Properties

Label 1860.2.s.a.1177.32
Level $1860$
Weight $2$
Character 1860.1177
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1177.32
Character \(\chi\) \(=\) 1860.1177
Dual form 1860.2.s.a.433.32

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{3} +(-2.16858 - 0.545223i) q^{5} +(-3.45556 - 3.45556i) q^{7} +1.00000i q^{9} +4.89678i q^{11} +(3.25243 + 3.25243i) q^{13} +(-1.14789 - 1.91895i) q^{15} +(-1.38440 + 1.38440i) q^{17} -7.75672i q^{19} -4.88691i q^{21} +(-2.52755 - 2.52755i) q^{23} +(4.40546 + 2.36472i) q^{25} +(-0.707107 + 0.707107i) q^{27} +6.32793 q^{29} +(4.39095 - 3.42339i) q^{31} +(-3.46254 + 3.46254i) q^{33} +(5.60961 + 9.37772i) q^{35} +(-1.06608 + 1.06608i) q^{37} +4.59963i q^{39} -0.549352 q^{41} +(4.48876 + 4.48876i) q^{43} +(0.545223 - 2.16858i) q^{45} +(2.44703 + 2.44703i) q^{47} +16.8819i q^{49} -1.95783 q^{51} +(8.49714 + 8.49714i) q^{53} +(2.66984 - 10.6190i) q^{55} +(5.48483 - 5.48483i) q^{57} -7.41481i q^{59} -11.9378i q^{61} +(3.45556 - 3.45556i) q^{63} +(-5.27985 - 8.82646i) q^{65} +(-0.0563954 - 0.0563954i) q^{67} -3.57449i q^{69} +12.8374 q^{71} +(8.55320 + 8.55320i) q^{73} +(1.44302 + 4.78724i) q^{75} +(16.9211 - 16.9211i) q^{77} +11.4113 q^{79} -1.00000 q^{81} +(1.53224 + 1.53224i) q^{83} +(3.75697 - 2.24737i) q^{85} +(4.47452 + 4.47452i) q^{87} -13.0869 q^{89} -22.4780i q^{91} +(5.52557 + 0.684169i) q^{93} +(-4.22914 + 16.8211i) q^{95} +(-7.79226 - 7.79226i) q^{97} -4.89678 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.707107 + 0.707107i 0.408248 + 0.408248i
\(4\) 0 0
\(5\) −2.16858 0.545223i −0.969818 0.243831i
\(6\) 0 0
\(7\) −3.45556 3.45556i −1.30608 1.30608i −0.924220 0.381861i \(-0.875283\pi\)
−0.381861 0.924220i \(-0.624717\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 4.89678i 1.47643i 0.674563 + 0.738217i \(0.264332\pi\)
−0.674563 + 0.738217i \(0.735668\pi\)
\(12\) 0 0
\(13\) 3.25243 + 3.25243i 0.902063 + 0.902063i 0.995614 0.0935519i \(-0.0298221\pi\)
−0.0935519 + 0.995614i \(0.529822\pi\)
\(14\) 0 0
\(15\) −1.14789 1.91895i −0.296383 0.495470i
\(16\) 0 0
\(17\) −1.38440 + 1.38440i −0.335765 + 0.335765i −0.854771 0.519006i \(-0.826302\pi\)
0.519006 + 0.854771i \(0.326302\pi\)
\(18\) 0 0
\(19\) 7.75672i 1.77951i −0.456435 0.889757i \(-0.650874\pi\)
0.456435 0.889757i \(-0.349126\pi\)
\(20\) 0 0
\(21\) 4.88691i 1.06641i
\(22\) 0 0
\(23\) −2.52755 2.52755i −0.527030 0.527030i 0.392656 0.919685i \(-0.371556\pi\)
−0.919685 + 0.392656i \(0.871556\pi\)
\(24\) 0 0
\(25\) 4.40546 + 2.36472i 0.881093 + 0.472944i
\(26\) 0 0
\(27\) −0.707107 + 0.707107i −0.136083 + 0.136083i
\(28\) 0 0
\(29\) 6.32793 1.17507 0.587534 0.809200i \(-0.300099\pi\)
0.587534 + 0.809200i \(0.300099\pi\)
\(30\) 0 0
\(31\) 4.39095 3.42339i 0.788637 0.614858i
\(32\) 0 0
\(33\) −3.46254 + 3.46254i −0.602752 + 0.602752i
\(34\) 0 0
\(35\) 5.60961 + 9.37772i 0.948197 + 1.58512i
\(36\) 0 0
\(37\) −1.06608 + 1.06608i −0.175262 + 0.175262i −0.789287 0.614025i \(-0.789549\pi\)
0.614025 + 0.789287i \(0.289549\pi\)
\(38\) 0 0
\(39\) 4.59963i 0.736531i
\(40\) 0 0
\(41\) −0.549352 −0.0857944 −0.0428972 0.999079i \(-0.513659\pi\)
−0.0428972 + 0.999079i \(0.513659\pi\)
\(42\) 0 0
\(43\) 4.48876 + 4.48876i 0.684530 + 0.684530i 0.961017 0.276488i \(-0.0891705\pi\)
−0.276488 + 0.961017i \(0.589171\pi\)
\(44\) 0 0
\(45\) 0.545223 2.16858i 0.0812771 0.323273i
\(46\) 0 0
\(47\) 2.44703 + 2.44703i 0.356937 + 0.356937i 0.862683 0.505746i \(-0.168783\pi\)
−0.505746 + 0.862683i \(0.668783\pi\)
\(48\) 0 0
\(49\) 16.8819i 2.41169i
\(50\) 0 0
\(51\) −1.95783 −0.274151
\(52\) 0 0
\(53\) 8.49714 + 8.49714i 1.16717 + 1.16717i 0.982870 + 0.184303i \(0.0590026\pi\)
0.184303 + 0.982870i \(0.440997\pi\)
\(54\) 0 0
\(55\) 2.66984 10.6190i 0.360001 1.43187i
\(56\) 0 0
\(57\) 5.48483 5.48483i 0.726483 0.726483i
\(58\) 0 0
\(59\) 7.41481i 0.965326i −0.875806 0.482663i \(-0.839670\pi\)
0.875806 0.482663i \(-0.160330\pi\)
\(60\) 0 0
\(61\) 11.9378i 1.52848i −0.644932 0.764240i \(-0.723114\pi\)
0.644932 0.764240i \(-0.276886\pi\)
\(62\) 0 0
\(63\) 3.45556 3.45556i 0.435360 0.435360i
\(64\) 0 0
\(65\) −5.27985 8.82646i −0.654885 1.09479i
\(66\) 0 0
\(67\) −0.0563954 0.0563954i −0.00688980 0.00688980i 0.703653 0.710543i \(-0.251551\pi\)
−0.710543 + 0.703653i \(0.751551\pi\)
\(68\) 0 0
\(69\) 3.57449i 0.430318i
\(70\) 0 0
\(71\) 12.8374 1.52352 0.761761 0.647858i \(-0.224335\pi\)
0.761761 + 0.647858i \(0.224335\pi\)
\(72\) 0 0
\(73\) 8.55320 + 8.55320i 1.00108 + 1.00108i 0.999999 + 0.00107691i \(0.000342791\pi\)
0.00107691 + 0.999999i \(0.499657\pi\)
\(74\) 0 0
\(75\) 1.44302 + 4.78724i 0.166626 + 0.552783i
\(76\) 0 0
\(77\) 16.9211 16.9211i 1.92834 1.92834i
\(78\) 0 0
\(79\) 11.4113 1.28387 0.641937 0.766758i \(-0.278131\pi\)
0.641937 + 0.766758i \(0.278131\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 1.53224 + 1.53224i 0.168185 + 0.168185i 0.786181 0.617996i \(-0.212055\pi\)
−0.617996 + 0.786181i \(0.712055\pi\)
\(84\) 0 0
\(85\) 3.75697 2.24737i 0.407501 0.243761i
\(86\) 0 0
\(87\) 4.47452 + 4.47452i 0.479719 + 0.479719i
\(88\) 0 0
\(89\) −13.0869 −1.38721 −0.693604 0.720357i \(-0.743978\pi\)
−0.693604 + 0.720357i \(0.743978\pi\)
\(90\) 0 0
\(91\) 22.4780i 2.35633i
\(92\) 0 0
\(93\) 5.52557 + 0.684169i 0.572975 + 0.0709450i
\(94\) 0 0
\(95\) −4.22914 + 16.8211i −0.433901 + 1.72580i
\(96\) 0 0
\(97\) −7.79226 7.79226i −0.791184 0.791184i 0.190502 0.981687i \(-0.438988\pi\)
−0.981687 + 0.190502i \(0.938988\pi\)
\(98\) 0 0
\(99\) −4.89678 −0.492145
\(100\) 0 0
\(101\) 17.2863 1.72005 0.860026 0.510251i \(-0.170447\pi\)
0.860026 + 0.510251i \(0.170447\pi\)
\(102\) 0 0
\(103\) −2.90798 + 2.90798i −0.286531 + 0.286531i −0.835707 0.549176i \(-0.814942\pi\)
0.549176 + 0.835707i \(0.314942\pi\)
\(104\) 0 0
\(105\) −2.66446 + 10.5976i −0.260024 + 1.03422i
\(106\) 0 0
\(107\) 6.58266 + 6.58266i 0.636370 + 0.636370i 0.949658 0.313288i \(-0.101431\pi\)
−0.313288 + 0.949658i \(0.601431\pi\)
\(108\) 0 0
\(109\) 2.19756i 0.210488i −0.994446 0.105244i \(-0.966438\pi\)
0.994446 0.105244i \(-0.0335624\pi\)
\(110\) 0 0
\(111\) −1.50766 −0.143101
\(112\) 0 0
\(113\) 6.18137 6.18137i 0.581494 0.581494i −0.353819 0.935314i \(-0.615117\pi\)
0.935314 + 0.353819i \(0.115117\pi\)
\(114\) 0 0
\(115\) 4.10310 + 6.85926i 0.382616 + 0.639629i
\(116\) 0 0
\(117\) −3.25243 + 3.25243i −0.300688 + 0.300688i
\(118\) 0 0
\(119\) 9.56774 0.877073
\(120\) 0 0
\(121\) −12.9784 −1.17986
\(122\) 0 0
\(123\) −0.388451 0.388451i −0.0350254 0.0350254i
\(124\) 0 0
\(125\) −8.26429 7.53004i −0.739181 0.673507i
\(126\) 0 0
\(127\) 5.76550 5.76550i 0.511606 0.511606i −0.403412 0.915018i \(-0.632176\pi\)
0.915018 + 0.403412i \(0.132176\pi\)
\(128\) 0 0
\(129\) 6.34807i 0.558916i
\(130\) 0 0
\(131\) 11.0306 0.963750 0.481875 0.876240i \(-0.339956\pi\)
0.481875 + 0.876240i \(0.339956\pi\)
\(132\) 0 0
\(133\) −26.8038 + 26.8038i −2.32419 + 2.32419i
\(134\) 0 0
\(135\) 1.91895 1.14789i 0.165157 0.0987942i
\(136\) 0 0
\(137\) −6.54010 + 6.54010i −0.558758 + 0.558758i −0.928954 0.370195i \(-0.879291\pi\)
0.370195 + 0.928954i \(0.379291\pi\)
\(138\) 0 0
\(139\) −13.8817 −1.17743 −0.588713 0.808342i \(-0.700365\pi\)
−0.588713 + 0.808342i \(0.700365\pi\)
\(140\) 0 0
\(141\) 3.46063i 0.291438i
\(142\) 0 0
\(143\) −15.9264 + 15.9264i −1.33184 + 1.33184i
\(144\) 0 0
\(145\) −13.7226 3.45014i −1.13960 0.286518i
\(146\) 0 0
\(147\) −11.9373 + 11.9373i −0.984570 + 0.984570i
\(148\) 0 0
\(149\) 7.50236i 0.614617i 0.951610 + 0.307309i \(0.0994284\pi\)
−0.951610 + 0.307309i \(0.900572\pi\)
\(150\) 0 0
\(151\) 0.0322435i 0.00262394i −0.999999 0.00131197i \(-0.999582\pi\)
0.999999 0.00131197i \(-0.000417613\pi\)
\(152\) 0 0
\(153\) −1.38440 1.38440i −0.111922 0.111922i
\(154\) 0 0
\(155\) −11.3886 + 5.02984i −0.914756 + 0.404006i
\(156\) 0 0
\(157\) 1.46603 + 1.46603i 0.117002 + 0.117002i 0.763183 0.646182i \(-0.223635\pi\)
−0.646182 + 0.763183i \(0.723635\pi\)
\(158\) 0 0
\(159\) 12.0168i 0.952992i
\(160\) 0 0
\(161\) 17.4682i 1.37669i
\(162\) 0 0
\(163\) 1.53082 1.53082i 0.119903 0.119903i −0.644609 0.764512i \(-0.722980\pi\)
0.764512 + 0.644609i \(0.222980\pi\)
\(164\) 0 0
\(165\) 9.39666 5.62094i 0.731529 0.437590i
\(166\) 0 0
\(167\) −13.2302 + 13.2302i −1.02378 + 1.02378i −0.0240724 + 0.999710i \(0.507663\pi\)
−0.999710 + 0.0240724i \(0.992337\pi\)
\(168\) 0 0
\(169\) 8.15664i 0.627434i
\(170\) 0 0
\(171\) 7.75672 0.593171
\(172\) 0 0
\(173\) 5.17247 5.17247i 0.393256 0.393256i −0.482590 0.875846i \(-0.660304\pi\)
0.875846 + 0.482590i \(0.160304\pi\)
\(174\) 0 0
\(175\) −7.05193 23.3948i −0.533076 1.76848i
\(176\) 0 0
\(177\) 5.24306 5.24306i 0.394093 0.394093i
\(178\) 0 0
\(179\) 14.5872 1.09030 0.545149 0.838339i \(-0.316473\pi\)
0.545149 + 0.838339i \(0.316473\pi\)
\(180\) 0 0
\(181\) 11.4683i 0.852430i −0.904622 0.426215i \(-0.859847\pi\)
0.904622 0.426215i \(-0.140153\pi\)
\(182\) 0 0
\(183\) 8.44130 8.44130i 0.623999 0.623999i
\(184\) 0 0
\(185\) 2.89312 1.73062i 0.212706 0.127238i
\(186\) 0 0
\(187\) −6.77908 6.77908i −0.495735 0.495735i
\(188\) 0 0
\(189\) 4.88691 0.355470
\(190\) 0 0
\(191\) 7.85426 0.568315 0.284157 0.958778i \(-0.408286\pi\)
0.284157 + 0.958778i \(0.408286\pi\)
\(192\) 0 0
\(193\) −0.841265 + 0.841265i −0.0605556 + 0.0605556i −0.736736 0.676180i \(-0.763634\pi\)
0.676180 + 0.736736i \(0.263634\pi\)
\(194\) 0 0
\(195\) 2.50783 9.97467i 0.179589 0.714301i
\(196\) 0 0
\(197\) −7.79831 + 7.79831i −0.555607 + 0.555607i −0.928054 0.372447i \(-0.878519\pi\)
0.372447 + 0.928054i \(0.378519\pi\)
\(198\) 0 0
\(199\) −1.59890 −0.113343 −0.0566715 0.998393i \(-0.518049\pi\)
−0.0566715 + 0.998393i \(0.518049\pi\)
\(200\) 0 0
\(201\) 0.0797552i 0.00562550i
\(202\) 0 0
\(203\) −21.8666 21.8666i −1.53473 1.53473i
\(204\) 0 0
\(205\) 1.19131 + 0.299519i 0.0832049 + 0.0209193i
\(206\) 0 0
\(207\) 2.52755 2.52755i 0.175677 0.175677i
\(208\) 0 0
\(209\) 37.9829 2.62733
\(210\) 0 0
\(211\) −1.96835 −0.135507 −0.0677535 0.997702i \(-0.521583\pi\)
−0.0677535 + 0.997702i \(0.521583\pi\)
\(212\) 0 0
\(213\) 9.07743 + 9.07743i 0.621975 + 0.621975i
\(214\) 0 0
\(215\) −7.28685 12.1816i −0.496959 0.830779i
\(216\) 0 0
\(217\) −27.0029 3.34347i −1.83308 0.226969i
\(218\) 0 0
\(219\) 12.0961i 0.817375i
\(220\) 0 0
\(221\) −9.00531 −0.605762
\(222\) 0 0
\(223\) −8.52099 8.52099i −0.570608 0.570608i 0.361691 0.932298i \(-0.382200\pi\)
−0.932298 + 0.361691i \(0.882200\pi\)
\(224\) 0 0
\(225\) −2.36472 + 4.40546i −0.157648 + 0.293698i
\(226\) 0 0
\(227\) −0.864339 0.864339i −0.0573682 0.0573682i 0.677841 0.735209i \(-0.262916\pi\)
−0.735209 + 0.677841i \(0.762916\pi\)
\(228\) 0 0
\(229\) −6.87180 −0.454102 −0.227051 0.973883i \(-0.572908\pi\)
−0.227051 + 0.973883i \(0.572908\pi\)
\(230\) 0 0
\(231\) 23.9301 1.57448
\(232\) 0 0
\(233\) −5.13678 + 5.13678i −0.336521 + 0.336521i −0.855056 0.518535i \(-0.826478\pi\)
0.518535 + 0.855056i \(0.326478\pi\)
\(234\) 0 0
\(235\) −3.97241 6.64077i −0.259131 0.433196i
\(236\) 0 0
\(237\) 8.06902 + 8.06902i 0.524139 + 0.524139i
\(238\) 0 0
\(239\) 2.47579 0.160146 0.0800729 0.996789i \(-0.474485\pi\)
0.0800729 + 0.996789i \(0.474485\pi\)
\(240\) 0 0
\(241\) 22.5414i 1.45202i 0.687686 + 0.726009i \(0.258627\pi\)
−0.687686 + 0.726009i \(0.741373\pi\)
\(242\) 0 0
\(243\) −0.707107 0.707107i −0.0453609 0.0453609i
\(244\) 0 0
\(245\) 9.20438 36.6096i 0.588046 2.33890i
\(246\) 0 0
\(247\) 25.2282 25.2282i 1.60523 1.60523i
\(248\) 0 0
\(249\) 2.16692i 0.137323i
\(250\) 0 0
\(251\) 7.55545i 0.476896i −0.971155 0.238448i \(-0.923361\pi\)
0.971155 0.238448i \(-0.0766386\pi\)
\(252\) 0 0
\(253\) 12.3768 12.3768i 0.778124 0.778124i
\(254\) 0 0
\(255\) 4.24571 + 1.06745i 0.265877 + 0.0668466i
\(256\) 0 0
\(257\) 6.44599 + 6.44599i 0.402090 + 0.402090i 0.878969 0.476879i \(-0.158232\pi\)
−0.476879 + 0.878969i \(0.658232\pi\)
\(258\) 0 0
\(259\) 7.36779 0.457812
\(260\) 0 0
\(261\) 6.32793i 0.391689i
\(262\) 0 0
\(263\) −6.65661 6.65661i −0.410464 0.410464i 0.471436 0.881900i \(-0.343736\pi\)
−0.881900 + 0.471436i \(0.843736\pi\)
\(264\) 0 0
\(265\) −13.7939 23.0596i −0.847351 1.41654i
\(266\) 0 0
\(267\) −9.25383 9.25383i −0.566325 0.566325i
\(268\) 0 0
\(269\) −9.08425 −0.553877 −0.276938 0.960888i \(-0.589320\pi\)
−0.276938 + 0.960888i \(0.589320\pi\)
\(270\) 0 0
\(271\) 7.47607i 0.454139i 0.973879 + 0.227070i \(0.0729145\pi\)
−0.973879 + 0.227070i \(0.927086\pi\)
\(272\) 0 0
\(273\) 15.8943 15.8943i 0.961969 0.961969i
\(274\) 0 0
\(275\) −11.5795 + 21.5726i −0.698270 + 1.30088i
\(276\) 0 0
\(277\) 22.8243 22.8243i 1.37138 1.37138i 0.512984 0.858398i \(-0.328540\pi\)
0.858398 0.512984i \(-0.171460\pi\)
\(278\) 0 0
\(279\) 3.42339 + 4.39095i 0.204953 + 0.262879i
\(280\) 0 0
\(281\) −22.3125 −1.33105 −0.665526 0.746374i \(-0.731793\pi\)
−0.665526 + 0.746374i \(0.731793\pi\)
\(282\) 0 0
\(283\) 4.02813 4.02813i 0.239448 0.239448i −0.577174 0.816621i \(-0.695844\pi\)
0.816621 + 0.577174i \(0.195844\pi\)
\(284\) 0 0
\(285\) −14.8847 + 8.90382i −0.881696 + 0.527417i
\(286\) 0 0
\(287\) 1.89832 + 1.89832i 0.112054 + 0.112054i
\(288\) 0 0
\(289\) 13.1669i 0.774523i
\(290\) 0 0
\(291\) 11.0199i 0.645999i
\(292\) 0 0
\(293\) −15.2778 + 15.2778i −0.892540 + 0.892540i −0.994762 0.102222i \(-0.967405\pi\)
0.102222 + 0.994762i \(0.467405\pi\)
\(294\) 0 0
\(295\) −4.04273 + 16.0796i −0.235377 + 0.936191i
\(296\) 0 0
\(297\) −3.46254 3.46254i −0.200917 0.200917i
\(298\) 0 0
\(299\) 16.4413i 0.950827i
\(300\) 0 0
\(301\) 31.0224i 1.78810i
\(302\) 0 0
\(303\) 12.2233 + 12.2233i 0.702208 + 0.702208i
\(304\) 0 0
\(305\) −6.50877 + 25.8881i −0.372691 + 1.48235i
\(306\) 0 0
\(307\) −9.43636 9.43636i −0.538561 0.538561i 0.384545 0.923106i \(-0.374358\pi\)
−0.923106 + 0.384545i \(0.874358\pi\)
\(308\) 0 0
\(309\) −4.11250 −0.233952
\(310\) 0 0
\(311\) 28.0760 1.59205 0.796023 0.605267i \(-0.206934\pi\)
0.796023 + 0.605267i \(0.206934\pi\)
\(312\) 0 0
\(313\) −7.01601 7.01601i −0.396569 0.396569i 0.480452 0.877021i \(-0.340473\pi\)
−0.877021 + 0.480452i \(0.840473\pi\)
\(314\) 0 0
\(315\) −9.37772 + 5.60961i −0.528374 + 0.316066i
\(316\) 0 0
\(317\) −20.0745 20.0745i −1.12749 1.12749i −0.990583 0.136911i \(-0.956283\pi\)
−0.136911 0.990583i \(-0.543717\pi\)
\(318\) 0 0
\(319\) 30.9865i 1.73491i
\(320\) 0 0
\(321\) 9.30929i 0.519594i
\(322\) 0 0
\(323\) 10.7384 + 10.7384i 0.597499 + 0.597499i
\(324\) 0 0
\(325\) 6.63739 + 22.0196i 0.368176 + 1.22143i
\(326\) 0 0
\(327\) 1.55391 1.55391i 0.0859314 0.0859314i
\(328\) 0 0
\(329\) 16.9118i 0.932376i
\(330\) 0 0
\(331\) 9.46469i 0.520227i 0.965578 + 0.260113i \(0.0837599\pi\)
−0.965578 + 0.260113i \(0.916240\pi\)
\(332\) 0 0
\(333\) −1.06608 1.06608i −0.0584206 0.0584206i
\(334\) 0 0
\(335\) 0.0915498 + 0.153046i 0.00500190 + 0.00836179i
\(336\) 0 0
\(337\) −23.9610 + 23.9610i −1.30524 + 1.30524i −0.380430 + 0.924810i \(0.624224\pi\)
−0.924810 + 0.380430i \(0.875776\pi\)
\(338\) 0 0
\(339\) 8.74178 0.474788
\(340\) 0 0
\(341\) 16.7636 + 21.5015i 0.907798 + 1.16437i
\(342\) 0 0
\(343\) 34.1474 34.1474i 1.84379 1.84379i
\(344\) 0 0
\(345\) −1.94889 + 7.75156i −0.104925 + 0.417330i
\(346\) 0 0
\(347\) −10.6386 + 10.6386i −0.571108 + 0.571108i −0.932438 0.361330i \(-0.882323\pi\)
0.361330 + 0.932438i \(0.382323\pi\)
\(348\) 0 0
\(349\) 7.28805i 0.390120i 0.980791 + 0.195060i \(0.0624902\pi\)
−0.980791 + 0.195060i \(0.937510\pi\)
\(350\) 0 0
\(351\) −4.59963 −0.245510
\(352\) 0 0
\(353\) 6.91692 + 6.91692i 0.368151 + 0.368151i 0.866802 0.498652i \(-0.166171\pi\)
−0.498652 + 0.866802i \(0.666171\pi\)
\(354\) 0 0
\(355\) −27.8390 6.99926i −1.47754 0.371482i
\(356\) 0 0
\(357\) 6.76541 + 6.76541i 0.358064 + 0.358064i
\(358\) 0 0
\(359\) 3.51255i 0.185385i −0.995695 0.0926925i \(-0.970453\pi\)
0.995695 0.0926925i \(-0.0295474\pi\)
\(360\) 0 0
\(361\) −41.1667 −2.16667
\(362\) 0 0
\(363\) −9.17713 9.17713i −0.481675 0.481675i
\(364\) 0 0
\(365\) −13.8849 23.2117i −0.726768 1.21496i
\(366\) 0 0
\(367\) 10.6423 10.6423i 0.555524 0.555524i −0.372506 0.928030i \(-0.621501\pi\)
0.928030 + 0.372506i \(0.121501\pi\)
\(368\) 0 0
\(369\) 0.549352i 0.0285981i
\(370\) 0 0
\(371\) 58.7248i 3.04884i
\(372\) 0 0
\(373\) 0.579797 0.579797i 0.0300207 0.0300207i −0.691937 0.721958i \(-0.743242\pi\)
0.721958 + 0.691937i \(0.243242\pi\)
\(374\) 0 0
\(375\) −0.519196 11.1683i −0.0268112 0.576727i
\(376\) 0 0
\(377\) 20.5812 + 20.5812i 1.05998 + 1.05998i
\(378\) 0 0
\(379\) 28.3112i 1.45425i −0.686505 0.727125i \(-0.740856\pi\)
0.686505 0.727125i \(-0.259144\pi\)
\(380\) 0 0
\(381\) 8.15366 0.417724
\(382\) 0 0
\(383\) −7.05626 7.05626i −0.360558 0.360558i 0.503460 0.864018i \(-0.332060\pi\)
−0.864018 + 0.503460i \(0.832060\pi\)
\(384\) 0 0
\(385\) −45.9206 + 27.4690i −2.34033 + 1.39995i
\(386\) 0 0
\(387\) −4.48876 + 4.48876i −0.228177 + 0.228177i
\(388\) 0 0
\(389\) 17.6401 0.894387 0.447193 0.894437i \(-0.352424\pi\)
0.447193 + 0.894437i \(0.352424\pi\)
\(390\) 0 0
\(391\) 6.99824 0.353916
\(392\) 0 0
\(393\) 7.79983 + 7.79983i 0.393449 + 0.393449i
\(394\) 0 0
\(395\) −24.7463 6.22171i −1.24512 0.313048i
\(396\) 0 0
\(397\) −7.53894 7.53894i −0.378368 0.378368i 0.492145 0.870513i \(-0.336213\pi\)
−0.870513 + 0.492145i \(0.836213\pi\)
\(398\) 0 0
\(399\) −37.9064 −1.89769
\(400\) 0 0
\(401\) 3.41386i 0.170480i 0.996360 + 0.0852401i \(0.0271657\pi\)
−0.996360 + 0.0852401i \(0.972834\pi\)
\(402\) 0 0
\(403\) 25.4156 + 3.14693i 1.26604 + 0.156760i
\(404\) 0 0
\(405\) 2.16858 + 0.545223i 0.107758 + 0.0270924i
\(406\) 0 0
\(407\) −5.22034 5.22034i −0.258762 0.258762i
\(408\) 0 0
\(409\) 31.5783 1.56145 0.780724 0.624876i \(-0.214850\pi\)
0.780724 + 0.624876i \(0.214850\pi\)
\(410\) 0 0
\(411\) −9.24910 −0.456224
\(412\) 0 0
\(413\) −25.6224 + 25.6224i −1.26079 + 1.26079i
\(414\) 0 0
\(415\) −2.48737 4.15820i −0.122100 0.204118i
\(416\) 0 0
\(417\) −9.81581 9.81581i −0.480682 0.480682i
\(418\) 0 0
\(419\) 22.0057i 1.07505i 0.843248 + 0.537525i \(0.180640\pi\)
−0.843248 + 0.537525i \(0.819360\pi\)
\(420\) 0 0
\(421\) 39.7439 1.93700 0.968498 0.249020i \(-0.0801084\pi\)
0.968498 + 0.249020i \(0.0801084\pi\)
\(422\) 0 0
\(423\) −2.44703 + 2.44703i −0.118979 + 0.118979i
\(424\) 0 0
\(425\) −9.37261 + 2.82520i −0.454638 + 0.137042i
\(426\) 0 0
\(427\) −41.2519 + 41.2519i −1.99632 + 1.99632i
\(428\) 0 0
\(429\) −22.5234 −1.08744
\(430\) 0 0
\(431\) −12.4241 −0.598447 −0.299224 0.954183i \(-0.596728\pi\)
−0.299224 + 0.954183i \(0.596728\pi\)
\(432\) 0 0
\(433\) 21.3312 + 21.3312i 1.02511 + 1.02511i 0.999677 + 0.0254333i \(0.00809655\pi\)
0.0254333 + 0.999677i \(0.491903\pi\)
\(434\) 0 0
\(435\) −7.26374 12.1430i −0.348270 0.582211i
\(436\) 0 0
\(437\) −19.6055 + 19.6055i −0.937856 + 0.937856i
\(438\) 0 0
\(439\) 36.1648i 1.72605i −0.505159 0.863026i \(-0.668566\pi\)
0.505159 0.863026i \(-0.331434\pi\)
\(440\) 0 0
\(441\) −16.8819 −0.803898
\(442\) 0 0
\(443\) 8.63713 8.63713i 0.410362 0.410362i −0.471502 0.881865i \(-0.656288\pi\)
0.881865 + 0.471502i \(0.156288\pi\)
\(444\) 0 0
\(445\) 28.3799 + 7.13528i 1.34534 + 0.338245i
\(446\) 0 0
\(447\) −5.30497 + 5.30497i −0.250916 + 0.250916i
\(448\) 0 0
\(449\) 30.3951 1.43443 0.717216 0.696851i \(-0.245416\pi\)
0.717216 + 0.696851i \(0.245416\pi\)
\(450\) 0 0
\(451\) 2.69005i 0.126670i
\(452\) 0 0
\(453\) 0.0227996 0.0227996i 0.00107122 0.00107122i
\(454\) 0 0
\(455\) −12.2555 + 48.7453i −0.574548 + 2.28521i
\(456\) 0 0
\(457\) 21.7509 21.7509i 1.01747 1.01747i 0.0176210 0.999845i \(-0.494391\pi\)
0.999845 0.0176210i \(-0.00560923\pi\)
\(458\) 0 0
\(459\) 1.95783i 0.0913837i
\(460\) 0 0
\(461\) 41.1546i 1.91676i 0.285494 + 0.958381i \(0.407842\pi\)
−0.285494 + 0.958381i \(0.592158\pi\)
\(462\) 0 0
\(463\) 12.2736 + 12.2736i 0.570403 + 0.570403i 0.932241 0.361838i \(-0.117851\pi\)
−0.361838 + 0.932241i \(0.617851\pi\)
\(464\) 0 0
\(465\) −11.6096 4.49634i −0.538383 0.208513i
\(466\) 0 0
\(467\) −5.31236 5.31236i −0.245827 0.245827i 0.573429 0.819255i \(-0.305613\pi\)
−0.819255 + 0.573429i \(0.805613\pi\)
\(468\) 0 0
\(469\) 0.389756i 0.0179973i
\(470\) 0 0
\(471\) 2.07327i 0.0955314i
\(472\) 0 0
\(473\) −21.9805 + 21.9805i −1.01066 + 1.01066i
\(474\) 0 0
\(475\) 18.3425 34.1719i 0.841610 1.56792i
\(476\) 0 0
\(477\) −8.49714 + 8.49714i −0.389057 + 0.389057i
\(478\) 0 0
\(479\) 28.1222i 1.28494i −0.766312 0.642469i \(-0.777910\pi\)
0.766312 0.642469i \(-0.222090\pi\)
\(480\) 0 0
\(481\) −6.93468 −0.316194
\(482\) 0 0
\(483\) −12.3519 + 12.3519i −0.562030 + 0.562030i
\(484\) 0 0
\(485\) 12.6496 + 21.1467i 0.574389 + 0.960220i
\(486\) 0 0
\(487\) 3.73712 3.73712i 0.169345 0.169345i −0.617346 0.786691i \(-0.711792\pi\)
0.786691 + 0.617346i \(0.211792\pi\)
\(488\) 0 0
\(489\) 2.16490 0.0979002
\(490\) 0 0
\(491\) 35.2715i 1.59178i −0.605441 0.795890i \(-0.707003\pi\)
0.605441 0.795890i \(-0.292997\pi\)
\(492\) 0 0
\(493\) −8.76036 + 8.76036i −0.394547 + 0.394547i
\(494\) 0 0
\(495\) 10.6190 + 2.66984i 0.477291 + 0.120000i
\(496\) 0 0
\(497\) −44.3606 44.3606i −1.98984 1.98984i
\(498\) 0 0
\(499\) −8.55558 −0.383001 −0.191500 0.981493i \(-0.561335\pi\)
−0.191500 + 0.981493i \(0.561335\pi\)
\(500\) 0 0
\(501\) −18.7103 −0.835915
\(502\) 0 0
\(503\) 13.4456 13.4456i 0.599509 0.599509i −0.340673 0.940182i \(-0.610655\pi\)
0.940182 + 0.340673i \(0.110655\pi\)
\(504\) 0 0
\(505\) −37.4867 9.42489i −1.66814 0.419402i
\(506\) 0 0
\(507\) −5.76761 + 5.76761i −0.256149 + 0.256149i
\(508\) 0 0
\(509\) −3.06081 −0.135668 −0.0678340 0.997697i \(-0.521609\pi\)
−0.0678340 + 0.997697i \(0.521609\pi\)
\(510\) 0 0
\(511\) 59.1123i 2.61497i
\(512\) 0 0
\(513\) 5.48483 + 5.48483i 0.242161 + 0.242161i
\(514\) 0 0
\(515\) 7.89167 4.72068i 0.347749 0.208018i
\(516\) 0 0
\(517\) −11.9826 + 11.9826i −0.526993 + 0.526993i
\(518\) 0 0
\(519\) 7.31498 0.321092
\(520\) 0 0
\(521\) 42.7863 1.87450 0.937250 0.348658i \(-0.113362\pi\)
0.937250 + 0.348658i \(0.113362\pi\)
\(522\) 0 0
\(523\) 11.3231 + 11.3231i 0.495126 + 0.495126i 0.909917 0.414791i \(-0.136145\pi\)
−0.414791 + 0.909917i \(0.636145\pi\)
\(524\) 0 0
\(525\) 11.5562 21.5291i 0.504352 0.939606i
\(526\) 0 0
\(527\) −1.33949 + 10.8181i −0.0583489 + 0.471245i
\(528\) 0 0
\(529\) 10.2230i 0.444479i
\(530\) 0 0
\(531\) 7.41481 0.321775
\(532\) 0 0
\(533\) −1.78673 1.78673i −0.0773919 0.0773919i
\(534\) 0 0
\(535\) −10.6860 17.8640i −0.461996 0.772329i
\(536\) 0 0
\(537\) 10.3147 + 10.3147i 0.445113 + 0.445113i
\(538\) 0 0
\(539\) −82.6667 −3.56071
\(540\) 0 0
\(541\) −19.2669 −0.828350 −0.414175 0.910197i \(-0.635930\pi\)
−0.414175 + 0.910197i \(0.635930\pi\)
\(542\) 0 0
\(543\) 8.10930 8.10930i 0.348003 0.348003i
\(544\) 0 0
\(545\) −1.19816 + 4.76558i −0.0513236 + 0.204135i
\(546\) 0 0
\(547\) 28.5347 + 28.5347i 1.22006 + 1.22006i 0.967612 + 0.252443i \(0.0812341\pi\)
0.252443 + 0.967612i \(0.418766\pi\)
\(548\) 0 0
\(549\) 11.9378 0.509493
\(550\) 0 0
\(551\) 49.0840i 2.09105i
\(552\) 0 0
\(553\) −39.4325 39.4325i −1.67684 1.67684i
\(554\) 0 0
\(555\) 3.26948 + 0.822011i 0.138782 + 0.0348924i
\(556\) 0 0
\(557\) 16.5408 16.5408i 0.700857 0.700857i −0.263738 0.964594i \(-0.584955\pi\)
0.964594 + 0.263738i \(0.0849554\pi\)
\(558\) 0 0
\(559\) 29.1988i 1.23498i
\(560\) 0 0
\(561\) 9.58706i 0.404766i
\(562\) 0 0
\(563\) 7.01144 7.01144i 0.295497 0.295497i −0.543750 0.839247i \(-0.682996\pi\)
0.839247 + 0.543750i \(0.182996\pi\)
\(564\) 0 0
\(565\) −16.7750 + 10.0346i −0.705730 + 0.422157i
\(566\) 0 0
\(567\) 3.45556 + 3.45556i 0.145120 + 0.145120i
\(568\) 0 0
\(569\) 20.8064 0.872250 0.436125 0.899886i \(-0.356351\pi\)
0.436125 + 0.899886i \(0.356351\pi\)
\(570\) 0 0
\(571\) 40.6599i 1.70156i 0.525519 + 0.850782i \(0.323871\pi\)
−0.525519 + 0.850782i \(0.676129\pi\)
\(572\) 0 0
\(573\) 5.55380 + 5.55380i 0.232013 + 0.232013i
\(574\) 0 0
\(575\) −5.15808 17.1119i −0.215107 0.713617i
\(576\) 0 0
\(577\) 26.3995 + 26.3995i 1.09903 + 1.09903i 0.994525 + 0.104502i \(0.0333249\pi\)
0.104502 + 0.994525i \(0.466675\pi\)
\(578\) 0 0
\(579\) −1.18973 −0.0494434
\(580\) 0 0
\(581\) 10.5895i 0.439328i
\(582\) 0 0
\(583\) −41.6086 + 41.6086i −1.72325 + 1.72325i
\(584\) 0 0
\(585\) 8.82646 5.27985i 0.364929 0.218295i
\(586\) 0 0
\(587\) 9.52719 9.52719i 0.393229 0.393229i −0.482607 0.875837i \(-0.660310\pi\)
0.875837 + 0.482607i \(0.160310\pi\)
\(588\) 0 0
\(589\) −26.5543 34.0593i −1.09415 1.40339i
\(590\) 0 0
\(591\) −11.0285 −0.453651
\(592\) 0 0
\(593\) −3.70145 + 3.70145i −0.152000 + 0.152000i −0.779011 0.627011i \(-0.784278\pi\)
0.627011 + 0.779011i \(0.284278\pi\)
\(594\) 0 0
\(595\) −20.7484 5.21655i −0.850601 0.213858i
\(596\) 0 0
\(597\) −1.13059 1.13059i −0.0462721 0.0462721i
\(598\) 0 0
\(599\) 7.27677i 0.297321i −0.988888 0.148660i \(-0.952504\pi\)
0.988888 0.148660i \(-0.0474961\pi\)
\(600\) 0 0
\(601\) 27.9458i 1.13993i −0.821668 0.569966i \(-0.806956\pi\)
0.821668 0.569966i \(-0.193044\pi\)
\(602\) 0 0
\(603\) 0.0563954 0.0563954i 0.00229660 0.00229660i
\(604\) 0 0
\(605\) 28.1447 + 7.07614i 1.14425 + 0.287686i
\(606\) 0 0
\(607\) −2.94856 2.94856i −0.119678 0.119678i 0.644731 0.764409i \(-0.276969\pi\)
−0.764409 + 0.644731i \(0.776969\pi\)
\(608\) 0 0
\(609\) 30.9240i 1.25310i
\(610\) 0 0
\(611\) 15.9176i 0.643958i
\(612\) 0 0
\(613\) −7.25229 7.25229i −0.292917 0.292917i 0.545314 0.838232i \(-0.316410\pi\)
−0.838232 + 0.545314i \(0.816410\pi\)
\(614\) 0 0
\(615\) 0.630593 + 1.05418i 0.0254280 + 0.0425085i
\(616\) 0 0
\(617\) 24.7603 + 24.7603i 0.996812 + 0.996812i 0.999995 0.00318330i \(-0.00101328\pi\)
−0.00318330 + 0.999995i \(0.501013\pi\)
\(618\) 0 0
\(619\) −34.7040 −1.39487 −0.697437 0.716647i \(-0.745676\pi\)
−0.697437 + 0.716647i \(0.745676\pi\)
\(620\) 0 0
\(621\) 3.57449 0.143439
\(622\) 0 0
\(623\) 45.2226 + 45.2226i 1.81181 + 1.81181i
\(624\) 0 0
\(625\) 13.8162 + 20.8354i 0.552649 + 0.833414i
\(626\) 0 0
\(627\) 26.8580 + 26.8580i 1.07260 + 1.07260i
\(628\) 0 0
\(629\) 2.95174i 0.117694i
\(630\) 0 0
\(631\) 41.3611i 1.64656i −0.567635 0.823280i \(-0.692142\pi\)
0.567635 0.823280i \(-0.307858\pi\)
\(632\) 0 0
\(633\) −1.39184 1.39184i −0.0553205 0.0553205i
\(634\) 0 0
\(635\) −15.6464 + 9.35946i −0.620910 + 0.371419i
\(636\) 0 0
\(637\) −54.9071 + 54.9071i −2.17550 + 2.17550i
\(638\) 0 0
\(639\) 12.8374i 0.507841i
\(640\) 0 0
\(641\) 33.2226i 1.31221i 0.754668 + 0.656107i \(0.227798\pi\)
−0.754668 + 0.656107i \(0.772202\pi\)
\(642\) 0 0
\(643\) −17.7653 17.7653i −0.700596 0.700596i 0.263943 0.964538i \(-0.414977\pi\)
−0.964538 + 0.263943i \(0.914977\pi\)
\(644\) 0 0
\(645\) 3.46111 13.7663i 0.136281 0.542047i
\(646\) 0 0
\(647\) −12.0055 + 12.0055i −0.471985 + 0.471985i −0.902557 0.430571i \(-0.858312\pi\)
0.430571 + 0.902557i \(0.358312\pi\)
\(648\) 0 0
\(649\) 36.3087 1.42524
\(650\) 0 0
\(651\) −16.7298 21.4582i −0.655691 0.841011i
\(652\) 0 0
\(653\) −23.2656 + 23.2656i −0.910454 + 0.910454i −0.996308 0.0858533i \(-0.972638\pi\)
0.0858533 + 0.996308i \(0.472638\pi\)
\(654\) 0 0
\(655\) −23.9208 6.01415i −0.934662 0.234992i
\(656\) 0 0
\(657\) −8.55320 + 8.55320i −0.333692 + 0.333692i
\(658\) 0 0
\(659\) 19.2928i 0.751543i 0.926712 + 0.375771i \(0.122622\pi\)
−0.926712 + 0.375771i \(0.877378\pi\)
\(660\) 0 0
\(661\) 11.6552 0.453336 0.226668 0.973972i \(-0.427217\pi\)
0.226668 + 0.973972i \(0.427217\pi\)
\(662\) 0 0
\(663\) −6.36771 6.36771i −0.247301 0.247301i
\(664\) 0 0
\(665\) 72.7403 43.5122i 2.82075 1.68733i
\(666\) 0 0
\(667\) −15.9941 15.9941i −0.619295 0.619295i
\(668\) 0 0
\(669\) 12.0505i 0.465899i
\(670\) 0 0
\(671\) 58.4568 2.25670
\(672\) 0 0
\(673\) −5.90308 5.90308i −0.227547 0.227547i 0.584120 0.811667i \(-0.301440\pi\)
−0.811667 + 0.584120i \(0.801440\pi\)
\(674\) 0 0
\(675\) −4.78724 + 1.44302i −0.184261 + 0.0555420i
\(676\) 0 0
\(677\) 0.318677 0.318677i 0.0122477 0.0122477i −0.700956 0.713204i \(-0.747243\pi\)
0.713204 + 0.700956i \(0.247243\pi\)
\(678\) 0 0
\(679\) 53.8533i 2.06670i
\(680\) 0 0
\(681\) 1.22236i 0.0468409i
\(682\) 0 0
\(683\) −11.8614 + 11.8614i −0.453864 + 0.453864i −0.896635 0.442771i \(-0.853995\pi\)
0.442771 + 0.896635i \(0.353995\pi\)
\(684\) 0 0
\(685\) 17.7485 10.6169i 0.678137 0.405651i
\(686\) 0 0
\(687\) −4.85910 4.85910i −0.185386 0.185386i
\(688\) 0 0
\(689\) 55.2728i 2.10572i
\(690\) 0 0
\(691\) −18.9159 −0.719593 −0.359797 0.933031i \(-0.617154\pi\)
−0.359797 + 0.933031i \(0.617154\pi\)
\(692\) 0 0
\(693\) 16.9211 + 16.9211i 0.642781 + 0.642781i
\(694\) 0 0
\(695\) 30.1035 + 7.56860i 1.14189 + 0.287093i
\(696\) 0 0
\(697\) 0.760520 0.760520i 0.0288068 0.0288068i
\(698\) 0 0
\(699\) −7.26450 −0.274769
\(700\) 0 0
\(701\) −1.13129 −0.0427284 −0.0213642 0.999772i \(-0.506801\pi\)
−0.0213642 + 0.999772i \(0.506801\pi\)
\(702\) 0 0
\(703\) 8.26925 + 8.26925i 0.311881 + 0.311881i
\(704\) 0 0
\(705\) 1.88682 7.50465i 0.0710616 0.282641i
\(706\) 0 0
\(707\) −59.7339 59.7339i −2.24653 2.24653i
\(708\) 0 0
\(709\) 24.6940 0.927402 0.463701 0.885992i \(-0.346521\pi\)
0.463701 + 0.885992i \(0.346521\pi\)
\(710\) 0 0
\(711\) 11.4113i 0.427958i
\(712\) 0 0
\(713\) −19.7511 2.44555i −0.739684 0.0915867i
\(714\) 0 0
\(715\) 43.2212 25.8543i 1.61638 0.966895i
\(716\) 0 0
\(717\) 1.75065 + 1.75065i 0.0653792 + 0.0653792i
\(718\) 0 0
\(719\) 15.2440 0.568507 0.284253 0.958749i \(-0.408254\pi\)
0.284253 + 0.958749i \(0.408254\pi\)
\(720\) 0 0
\(721\) 20.0974 0.748466
\(722\) 0 0
\(723\) −15.9392 + 15.9392i −0.592784 + 0.592784i
\(724\) 0 0
\(725\) 27.8775 + 14.9638i 1.03534 + 0.555741i
\(726\) 0 0
\(727\) −14.6099 14.6099i −0.541852 0.541852i 0.382220 0.924072i \(-0.375160\pi\)
−0.924072 + 0.382220i \(0.875160\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −12.4284 −0.459683
\(732\) 0 0
\(733\) −33.8807 + 33.8807i −1.25141 + 1.25141i −0.296325 + 0.955087i \(0.595761\pi\)
−0.955087 + 0.296325i \(0.904239\pi\)
\(734\) 0 0
\(735\) 32.3954 19.3784i 1.19492 0.714784i
\(736\) 0 0
\(737\) 0.276156 0.276156i 0.0101723 0.0101723i
\(738\) 0 0
\(739\) 21.3105 0.783920 0.391960 0.919982i \(-0.371797\pi\)
0.391960 + 0.919982i \(0.371797\pi\)
\(740\) 0 0
\(741\) 35.6781 1.31067
\(742\) 0 0
\(743\) 21.4350 + 21.4350i 0.786373 + 0.786373i 0.980898 0.194525i \(-0.0623165\pi\)
−0.194525 + 0.980898i \(0.562316\pi\)
\(744\) 0 0
\(745\) 4.09046 16.2695i 0.149863 0.596067i
\(746\) 0 0
\(747\) −1.53224 + 1.53224i −0.0560618 + 0.0560618i
\(748\) 0 0
\(749\) 45.4936i 1.66230i
\(750\) 0 0
\(751\) −29.3802 −1.07210 −0.536049 0.844187i \(-0.680084\pi\)
−0.536049 + 0.844187i \(0.680084\pi\)
\(752\) 0 0
\(753\) 5.34251 5.34251i 0.194692 0.194692i
\(754\) 0 0
\(755\) −0.0175799 + 0.0699226i −0.000639798 + 0.00254474i
\(756\) 0 0
\(757\) −11.9078 + 11.9078i −0.432796 + 0.432796i −0.889578 0.456783i \(-0.849002\pi\)
0.456783 + 0.889578i \(0.349002\pi\)
\(758\) 0 0
\(759\) 17.5035 0.635336
\(760\) 0 0
\(761\) 9.76514i 0.353986i −0.984212 0.176993i \(-0.943363\pi\)
0.984212 0.176993i \(-0.0566370\pi\)
\(762\) 0 0
\(763\) −7.59381 + 7.59381i −0.274914 + 0.274914i
\(764\) 0 0
\(765\) 2.24737 + 3.75697i 0.0812537 + 0.135834i
\(766\) 0 0
\(767\) 24.1162 24.1162i 0.870785 0.870785i
\(768\) 0 0
\(769\) 32.1135i 1.15804i 0.815313 + 0.579021i \(0.196565\pi\)
−0.815313 + 0.579021i \(0.803435\pi\)
\(770\) 0 0
\(771\) 9.11601i 0.328305i
\(772\) 0 0
\(773\) 4.82343 + 4.82343i 0.173487 + 0.173487i 0.788509 0.615023i \(-0.210853\pi\)
−0.615023 + 0.788509i \(0.710853\pi\)
\(774\) 0 0
\(775\) 27.4395 4.69825i 0.985656 0.168766i
\(776\) 0 0
\(777\) 5.20981 + 5.20981i 0.186901 + 0.186901i
\(778\) 0 0
\(779\) 4.26117i 0.152672i
\(780\) 0 0
\(781\) 62.8620i 2.24938i
\(782\) 0 0
\(783\) −4.47452 + 4.47452i −0.159906 + 0.159906i
\(784\) 0 0
\(785\) −2.37988 3.97850i −0.0849416 0.141999i
\(786\) 0 0
\(787\) −4.31437 + 4.31437i −0.153791 + 0.153791i −0.779809 0.626018i \(-0.784684\pi\)
0.626018 + 0.779809i \(0.284684\pi\)
\(788\) 0 0
\(789\) 9.41387i 0.335143i
\(790\) 0 0
\(791\) −42.7203 −1.51896
\(792\) 0 0
\(793\) 38.8269 38.8269i 1.37878 1.37878i
\(794\) 0 0
\(795\) 6.55182 26.0593i 0.232369 0.924229i
\(796\) 0 0
\(797\) −19.2281 + 19.2281i −0.681094 + 0.681094i −0.960247 0.279152i \(-0.909947\pi\)
0.279152 + 0.960247i \(0.409947\pi\)
\(798\) 0 0
\(799\) −6.77533 −0.239694
\(800\) 0 0
\(801\) 13.0869i 0.462403i
\(802\) 0 0
\(803\) −41.8831 + 41.8831i −1.47802 + 1.47802i
\(804\) 0 0
\(805\) 9.52407 37.8811i 0.335679 1.33514i
\(806\) 0 0
\(807\) −6.42354 6.42354i −0.226119 0.226119i
\(808\) 0 0
\(809\) −13.2550 −0.466022 −0.233011 0.972474i \(-0.574858\pi\)
−0.233011 + 0.972474i \(0.574858\pi\)
\(810\) 0 0
\(811\) −4.16919 −0.146400 −0.0732001 0.997317i \(-0.523321\pi\)
−0.0732001 + 0.997317i \(0.523321\pi\)
\(812\) 0 0
\(813\) −5.28638 + 5.28638i −0.185401 + 0.185401i
\(814\) 0 0
\(815\) −4.15433 + 2.48506i −0.145520 + 0.0870478i
\(816\) 0 0
\(817\) 34.8181 34.8181i 1.21813 1.21813i
\(818\) 0 0
\(819\) 22.4780 0.785444
\(820\) 0 0
\(821\) 0.400642i 0.0139825i 0.999976 + 0.00699125i \(0.00222540\pi\)
−0.999976 + 0.00699125i \(0.997775\pi\)
\(822\) 0 0
\(823\) 3.00912 + 3.00912i 0.104891 + 0.104891i 0.757605 0.652713i \(-0.226369\pi\)
−0.652713 + 0.757605i \(0.726369\pi\)
\(824\) 0 0
\(825\) −23.4421 + 7.06617i −0.816148 + 0.246012i
\(826\) 0 0
\(827\) 18.8781 18.8781i 0.656455 0.656455i −0.298085 0.954539i \(-0.596348\pi\)
0.954539 + 0.298085i \(0.0963478\pi\)
\(828\) 0 0
\(829\) 16.0434 0.557211 0.278606 0.960406i \(-0.410128\pi\)
0.278606 + 0.960406i \(0.410128\pi\)
\(830\) 0 0
\(831\) 32.2785 1.11973
\(832\) 0 0
\(833\) −23.3712 23.3712i −0.809763 0.809763i
\(834\) 0 0
\(835\) 35.9041 21.4773i 1.24251 0.743252i
\(836\) 0 0
\(837\) −0.684169 + 5.52557i −0.0236483 + 0.190992i
\(838\) 0 0
\(839\) 17.6178i 0.608234i −0.952635 0.304117i \(-0.901639\pi\)
0.952635 0.304117i \(-0.0983614\pi\)
\(840\) 0 0
\(841\) 11.0427 0.380783
\(842\) 0 0
\(843\) −15.7773 15.7773i −0.543400 0.543400i
\(844\) 0 0
\(845\) 4.44719 17.6883i 0.152988 0.608496i
\(846\) 0 0
\(847\) 44.8478 + 44.8478i 1.54099 + 1.54099i
\(848\) 0 0
\(849\) 5.69664 0.195508
\(850\) 0 0
\(851\) 5.38911 0.184736
\(852\) 0 0
\(853\) 2.83296 2.83296i 0.0969988 0.0969988i −0.656942 0.753941i \(-0.728150\pi\)
0.753941 + 0.656942i \(0.228150\pi\)
\(854\) 0 0
\(855\) −16.8211 4.22914i −0.575268 0.144634i
\(856\) 0 0
\(857\) −30.4896 30.4896i −1.04150 1.04150i −0.999101 0.0424041i \(-0.986498\pi\)
−0.0424041 0.999101i \(-0.513502\pi\)
\(858\) 0 0
\(859\) 45.0258 1.53626 0.768131 0.640293i \(-0.221187\pi\)
0.768131 + 0.640293i \(0.221187\pi\)
\(860\) 0 0
\(861\) 2.68463i 0.0914920i
\(862\) 0 0
\(863\) −6.99688 6.99688i −0.238177 0.238177i 0.577918 0.816095i \(-0.303865\pi\)
−0.816095 + 0.577918i \(0.803865\pi\)
\(864\) 0 0
\(865\) −14.0371 + 8.39676i −0.477274 + 0.285498i
\(866\) 0 0
\(867\) −9.31040 + 9.31040i −0.316198 + 0.316198i
\(868\) 0 0
\(869\) 55.8787i 1.89555i
\(870\) 0 0
\(871\) 0.366845i 0.0124301i
\(872\) 0 0
\(873\) 7.79226 7.79226i 0.263728 0.263728i
\(874\) 0 0
\(875\) 2.53726 + 54.5783i 0.0857752 + 1.84508i
\(876\) 0 0
\(877\) −16.0767 16.0767i −0.542871 0.542871i 0.381498 0.924370i \(-0.375408\pi\)
−0.924370 + 0.381498i \(0.875408\pi\)
\(878\) 0 0
\(879\) −21.6061 −0.728756
\(880\) 0 0
\(881\) 57.7504i 1.94566i −0.231520 0.972830i \(-0.574370\pi\)
0.231520 0.972830i \(-0.425630\pi\)
\(882\) 0 0
\(883\) 26.5193 + 26.5193i 0.892444 + 0.892444i 0.994753 0.102309i \(-0.0326230\pi\)
−0.102309 + 0.994753i \(0.532623\pi\)
\(884\) 0 0
\(885\) −14.2286 + 8.51136i −0.478290 + 0.286106i
\(886\) 0 0
\(887\) 34.8453 + 34.8453i 1.16999 + 1.16999i 0.982211 + 0.187778i \(0.0601286\pi\)
0.187778 + 0.982211i \(0.439871\pi\)
\(888\) 0 0
\(889\) −39.8462 −1.33640
\(890\) 0 0
\(891\) 4.89678i 0.164048i
\(892\) 0 0
\(893\) 18.9810 18.9810i 0.635174 0.635174i
\(894\) 0 0
\(895\) −31.6335 7.95328i −1.05739 0.265849i
\(896\) 0 0
\(897\) 11.6258 11.6258i 0.388174 0.388174i
\(898\) 0 0
\(899\) 27.7856 21.6630i 0.926702 0.722500i
\(900\) 0 0
\(901\) −23.5268 −0.783792
\(902\) 0 0
\(903\) 21.9362 21.9362i 0.729990 0.729990i
\(904\) 0 0
\(905\) −6.25277 + 24.8699i −0.207849 + 0.826702i
\(906\) 0 0
\(907\) 29.5016 + 29.5016i 0.979585 + 0.979585i 0.999796 0.0202110i \(-0.00643380\pi\)
−0.0202110 + 0.999796i \(0.506434\pi\)
\(908\) 0 0
\(909\) 17.2863i 0.573351i
\(910\) 0 0
\(911\) 38.8492i 1.28713i 0.765391 + 0.643566i \(0.222546\pi\)
−0.765391 + 0.643566i \(0.777454\pi\)
\(912\) 0 0
\(913\) −7.50305 + 7.50305i −0.248315 + 0.248315i
\(914\) 0 0
\(915\) −22.9080 + 13.7032i −0.757316 + 0.453015i
\(916\) 0 0
\(917\) −38.1170 38.1170i −1.25874 1.25874i
\(918\) 0 0
\(919\) 10.5864i 0.349214i −0.984638 0.174607i \(-0.944134\pi\)
0.984638 0.174607i \(-0.0558655\pi\)
\(920\) 0 0
\(921\) 13.3450i 0.439734i
\(922\) 0 0
\(923\) 41.7529 + 41.7529i 1.37431 + 1.37431i
\(924\) 0 0
\(925\) −7.21753 + 2.17559i −0.237311 + 0.0715329i
\(926\) 0 0
\(927\) −2.90798 2.90798i −0.0955105 0.0955105i
\(928\) 0 0
\(929\) 15.4991 0.508508 0.254254 0.967138i \(-0.418170\pi\)
0.254254 + 0.967138i \(0.418170\pi\)
\(930\) 0 0
\(931\) 130.948 4.29164
\(932\) 0 0
\(933\) 19.8527 + 19.8527i 0.649950 + 0.649950i
\(934\) 0 0
\(935\) 11.0048 + 18.3971i 0.359897 + 0.601648i
\(936\) 0 0
\(937\) 31.0188 + 31.0188i 1.01334 + 1.01334i 0.999910 + 0.0134292i \(0.00427478\pi\)
0.0134292 + 0.999910i \(0.495725\pi\)
\(938\) 0 0
\(939\) 9.92214i 0.323797i
\(940\) 0 0
\(941\) 30.1329i 0.982306i −0.871073 0.491153i \(-0.836576\pi\)
0.871073 0.491153i \(-0.163424\pi\)
\(942\) 0 0
\(943\) 1.38851 + 1.38851i 0.0452162 + 0.0452162i
\(944\) 0 0
\(945\) −10.5976 2.66446i −0.344741 0.0866747i
\(946\) 0 0
\(947\) 8.64543 8.64543i 0.280939 0.280939i −0.552545 0.833483i \(-0.686343\pi\)
0.833483 + 0.552545i \(0.186343\pi\)
\(948\) 0 0
\(949\) 55.6374i 1.80607i
\(950\) 0 0
\(951\) 28.3896i 0.920595i
\(952\) 0 0
\(953\) −42.9489 42.9489i −1.39125 1.39125i −0.822534 0.568716i \(-0.807441\pi\)
−0.568716 0.822534i \(-0.692559\pi\)
\(954\) 0 0
\(955\) −17.0326 4.28233i −0.551162 0.138573i
\(956\) 0 0
\(957\) −21.9107 + 21.9107i −0.708274 + 0.708274i
\(958\) 0 0
\(959\) 45.1995 1.45957
\(960\) 0 0
\(961\) 7.56084 30.0638i 0.243898 0.969801i
\(962\) 0 0
\(963\) −6.58266 + 6.58266i −0.212123 + 0.212123i
\(964\) 0 0
\(965\) 2.28303 1.36567i 0.0734932 0.0439625i
\(966\) 0 0
\(967\) 15.5563 15.5563i 0.500258 0.500258i −0.411260 0.911518i \(-0.634911\pi\)
0.911518 + 0.411260i \(0.134911\pi\)
\(968\) 0 0
\(969\) 15.1863i 0.487856i
\(970\) 0 0
\(971\) −27.6524 −0.887408 −0.443704 0.896173i \(-0.646336\pi\)
−0.443704 + 0.896173i \(0.646336\pi\)
\(972\) 0 0
\(973\) 47.9690 + 47.9690i 1.53781 + 1.53781i
\(974\) 0 0
\(975\) −10.8768 + 20.2635i −0.348338 + 0.648952i
\(976\) 0 0
\(977\) −17.2983 17.2983i −0.553422 0.553422i 0.374005 0.927427i \(-0.377984\pi\)
−0.927427 + 0.374005i \(0.877984\pi\)
\(978\) 0 0
\(979\) 64.0836i 2.04812i
\(980\) 0 0
\(981\) 2.19756 0.0701627
\(982\) 0 0
\(983\) −18.0115 18.0115i −0.574479 0.574479i 0.358898 0.933377i \(-0.383153\pi\)
−0.933377 + 0.358898i \(0.883153\pi\)
\(984\) 0 0
\(985\) 21.1631 12.6594i 0.674312 0.403363i
\(986\) 0 0
\(987\) 11.9584 11.9584i 0.380641 0.380641i
\(988\) 0 0
\(989\) 22.6911i 0.721535i
\(990\) 0 0
\(991\) 26.7453i 0.849593i 0.905289 + 0.424796i \(0.139654\pi\)
−0.905289 + 0.424796i \(0.860346\pi\)
\(992\) 0 0
\(993\) −6.69255 + 6.69255i −0.212382 + 0.212382i
\(994\) 0 0
\(995\) 3.46734 + 0.871758i 0.109922 + 0.0276366i
\(996\) 0 0
\(997\) −15.3742 15.3742i −0.486906 0.486906i 0.420422 0.907328i \(-0.361882\pi\)
−0.907328 + 0.420422i \(0.861882\pi\)
\(998\) 0 0
\(999\) 1.50766i 0.0477002i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.1177.32 yes 64
5.3 odd 4 inner 1860.2.s.a.433.11 64
31.30 odd 2 inner 1860.2.s.a.1177.11 yes 64
155.123 even 4 inner 1860.2.s.a.433.32 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.11 64 5.3 odd 4 inner
1860.2.s.a.433.32 yes 64 155.123 even 4 inner
1860.2.s.a.1177.11 yes 64 31.30 odd 2 inner
1860.2.s.a.1177.32 yes 64 1.1 even 1 trivial