\(570\) 0 0
\(571\) 34.3953i 1.43940i −0.694287 0.719698i \(-0.744280\pi\)
0.694287 0.719698i \(-0.255720\pi\)
\(572\) 0 0
\(573\) 14.5972 + 14.5972i 0.609807 + 0.609807i
\(574\) 0 0
\(575\) −4.48519 6.39347i −0.187046 0.266626i
\(576\) 0 0
\(577\) −7.37304 7.37304i −0.306944 0.306944i 0.536779 0.843723i \(-0.319641\pi\)
−0.843723 + 0.536779i \(0.819641\pi\)
\(578\) 0 0
\(579\) 6.68212 0.277699
\(580\) 0 0
\(581\) 51.7531i 2.14708i
\(582\) 0 0
\(583\) 17.9405 17.9405i 0.743020 0.743020i
\(584\) 0 0
\(585\) −6.67662 7.94974i −0.276044 0.328681i
\(586\) 0 0
\(587\) 27.3712 27.3712i 1.12973 1.12973i 0.139511 0.990220i \(-0.455447\pi\)
0.990220 0.139511i \(-0.0445532\pi\)
\(588\) 0 0
\(589\) −0.544907 + 12.7487i −0.0224525 + 0.525301i
\(590\) 0 0
\(591\) −22.5468 −0.927450
\(592\) 0 0
\(593\) −2.03712 + 2.03712i −0.0836543 + 0.0836543i −0.747696 0.664041i \(-0.768840\pi\)
0.664041 + 0.747696i \(0.268840\pi\)
\(594\) 0 0
\(595\) −1.40402 + 16.1303i −0.0575594 + 0.661278i
\(596\) 0 0
\(597\) −13.1591 13.1591i −0.538565 0.538565i
\(598\) 0 0
\(599\) 2.98220i 0.121850i −0.998142 0.0609248i \(-0.980595\pi\)
0.998142 0.0609248i \(-0.0194050\pi\)
\(600\) 0 0
\(601\) 24.8250i 1.01263i 0.862348 + 0.506316i \(0.168993\pi\)
−0.862348 + 0.506316i \(0.831007\pi\)
\(602\) 0 0
\(603\) −0.811325 + 0.811325i −0.0330397 + 0.0330397i
\(604\) 0 0
\(605\) −0.704652 + 8.09547i −0.0286482 + 0.329128i
\(606\) 0 0
\(607\) 24.9052 + 24.9052i 1.01087 + 1.01087i 0.999940 + 0.0109324i \(0.00347996\pi\)
0.0109324 + 0.999940i \(0.496520\pi\)
\(608\) 0 0
\(609\) 6.33665i 0.256774i
\(610\) 0 0
\(611\) 7.34319i 0.297073i
\(612\) 0 0
\(613\) 4.49504 + 4.49504i 0.181553 + 0.181553i 0.792032 0.610479i \(-0.209023\pi\)
−0.610479 + 0.792032i \(0.709023\pi\)
\(614\) 0 0
\(615\) 11.7737 9.88820i 0.474762 0.398731i
\(616\) 0 0
\(617\) 33.3878 + 33.3878i 1.34414 + 1.34414i 0.891889 + 0.452255i \(0.149380\pi\)
0.452255 + 0.891889i \(0.350620\pi\)
\(618\) 0 0
\(619\) 31.3769 1.26114 0.630571 0.776131i \(-0.282821\pi\)
0.630571 + 0.776131i \(0.282821\pi\)
\(620\) 0 0
\(621\) 1.56197 0.0626795
\(622\) 0 0
\(623\) −3.77939 3.77939i −0.151418 0.151418i
\(624\) 0 0
\(625\) 23.5074 + 8.50890i 0.940297 + 0.340356i
\(626\) 0 0
\(627\) 4.39824 + 4.39824i 0.175649 + 0.175649i
\(628\) 0 0
\(629\) 12.6168i 0.503065i
\(630\) 0 0
\(631\) 2.43763i 0.0970405i 0.998822 + 0.0485203i \(0.0154505\pi\)
−0.998822 + 0.0485203i \(0.984549\pi\)
\(632\) 0 0
\(633\) 10.7057 + 10.7057i 0.425513 + 0.425513i
\(634\) 0 0
\(635\) −9.56935 11.3941i −0.379748 0.452160i
\(636\) 0 0
\(637\) −16.6804 + 16.6804i −0.660902 + 0.660902i
\(638\) 0 0
\(639\) 0.0283312i 0.00112076i
\(640\) 0 0
\(641\) 39.3713i 1.55507i 0.628839 + 0.777536i \(0.283531\pi\)
−0.628839 + 0.777536i \(0.716469\pi\)
\(642\) 0 0
\(643\) 15.6177 + 15.6177i 0.615900 + 0.615900i 0.944477 0.328577i \(-0.106569\pi\)
−0.328577 + 0.944477i \(0.606569\pi\)
\(644\) 0 0
\(645\) 14.1005 + 1.22735i 0.555208 + 0.0483268i
\(646\) 0 0
\(647\) −12.3506 + 12.3506i −0.485552 + 0.485552i −0.906899 0.421347i \(-0.861557\pi\)
0.421347 + 0.906899i \(0.361557\pi\)
\(648\) 0 0
\(649\) 18.7684 0.736726
\(650\) 0 0
\(651\) 0.826403 19.3346i 0.0323893 0.757783i
\(652\) 0 0
\(653\) 25.1500 25.1500i 0.984197 0.984197i −0.0156799 0.999877i \(-0.504991\pi\)
0.999877 + 0.0156799i \(0.00499128\pi\)
\(654\) 0 0
\(655\) −0.232742 + 2.67388i −0.00909397 + 0.104477i
\(656\) 0 0
\(657\) −6.32948 + 6.32948i −0.246936 + 0.246936i
\(658\) 0 0
\(659\) 3.45652i 0.134647i 0.997731 + 0.0673235i \(0.0214460\pi\)
−0.997731 + 0.0673235i \(0.978554\pi\)
\(660\) 0 0
\(661\) −6.24130 −0.242758 −0.121379 0.992606i \(-0.538732\pi\)
−0.121379 + 0.992606i \(0.538732\pi\)
\(662\) 0 0
\(663\) 6.83921 + 6.83921i 0.265613 + 0.265613i
\(664\) 0 0
\(665\) −11.4555 13.6399i −0.444225 0.528931i
\(666\) 0 0
\(667\) 2.01356 + 2.01356i 0.0779655 + 0.0779655i
\(668\) 0 0
\(669\) 24.9549i 0.964811i
\(670\) 0 0
\(671\) 26.0299 1.00487
\(672\) 0 0
\(673\) 3.18098 + 3.18098i 0.122618 + 0.122618i 0.765753 0.643135i \(-0.222367\pi\)
−0.643135 + 0.765753i \(0.722367\pi\)
\(674\) 0 0
\(675\) −4.09322 + 2.87151i −0.157548 + 0.110524i
\(676\) 0 0
\(677\) −12.6823 + 12.6823i −0.487420 + 0.487420i −0.907491 0.420071i \(-0.862005\pi\)
0.420071 + 0.907491i \(0.362005\pi\)
\(678\) 0 0
\(679\) 32.9927i 1.26614i
\(680\) 0 0
\(681\) 1.60609i 0.0615455i
\(682\) 0 0
\(683\) 0.960792 0.960792i 0.0367637 0.0367637i −0.688486 0.725250i \(-0.741724\pi\)
0.725250 + 0.688486i \(0.241724\pi\)
\(684\) 0 0
\(685\) −9.73183 11.5875i −0.371834 0.442736i
\(686\) 0 0
\(687\) −1.12629 1.12629i −0.0429707 0.0429707i
\(688\) 0 0
\(689\) 43.4022i 1.65349i
\(690\) 0 0
\(691\) −22.9351 −0.872491 −0.436246 0.899828i \(-0.643692\pi\)
−0.436246 + 0.899828i \(0.643692\pi\)
\(692\) 0 0
\(693\) −6.67036 6.67036i −0.253386 0.253386i
\(694\) 0 0
\(695\) 0.402495 4.62411i 0.0152675 0.175402i
\(696\) 0 0
\(697\) −10.1290 + 10.1290i −0.383663 + 0.383663i
\(698\) 0 0
\(699\) −10.6361 −0.402294
\(700\) 0 0
\(701\) −37.0859 −1.40072 −0.700358 0.713791i \(-0.746976\pi\)
−0.700358 + 0.713791i \(0.746976\pi\)
\(702\) 0 0
\(703\) 9.81455 + 9.81455i 0.370163 + 0.370163i
\(704\) 0 0
\(705\) −3.52335 0.306681i −0.132697 0.0115503i
\(706\) 0 0
\(707\) 42.3944 + 42.3944i 1.59440 + 1.59440i
\(708\) 0 0
\(709\) 22.6828 0.851869 0.425934 0.904754i \(-0.359945\pi\)
0.425934 + 0.904754i \(0.359945\pi\)
\(710\) 0 0
\(711\) 8.59322i 0.322271i
\(712\) 0 0
\(713\) −5.88125 6.40646i −0.220255 0.239924i
\(714\) 0 0
\(715\) 18.1205 + 21.5758i 0.677668 + 0.806887i
\(716\) 0 0
\(717\) −3.51263 3.51263i −0.131182 0.131182i
\(718\) 0 0
\(719\) −33.4001 −1.24561 −0.622807 0.782375i \(-0.714008\pi\)
−0.622807 + 0.782375i \(0.714008\pi\)
\(720\) 0 0
\(721\) 61.0012 2.27180
\(722\) 0 0
\(723\) 2.23555 2.23555i 0.0831409 0.0831409i
\(724\) 0 0
\(725\) −8.97838 1.57494i −0.333449 0.0584917i
\(726\) 0 0
\(727\) −18.8699 18.8699i −0.699844 0.699844i 0.264533 0.964377i \(-0.414782\pi\)
−0.964377 + 0.264533i \(0.914782\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −13.1867 −0.487727
\(732\) 0 0
\(733\) −3.21816 + 3.21816i −0.118865 + 0.118865i −0.764037 0.645172i \(-0.776786\pi\)
0.645172 + 0.764037i \(0.276786\pi\)
\(734\) 0 0
\(735\) 7.30682 + 8.70010i 0.269516 + 0.320908i
\(736\) 0 0
\(737\) 2.20195 2.20195i 0.0811100 0.0811100i
\(738\) 0 0
\(739\) −38.6988 −1.42356 −0.711779 0.702403i \(-0.752110\pi\)
−0.711779 + 0.702403i \(0.752110\pi\)
\(740\) 0 0
\(741\) −10.6404 −0.390883
\(742\) 0 0
\(743\) 13.9023 + 13.9023i 0.510027 + 0.510027i 0.914535 0.404507i \(-0.132557\pi\)
−0.404507 + 0.914535i \(0.632557\pi\)
\(744\) 0 0
\(745\) 6.18498 + 0.538357i 0.226600 + 0.0197239i
\(746\) 0 0
\(747\) −10.5286 + 10.5286i −0.385221 + 0.385221i
\(748\) 0 0
\(749\) 42.2213i 1.54273i
\(750\) 0 0
\(751\) 2.50907 0.0915573 0.0457787 0.998952i \(-0.485423\pi\)
0.0457787 + 0.998952i \(0.485423\pi\)
\(752\) 0 0
\(753\) −14.2658 + 14.2658i −0.519875 + 0.519875i
\(754\) 0 0
\(755\) −20.5418 1.78801i −0.747593 0.0650725i
\(756\) 0 0
\(757\) −18.0869 + 18.0869i −0.657380 + 0.657380i −0.954759 0.297380i \(-0.903887\pi\)
0.297380 + 0.954759i \(0.403887\pi\)
\(758\) 0 0
\(759\) −4.23921 −0.153873
\(760\) 0 0
\(761\) 28.1268i 1.01960i 0.860294 + 0.509799i \(0.170280\pi\)
−0.860294 + 0.509799i \(0.829720\pi\)
\(762\) 0 0
\(763\) −8.01757 + 8.01757i −0.290256 + 0.290256i
\(764\) 0 0
\(765\) 3.56717 2.99590i 0.128971 0.108317i
\(766\) 0 0
\(767\) −22.7026 + 22.7026i −0.819743 + 0.819743i
\(768\) 0 0
\(769\) 16.6524i 0.600501i −0.953860 0.300250i \(-0.902930\pi\)
0.953860 0.300250i \(-0.0970702\pi\)
\(770\) 0 0
\(771\) 3.90250i 0.140545i
\(772\) 0 0
\(773\) −13.7715 13.7715i −0.495327 0.495327i 0.414653 0.909980i \(-0.363903\pi\)
−0.909980 + 0.414653i \(0.863903\pi\)
\(774\) 0 0
\(775\) 27.1897 + 5.97643i 0.976685 + 0.214680i
\(776\) 0 0
\(777\) −14.8847 14.8847i −0.533986 0.533986i
\(778\) 0 0
\(779\) 15.7586i 0.564609i
\(780\) 0 0
\(781\) 0.0768914i 0.00275139i
\(782\) 0 0
\(783\) 1.28912 1.28912i 0.0460695 0.0460695i
\(784\) 0 0
\(785\) −25.9315 + 21.7787i −0.925536 + 0.777316i
\(786\) 0 0
\(787\) −11.6362 + 11.6362i −0.414785 + 0.414785i −0.883402 0.468617i \(-0.844753\pi\)
0.468617 + 0.883402i \(0.344753\pi\)
\(788\) 0 0
\(789\) 21.2268i 0.755695i
\(790\) 0 0
\(791\) −37.8972 −1.34747
\(792\) 0 0
\(793\) −31.4861 + 31.4861i −1.11810 + 1.11810i
\(794\) 0 0
\(795\) 20.8249 + 1.81265i 0.738582 + 0.0642882i
\(796\) 0 0
\(797\) −20.8720 + 20.8720i −0.739325 + 0.739325i −0.972447 0.233122i \(-0.925106\pi\)
0.233122 + 0.972447i \(0.425106\pi\)
\(798\) 0 0
\(799\) 3.29500 0.116569
\(800\) 0 0
\(801\) 1.53775i 0.0543337i
\(802\) 0 0
\(803\) 17.1783 17.1783i 0.606210 0.606210i
\(804\) 0 0
\(805\) 12.0940 + 1.05269i 0.426256 + 0.0371025i
\(806\) 0 0
\(807\) −4.87055 4.87055i −0.171451 0.171451i
\(808\) 0 0
\(809\) −6.34366 −0.223031 −0.111516 0.993763i \(-0.535571\pi\)
−0.111516 + 0.993763i \(0.535571\pi\)
\(810\) 0 0
\(811\) 9.60582 0.337306 0.168653 0.985675i \(-0.446058\pi\)
0.168653 + 0.985675i \(0.446058\pi\)
\(812\) 0 0
\(813\) 0.367207 0.367207i 0.0128785 0.0128785i
\(814\) 0 0
\(815\) −23.7632 28.2944i −0.832389 0.991111i
\(816\) 0 0
\(817\) 10.2578 10.2578i 0.358876 0.358876i
\(818\) 0 0
\(819\) 16.1371 0.563877
\(820\) 0 0
\(821\) 28.2280i 0.985165i −0.870266 0.492582i \(-0.836053\pi\)
0.870266 0.492582i \(-0.163947\pi\)
\(822\) 0 0
\(823\) 4.99027 + 4.99027i 0.173950 + 0.173950i 0.788712 0.614762i \(-0.210748\pi\)
−0.614762 + 0.788712i \(0.710748\pi\)
\(824\) 0 0
\(825\) 11.1091 7.79333i 0.386769 0.271329i
\(826\) 0 0
\(827\) 2.78262 2.78262i 0.0967613 0.0967613i −0.657069 0.753830i \(-0.728204\pi\)
0.753830 + 0.657069i \(0.228204\pi\)
\(828\) 0 0
\(829\) −20.5748 −0.714592 −0.357296 0.933991i \(-0.616301\pi\)
−0.357296 + 0.933991i \(0.616301\pi\)
\(830\) 0 0
\(831\) 6.05541 0.210060
\(832\) 0 0
\(833\) −7.48475 7.48475i −0.259331 0.259331i
\(834\) 0 0
\(835\) −16.6397 19.8126i −0.575840 0.685643i
\(836\) 0 0
\(837\) −4.10154 + 3.76529i −0.141770 + 0.130147i
\(838\) 0 0
\(839\) 7.71418i 0.266323i −0.991094 0.133161i \(-0.957487\pi\)
0.991094 0.133161i \(-0.0425129\pi\)
\(840\) 0 0
\(841\) −25.6763 −0.885391
\(842\) 0 0
\(843\) 8.18294 + 8.18294i 0.281835 + 0.281835i
\(844\) 0 0
\(845\) −19.0578 1.65884i −0.655607 0.0570658i
\(846\) 0 0
\(847\) −8.93166 8.93166i −0.306895 0.306895i
\(848\) 0 0
\(849\) 3.47164 0.119146
\(850\) 0 0
\(851\) −9.45966 −0.324273
\(852\) 0 0
\(853\) 16.6770 16.6770i 0.571010 0.571010i −0.361401 0.932411i \(-0.617701\pi\)
0.932411 + 0.361401i \(0.117701\pi\)
\(854\) 0 0
\(855\) −0.444385 + 5.10537i −0.0151976 + 0.174600i
\(856\) 0 0
\(857\) −7.21107 7.21107i −0.246326 0.246326i 0.573135 0.819461i \(-0.305727\pi\)
−0.819461 + 0.573135i \(0.805727\pi\)
\(858\) 0 0
\(859\) −39.8826 −1.36078 −0.680388 0.732852i \(-0.738189\pi\)
−0.680388 + 0.732852i \(0.738189\pi\)
\(860\) 0 0
\(861\) 23.8994i 0.814489i
\(862\) 0 0
\(863\) 39.8690 + 39.8690i 1.35716 + 1.35716i 0.877403 + 0.479753i \(0.159274\pi\)
0.479753 + 0.877403i \(0.340726\pi\)
\(864\) 0 0
\(865\) 8.38422 + 9.98294i 0.285072 + 0.339430i
\(866\) 0 0
\(867\) 8.95196 8.95196i 0.304025 0.304025i
\(868\) 0 0
\(869\) 23.3222i 0.791151i
\(870\) 0 0
\(871\) 5.32703i 0.180500i
\(872\) 0 0
\(873\) −6.71200 + 6.71200i −0.227167 + 0.227167i
\(874\) 0 0
\(875\) −33.6282 + 19.4748i −1.13684 + 0.658369i
\(876\) 0 0
\(877\) −5.28546 5.28546i −0.178477 0.178477i 0.612214 0.790692i \(-0.290279\pi\)
−0.790692 + 0.612214i \(0.790279\pi\)
\(878\) 0 0
\(879\) −14.6252 −0.493297
\(880\) 0 0
\(881\) 43.1286i 1.45304i 0.687145 + 0.726520i \(0.258864\pi\)
−0.687145 + 0.726520i \(0.741136\pi\)
\(882\) 0 0
\(883\) −15.3005 15.3005i −0.514903 0.514903i 0.401122 0.916025i \(-0.368620\pi\)
−0.916025 + 0.401122i \(0.868620\pi\)
\(884\) 0 0
\(885\) 9.94481 + 11.8411i 0.334291 + 0.398035i
\(886\) 0 0
\(887\) −13.0433 13.0433i −0.437952 0.437952i 0.453370 0.891322i \(-0.350222\pi\)
−0.891322 + 0.453370i \(0.850222\pi\)
\(888\) 0 0
\(889\) 23.1287 0.775713
\(890\) 0 0
\(891\) 2.71402i 0.0909231i
\(892\) 0 0
\(893\) −2.56316 + 2.56316i −0.0857728 + 0.0857728i
\(894\) 0 0
\(895\) −4.78651 + 54.9903i −0.159995 + 1.83812i
\(896\) 0 0
\(897\) 5.12781 5.12781i 0.171213 0.171213i
\(898\) 0 0
\(899\) −10.1413 0.433461i −0.338231 0.0144567i
\(900\) 0 0
\(901\) −19.4752 −0.648813
\(902\) 0 0
\(903\) −15.5570 + 15.5570i −0.517705 + 0.517705i
\(904\) 0 0
\(905\) 26.6059 + 2.31585i 0.884410 + 0.0769814i
\(906\) 0 0
\(907\) −20.0717 20.0717i −0.666469 0.666469i 0.290428 0.956897i \(-0.406202\pi\)
−0.956897 + 0.290428i \(0.906202\pi\)
\(908\) 0 0
\(909\) 17.2493i 0.572124i
\(910\) 0 0
\(911\) 46.5773i 1.54317i 0.636124 + 0.771587i \(0.280537\pi\)
−0.636124 + 0.771587i \(0.719463\pi\)
\(912\) 0 0
\(913\) 28.5748 28.5748i 0.945688 0.945688i
\(914\) 0 0
\(915\) 13.7924 + 16.4224i 0.455963 + 0.542908i
\(916\) 0 0
\(917\) −2.95007 2.95007i −0.0974198 0.0974198i
\(918\) 0 0
\(919\) 27.9401i 0.921657i −0.887489 0.460829i \(-0.847552\pi\)
0.887489 0.460829i \(-0.152448\pi\)
\(920\) 0 0
\(921\) 29.5617i 0.974090i
\(922\) 0 0
\(923\) −0.0930089 0.0930089i −0.00306143 0.00306143i
\(924\) 0 0
\(925\) 24.7896 17.3906i 0.815076 0.571799i
\(926\) 0 0
\(927\) −12.4100 12.4100i −0.407599 0.407599i
\(928\) 0 0
\(929\) 29.1875 0.957610 0.478805 0.877921i \(-0.341070\pi\)
0.478805 + 0.877921i \(0.341070\pi\)
\(930\) 0 0
\(931\) 11.6447 0.381639
\(932\) 0 0
\(933\) −14.4709 14.4709i −0.473757 0.473757i
\(934\) 0 0
\(935\) −9.68136 + 8.13093i −0.316614 + 0.265910i
\(936\) 0 0
\(937\) −16.6491 16.6491i −0.543904 0.543904i 0.380767 0.924671i \(-0.375660\pi\)
−0.924671 + 0.380767i \(0.875660\pi\)
\(938\) 0 0
\(939\) 28.9224i 0.943846i
\(940\) 0 0
\(941\) 50.4724i 1.64535i −0.568510 0.822676i \(-0.692480\pi\)
0.568510 0.822676i \(-0.307520\pi\)
\(942\) 0 0
\(943\) 7.59438 + 7.59438i 0.247307 + 0.247307i
\(944\) 0 0
\(945\) 0.673952 7.74278i 0.0219237 0.251873i
\(946\) 0 0
\(947\) −16.7599 + 16.7599i −0.544623 + 0.544623i −0.924881 0.380257i \(-0.875835\pi\)
0.380257 + 0.924881i \(0.375835\pi\)
\(948\) 0 0
\(949\) 41.5583i 1.34904i
\(950\) 0 0
\(951\) 22.5427i 0.730998i
\(952\) 0 0
\(953\) 0.879612 + 0.879612i 0.0284934 + 0.0284934i 0.721210 0.692717i \(-0.243586\pi\)
−0.692717 + 0.721210i \(0.743586\pi\)
\(954\) 0 0
\(955\) 4.00279 45.9865i 0.129527 1.48809i
\(956\) 0 0
\(957\) −3.49870 + 3.49870i −0.113097 + 0.113097i
\(958\) 0 0
\(959\) 23.5214 0.759547
\(960\) 0 0
\(961\) 30.8869 + 2.64518i 0.996353 + 0.0853285i
\(962\) 0 0
\(963\) −8.58946 + 8.58946i −0.276792 + 0.276792i
\(964\) 0 0
\(965\) −9.60939 11.4417i −0.309337 0.368322i
\(966\) 0 0
\(967\) −8.43463 + 8.43463i −0.271239 + 0.271239i −0.829599 0.558360i \(-0.811431\pi\)
0.558360 + 0.829599i \(0.311431\pi\)
\(968\) 0 0
\(969\) 4.77449i 0.153379i
\(970\) 0 0
\(971\) 51.3283 1.64720 0.823602 0.567169i \(-0.191961\pi\)
0.823602 + 0.567169i \(0.191961\pi\)
\(972\) 0 0
\(973\) 5.10174 + 5.10174i 0.163554 + 0.163554i
\(974\) 0 0
\(975\) −4.01079 + 22.8646i −0.128448 + 0.732254i
\(976\) 0 0
\(977\) 36.1004 + 36.1004i 1.15495 + 1.15495i 0.985546 + 0.169408i \(0.0541854\pi\)
0.169408 + 0.985546i \(0.445815\pi\)
\(978\) 0 0
\(979\) 4.17349i 0.133385i
\(980\) 0 0
\(981\) 3.26217 0.104153
\(982\) 0 0
\(983\) 15.2871 + 15.2871i 0.487582 + 0.487582i 0.907542 0.419961i \(-0.137956\pi\)
−0.419961 + 0.907542i \(0.637956\pi\)
\(984\) 0 0
\(985\) 32.4239 + 38.6066i 1.03311 + 1.23011i
\(986\) 0 0
\(987\) 3.88727 3.88727i 0.123733 0.123733i
\(988\) 0 0
\(989\) 9.88693i 0.314386i
\(990\) 0 0
\(991\) 43.2592i 1.37417i 0.726575 + 0.687087i \(0.241111\pi\)
−0.726575 + 0.687087i \(0.758889\pi\)
\(992\) 0 0
\(993\) −12.6273 + 12.6273i −0.400714 + 0.400714i
\(994\) 0 0
\(995\) −3.60843 + 41.4559i −0.114395 + 1.31424i
\(996\) 0 0
\(997\) 33.8119 + 33.8119i 1.07083 + 1.07083i 0.997292 + 0.0735423i \(0.0234304\pi\)
0.0735423 + 0.997292i \(0.476570\pi\)
\(998\) 0 0
\(999\) 6.05625i 0.191611i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.1177.6 yes 64
5.3 odd 4 inner 1860.2.s.a.433.18 yes 64
31.30 odd 2 inner 1860.2.s.a.1177.18 yes 64
155.123 even 4 inner 1860.2.s.a.433.6 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.6 64 155.123 even 4 inner
1860.2.s.a.433.18 yes 64 5.3 odd 4 inner
1860.2.s.a.1177.6 yes 64 1.1 even 1 trivial
1860.2.s.a.1177.18 yes 64 31.30 odd 2 inner