Properties

Label 1860.2.s.a.1177.14
Level $1860$
Weight $2$
Character 1860.1177
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1177.14
Character \(\chi\) \(=\) 1860.1177
Dual form 1860.2.s.a.433.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-2.03335 + 0.930324i) q^{5} +(3.55204 + 3.55204i) q^{7} +1.00000i q^{9} -1.02375i q^{11} +(-2.14442 - 2.14442i) q^{13} +(2.09563 + 0.779955i) q^{15} +(4.10840 - 4.10840i) q^{17} +1.55305i q^{19} -5.02334i q^{21} +(1.29395 + 1.29395i) q^{23} +(3.26900 - 3.78334i) q^{25} +(0.707107 - 0.707107i) q^{27} +5.13268 q^{29} +(-3.42793 + 4.38740i) q^{31} +(-0.723899 + 0.723899i) q^{33} +(-10.5271 - 3.91798i) q^{35} +(-8.19054 + 8.19054i) q^{37} +3.03266i q^{39} +3.51578 q^{41} +(3.18311 + 3.18311i) q^{43} +(-0.930324 - 2.03335i) q^{45} +(4.33874 + 4.33874i) q^{47} +18.2339i q^{49} -5.81016 q^{51} +(-6.42067 - 6.42067i) q^{53} +(0.952417 + 2.08163i) q^{55} +(1.09817 - 1.09817i) q^{57} -1.91513i q^{59} +4.45240i q^{61} +(-3.55204 + 3.55204i) q^{63} +(6.35534 + 2.36534i) q^{65} +(0.870307 + 0.870307i) q^{67} -1.82992i q^{69} -9.24125 q^{71} +(2.35042 + 2.35042i) q^{73} +(-4.98675 + 0.363696i) q^{75} +(3.63639 - 3.63639i) q^{77} +3.74066 q^{79} -1.00000 q^{81} +(4.05436 + 4.05436i) q^{83} +(-4.53166 + 12.1760i) q^{85} +(-3.62935 - 3.62935i) q^{87} +13.1218 q^{89} -15.2341i q^{91} +(5.52627 - 0.678443i) q^{93} +(-1.44484 - 3.15789i) q^{95} +(5.44174 + 5.44174i) q^{97} +1.02375 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −2.03335 + 0.930324i −0.909340 + 0.416053i
\(6\) 0 0
\(7\) 3.55204 + 3.55204i 1.34254 + 1.34254i 0.893520 + 0.449024i \(0.148228\pi\)
0.449024 + 0.893520i \(0.351772\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 1.02375i 0.308672i −0.988018 0.154336i \(-0.950676\pi\)
0.988018 0.154336i \(-0.0493238\pi\)
\(12\) 0 0
\(13\) −2.14442 2.14442i −0.594754 0.594754i 0.344158 0.938912i \(-0.388165\pi\)
−0.938912 + 0.344158i \(0.888165\pi\)
\(14\) 0 0
\(15\) 2.09563 + 0.779955i 0.541090 + 0.201384i
\(16\) 0 0
\(17\) 4.10840 4.10840i 0.996434 0.996434i −0.00355941 0.999994i \(-0.501133\pi\)
0.999994 + 0.00355941i \(0.00113300\pi\)
\(18\) 0 0
\(19\) 1.55305i 0.356295i 0.984004 + 0.178147i \(0.0570103\pi\)
−0.984004 + 0.178147i \(0.942990\pi\)
\(20\) 0 0
\(21\) 5.02334i 1.09618i
\(22\) 0 0
\(23\) 1.29395 + 1.29395i 0.269808 + 0.269808i 0.829023 0.559215i \(-0.188897\pi\)
−0.559215 + 0.829023i \(0.688897\pi\)
\(24\) 0 0
\(25\) 3.26900 3.78334i 0.653799 0.756668i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) 5.13268 0.953115 0.476557 0.879143i \(-0.341884\pi\)
0.476557 + 0.879143i \(0.341884\pi\)
\(30\) 0 0
\(31\) −3.42793 + 4.38740i −0.615675 + 0.788000i
\(32\) 0 0
\(33\) −0.723899 + 0.723899i −0.126015 + 0.126015i
\(34\) 0 0
\(35\) −10.5271 3.91798i −1.77940 0.662259i
\(36\) 0 0
\(37\) −8.19054 + 8.19054i −1.34652 + 1.34652i −0.457102 + 0.889414i \(0.651113\pi\)
−0.889414 + 0.457102i \(0.848887\pi\)
\(38\) 0 0
\(39\) 3.03266i 0.485615i
\(40\) 0 0
\(41\) 3.51578 0.549072 0.274536 0.961577i \(-0.411476\pi\)
0.274536 + 0.961577i \(0.411476\pi\)
\(42\) 0 0
\(43\) 3.18311 + 3.18311i 0.485419 + 0.485419i 0.906857 0.421438i \(-0.138475\pi\)
−0.421438 + 0.906857i \(0.638475\pi\)
\(44\) 0 0
\(45\) −0.930324 2.03335i −0.138684 0.303113i
\(46\) 0 0
\(47\) 4.33874 + 4.33874i 0.632871 + 0.632871i 0.948787 0.315916i \(-0.102312\pi\)
−0.315916 + 0.948787i \(0.602312\pi\)
\(48\) 0 0
\(49\) 18.2339i 2.60485i
\(50\) 0 0
\(51\) −5.81016 −0.813585
\(52\) 0 0
\(53\) −6.42067 6.42067i −0.881947 0.881947i 0.111785 0.993732i \(-0.464343\pi\)
−0.993732 + 0.111785i \(0.964343\pi\)
\(54\) 0 0
\(55\) 0.952417 + 2.08163i 0.128424 + 0.280688i
\(56\) 0 0
\(57\) 1.09817 1.09817i 0.145457 0.145457i
\(58\) 0 0
\(59\) 1.91513i 0.249329i −0.992199 0.124664i \(-0.960215\pi\)
0.992199 0.124664i \(-0.0397854\pi\)
\(60\) 0 0
\(61\) 4.45240i 0.570071i 0.958517 + 0.285036i \(0.0920055\pi\)
−0.958517 + 0.285036i \(0.907995\pi\)
\(62\) 0 0
\(63\) −3.55204 + 3.55204i −0.447515 + 0.447515i
\(64\) 0 0
\(65\) 6.35534 + 2.36534i 0.788283 + 0.293384i
\(66\) 0 0
\(67\) 0.870307 + 0.870307i 0.106325 + 0.106325i 0.758268 0.651943i \(-0.226046\pi\)
−0.651943 + 0.758268i \(0.726046\pi\)
\(68\) 0 0
\(69\) 1.82992i 0.220297i
\(70\) 0 0
\(71\) −9.24125 −1.09673 −0.548367 0.836238i \(-0.684750\pi\)
−0.548367 + 0.836238i \(0.684750\pi\)
\(72\) 0 0
\(73\) 2.35042 + 2.35042i 0.275095 + 0.275095i 0.831147 0.556052i \(-0.187684\pi\)
−0.556052 + 0.831147i \(0.687684\pi\)
\(74\) 0 0
\(75\) −4.98675 + 0.363696i −0.575821 + 0.0419960i
\(76\) 0 0
\(77\) 3.63639 3.63639i 0.414405 0.414405i
\(78\) 0 0
\(79\) 3.74066 0.420857 0.210429 0.977609i \(-0.432514\pi\)
0.210429 + 0.977609i \(0.432514\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) 4.05436 + 4.05436i 0.445023 + 0.445023i 0.893696 0.448673i \(-0.148103\pi\)
−0.448673 + 0.893696i \(0.648103\pi\)
\(84\) 0 0
\(85\) −4.53166 + 12.1760i −0.491528 + 1.32067i
\(86\) 0 0
\(87\) −3.62935 3.62935i −0.389108 0.389108i
\(88\) 0 0
\(89\) 13.1218 1.39090 0.695452 0.718572i \(-0.255204\pi\)
0.695452 + 0.718572i \(0.255204\pi\)
\(90\) 0 0
\(91\) 15.2341i 1.59697i
\(92\) 0 0
\(93\) 5.52627 0.678443i 0.573048 0.0703513i
\(94\) 0 0
\(95\) −1.44484 3.15789i −0.148238 0.323993i
\(96\) 0 0
\(97\) 5.44174 + 5.44174i 0.552525 + 0.552525i 0.927169 0.374644i \(-0.122235\pi\)
−0.374644 + 0.927169i \(0.622235\pi\)
\(98\) 0 0
\(99\) 1.02375 0.102891
\(100\) 0 0
\(101\) −7.13399 −0.709858 −0.354929 0.934893i \(-0.615495\pi\)
−0.354929 + 0.934893i \(0.615495\pi\)
\(102\) 0 0
\(103\) −11.2107 + 11.2107i −1.10463 + 1.10463i −0.110782 + 0.993845i \(0.535336\pi\)
−0.993845 + 0.110782i \(0.964664\pi\)
\(104\) 0 0
\(105\) 4.67333 + 10.2142i 0.456070 + 0.996803i
\(106\) 0 0
\(107\) 10.0352 + 10.0352i 0.970140 + 0.970140i 0.999567 0.0294273i \(-0.00936834\pi\)
−0.0294273 + 0.999567i \(0.509368\pi\)
\(108\) 0 0
\(109\) 16.8305i 1.61207i 0.591865 + 0.806037i \(0.298392\pi\)
−0.591865 + 0.806037i \(0.701608\pi\)
\(110\) 0 0
\(111\) 11.5832 1.09943
\(112\) 0 0
\(113\) −3.04324 + 3.04324i −0.286284 + 0.286284i −0.835609 0.549325i \(-0.814885\pi\)
0.549325 + 0.835609i \(0.314885\pi\)
\(114\) 0 0
\(115\) −3.83485 1.42726i −0.357601 0.133093i
\(116\) 0 0
\(117\) 2.14442 2.14442i 0.198251 0.198251i
\(118\) 0 0
\(119\) 29.1864 2.67551
\(120\) 0 0
\(121\) 9.95194 0.904722
\(122\) 0 0
\(123\) −2.48603 2.48603i −0.224158 0.224158i
\(124\) 0 0
\(125\) −3.12727 + 10.7341i −0.279712 + 0.960084i
\(126\) 0 0
\(127\) 10.0477 10.0477i 0.891586 0.891586i −0.103086 0.994672i \(-0.532872\pi\)
0.994672 + 0.103086i \(0.0328717\pi\)
\(128\) 0 0
\(129\) 4.50159i 0.396343i
\(130\) 0 0
\(131\) 18.5042 1.61672 0.808360 0.588688i \(-0.200355\pi\)
0.808360 + 0.588688i \(0.200355\pi\)
\(132\) 0 0
\(133\) −5.51650 + 5.51650i −0.478341 + 0.478341i
\(134\) 0 0
\(135\) −0.779955 + 2.09563i −0.0671278 + 0.180363i
\(136\) 0 0
\(137\) −9.90653 + 9.90653i −0.846372 + 0.846372i −0.989678 0.143306i \(-0.954227\pi\)
0.143306 + 0.989678i \(0.454227\pi\)
\(138\) 0 0
\(139\) 7.30205 0.619352 0.309676 0.950842i \(-0.399779\pi\)
0.309676 + 0.950842i \(0.399779\pi\)
\(140\) 0 0
\(141\) 6.13591i 0.516737i
\(142\) 0 0
\(143\) −2.19534 + 2.19534i −0.183584 + 0.183584i
\(144\) 0 0
\(145\) −10.4365 + 4.77505i −0.866706 + 0.396547i
\(146\) 0 0
\(147\) 12.8933 12.8933i 1.06342 1.06342i
\(148\) 0 0
\(149\) 4.76358i 0.390248i −0.980779 0.195124i \(-0.937489\pi\)
0.980779 0.195124i \(-0.0625109\pi\)
\(150\) 0 0
\(151\) 12.1699i 0.990375i 0.868786 + 0.495188i \(0.164901\pi\)
−0.868786 + 0.495188i \(0.835099\pi\)
\(152\) 0 0
\(153\) 4.10840 + 4.10840i 0.332145 + 0.332145i
\(154\) 0 0
\(155\) 2.88848 12.1102i 0.232008 0.972714i
\(156\) 0 0
\(157\) −8.33014 8.33014i −0.664818 0.664818i 0.291694 0.956512i \(-0.405781\pi\)
−0.956512 + 0.291694i \(0.905781\pi\)
\(158\) 0 0
\(159\) 9.08020i 0.720107i
\(160\) 0 0
\(161\) 9.19233i 0.724457i
\(162\) 0 0
\(163\) 6.96331 6.96331i 0.545408 0.545408i −0.379701 0.925109i \(-0.623973\pi\)
0.925109 + 0.379701i \(0.123973\pi\)
\(164\) 0 0
\(165\) 0.798478 2.14540i 0.0621614 0.167019i
\(166\) 0 0
\(167\) −6.35870 + 6.35870i −0.492051 + 0.492051i −0.908952 0.416901i \(-0.863116\pi\)
0.416901 + 0.908952i \(0.363116\pi\)
\(168\) 0 0
\(169\) 3.80295i 0.292535i
\(170\) 0 0
\(171\) −1.55305 −0.118765
\(172\) 0 0
\(173\) 2.44986 2.44986i 0.186259 0.186259i −0.607817 0.794077i \(-0.707955\pi\)
0.794077 + 0.607817i \(0.207955\pi\)
\(174\) 0 0
\(175\) 25.0502 1.82697i 1.89361 0.138106i
\(176\) 0 0
\(177\) −1.35420 + 1.35420i −0.101788 + 0.101788i
\(178\) 0 0
\(179\) −19.7597 −1.47691 −0.738454 0.674303i \(-0.764444\pi\)
−0.738454 + 0.674303i \(0.764444\pi\)
\(180\) 0 0
\(181\) 14.2138i 1.05651i −0.849087 0.528253i \(-0.822847\pi\)
0.849087 0.528253i \(-0.177153\pi\)
\(182\) 0 0
\(183\) 3.14832 3.14832i 0.232731 0.232731i
\(184\) 0 0
\(185\) 9.03435 24.2741i 0.664219 1.78466i
\(186\) 0 0
\(187\) −4.20597 4.20597i −0.307571 0.307571i
\(188\) 0 0
\(189\) 5.02334 0.365394
\(190\) 0 0
\(191\) 8.65264 0.626083 0.313042 0.949739i \(-0.398652\pi\)
0.313042 + 0.949739i \(0.398652\pi\)
\(192\) 0 0
\(193\) −8.36215 + 8.36215i −0.601921 + 0.601921i −0.940822 0.338901i \(-0.889945\pi\)
0.338901 + 0.940822i \(0.389945\pi\)
\(194\) 0 0
\(195\) −2.82136 6.16646i −0.202042 0.441589i
\(196\) 0 0
\(197\) −19.7620 + 19.7620i −1.40798 + 1.40798i −0.637688 + 0.770295i \(0.720109\pi\)
−0.770295 + 0.637688i \(0.779891\pi\)
\(198\) 0 0
\(199\) −1.98778 −0.140910 −0.0704551 0.997515i \(-0.522445\pi\)
−0.0704551 + 0.997515i \(0.522445\pi\)
\(200\) 0 0
\(201\) 1.23080i 0.0868139i
\(202\) 0 0
\(203\) 18.2315 + 18.2315i 1.27960 + 1.27960i
\(204\) 0 0
\(205\) −7.14880 + 3.27081i −0.499294 + 0.228443i
\(206\) 0 0
\(207\) −1.29395 + 1.29395i −0.0899359 + 0.0899359i
\(208\) 0 0
\(209\) 1.58993 0.109978
\(210\) 0 0
\(211\) 18.5123 1.27444 0.637218 0.770683i \(-0.280085\pi\)
0.637218 + 0.770683i \(0.280085\pi\)
\(212\) 0 0
\(213\) 6.53455 + 6.53455i 0.447740 + 0.447740i
\(214\) 0 0
\(215\) −9.43368 3.51104i −0.643371 0.239451i
\(216\) 0 0
\(217\) −27.7603 + 3.40805i −1.88450 + 0.231354i
\(218\) 0 0
\(219\) 3.32399i 0.224614i
\(220\) 0 0
\(221\) −17.6203 −1.18527
\(222\) 0 0
\(223\) −8.63066 8.63066i −0.577952 0.577952i 0.356387 0.934338i \(-0.384009\pi\)
−0.934338 + 0.356387i \(0.884009\pi\)
\(224\) 0 0
\(225\) 3.78334 + 3.26900i 0.252223 + 0.217933i
\(226\) 0 0
\(227\) −5.53685 5.53685i −0.367494 0.367494i 0.499069 0.866563i \(-0.333676\pi\)
−0.866563 + 0.499069i \(0.833676\pi\)
\(228\) 0 0
\(229\) 5.41788 0.358023 0.179012 0.983847i \(-0.442710\pi\)
0.179012 + 0.983847i \(0.442710\pi\)
\(230\) 0 0
\(231\) −5.14263 −0.338360
\(232\) 0 0
\(233\) −9.98770 + 9.98770i −0.654316 + 0.654316i −0.954029 0.299713i \(-0.903109\pi\)
0.299713 + 0.954029i \(0.403109\pi\)
\(234\) 0 0
\(235\) −12.8586 4.78574i −0.838803 0.312187i
\(236\) 0 0
\(237\) −2.64505 2.64505i −0.171814 0.171814i
\(238\) 0 0
\(239\) 10.8859 0.704152 0.352076 0.935971i \(-0.385476\pi\)
0.352076 + 0.935971i \(0.385476\pi\)
\(240\) 0 0
\(241\) 20.2688i 1.30563i −0.757518 0.652814i \(-0.773588\pi\)
0.757518 0.652814i \(-0.226412\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) −16.9635 37.0759i −1.08376 2.36869i
\(246\) 0 0
\(247\) 3.33039 3.33039i 0.211908 0.211908i
\(248\) 0 0
\(249\) 5.73373i 0.363360i
\(250\) 0 0
\(251\) 23.0045i 1.45203i −0.687679 0.726015i \(-0.741370\pi\)
0.687679 0.726015i \(-0.258630\pi\)
\(252\) 0 0
\(253\) 1.32468 1.32468i 0.0832820 0.0832820i
\(254\) 0 0
\(255\) 11.8141 5.40533i 0.739826 0.338495i
\(256\) 0 0
\(257\) −7.01803 7.01803i −0.437773 0.437773i 0.453489 0.891262i \(-0.350179\pi\)
−0.891262 + 0.453489i \(0.850179\pi\)
\(258\) 0 0
\(259\) −58.1862 −3.61551
\(260\) 0 0
\(261\) 5.13268i 0.317705i
\(262\) 0 0
\(263\) −7.85555 7.85555i −0.484394 0.484394i 0.422138 0.906532i \(-0.361280\pi\)
−0.906532 + 0.422138i \(0.861280\pi\)
\(264\) 0 0
\(265\) 19.0288 + 7.08215i 1.16893 + 0.435053i
\(266\) 0 0
\(267\) −9.27849 9.27849i −0.567835 0.567835i
\(268\) 0 0
\(269\) −25.9151 −1.58007 −0.790035 0.613062i \(-0.789938\pi\)
−0.790035 + 0.613062i \(0.789938\pi\)
\(270\) 0 0
\(271\) 22.4105i 1.36134i −0.732589 0.680671i \(-0.761688\pi\)
0.732589 0.680671i \(-0.238312\pi\)
\(272\) 0 0
\(273\) −10.7721 + 10.7721i −0.651959 + 0.651959i
\(274\) 0 0
\(275\) −3.87319 3.34663i −0.233562 0.201809i
\(276\) 0 0
\(277\) −12.5081 + 12.5081i −0.751541 + 0.751541i −0.974767 0.223225i \(-0.928341\pi\)
0.223225 + 0.974767i \(0.428341\pi\)
\(278\) 0 0
\(279\) −4.38740 3.42793i −0.262667 0.205225i
\(280\) 0 0
\(281\) 15.8320 0.944457 0.472228 0.881476i \(-0.343450\pi\)
0.472228 + 0.881476i \(0.343450\pi\)
\(282\) 0 0
\(283\) 6.74084 6.74084i 0.400701 0.400701i −0.477779 0.878480i \(-0.658558\pi\)
0.878480 + 0.477779i \(0.158558\pi\)
\(284\) 0 0
\(285\) −1.21131 + 3.25462i −0.0717518 + 0.192787i
\(286\) 0 0
\(287\) 12.4882 + 12.4882i 0.737154 + 0.737154i
\(288\) 0 0
\(289\) 16.7580i 0.985762i
\(290\) 0 0
\(291\) 7.69578i 0.451135i
\(292\) 0 0
\(293\) −5.81877 + 5.81877i −0.339936 + 0.339936i −0.856343 0.516407i \(-0.827269\pi\)
0.516407 + 0.856343i \(0.327269\pi\)
\(294\) 0 0
\(295\) 1.78169 + 3.89412i 0.103734 + 0.226725i
\(296\) 0 0
\(297\) −0.723899 0.723899i −0.0420049 0.0420049i
\(298\) 0 0
\(299\) 5.54955i 0.320939i
\(300\) 0 0
\(301\) 22.6130i 1.30339i
\(302\) 0 0
\(303\) 5.04449 + 5.04449i 0.289798 + 0.289798i
\(304\) 0 0
\(305\) −4.14217 9.05327i −0.237180 0.518389i
\(306\) 0 0
\(307\) 18.7305 + 18.7305i 1.06901 + 1.06901i 0.997436 + 0.0715707i \(0.0228011\pi\)
0.0715707 + 0.997436i \(0.477199\pi\)
\(308\) 0 0
\(309\) 15.8544 0.901924
\(310\) 0 0
\(311\) 34.5214 1.95753 0.978763 0.204993i \(-0.0657173\pi\)
0.978763 + 0.204993i \(0.0657173\pi\)
\(312\) 0 0
\(313\) 15.7212 + 15.7212i 0.888616 + 0.888616i 0.994390 0.105774i \(-0.0337320\pi\)
−0.105774 + 0.994390i \(0.533732\pi\)
\(314\) 0 0
\(315\) 3.91798 10.5271i 0.220753 0.593133i
\(316\) 0 0
\(317\) −19.1093 19.1093i −1.07328 1.07328i −0.997093 0.0761895i \(-0.975725\pi\)
−0.0761895 0.997093i \(-0.524275\pi\)
\(318\) 0 0
\(319\) 5.25457i 0.294200i
\(320\) 0 0
\(321\) 14.1919i 0.792116i
\(322\) 0 0
\(323\) 6.38056 + 6.38056i 0.355024 + 0.355024i
\(324\) 0 0
\(325\) −15.1232 + 1.10297i −0.838881 + 0.0611816i
\(326\) 0 0
\(327\) 11.9010 11.9010i 0.658126 0.658126i
\(328\) 0 0
\(329\) 30.8228i 1.69931i
\(330\) 0 0
\(331\) 15.1665i 0.833624i 0.908993 + 0.416812i \(0.136853\pi\)
−0.908993 + 0.416812i \(0.863147\pi\)
\(332\) 0 0
\(333\) −8.19054 8.19054i −0.448839 0.448839i
\(334\) 0 0
\(335\) −2.57930 0.959969i −0.140922 0.0524487i
\(336\) 0 0
\(337\) −25.4179 + 25.4179i −1.38460 + 1.38460i −0.548363 + 0.836240i \(0.684749\pi\)
−0.836240 + 0.548363i \(0.815251\pi\)
\(338\) 0 0
\(339\) 4.30380 0.233750
\(340\) 0 0
\(341\) 4.49159 + 3.50934i 0.243233 + 0.190042i
\(342\) 0 0
\(343\) −39.9033 + 39.9033i −2.15458 + 2.15458i
\(344\) 0 0
\(345\) 1.70242 + 3.72087i 0.0916553 + 0.200325i
\(346\) 0 0
\(347\) −3.48531 + 3.48531i −0.187101 + 0.187101i −0.794442 0.607341i \(-0.792236\pi\)
0.607341 + 0.794442i \(0.292236\pi\)
\(348\) 0 0
\(349\) 4.83284i 0.258696i 0.991599 + 0.129348i \(0.0412884\pi\)
−0.991599 + 0.129348i \(0.958712\pi\)
\(350\) 0 0
\(351\) −3.03266 −0.161872
\(352\) 0 0
\(353\) 22.4901 + 22.4901i 1.19703 + 1.19703i 0.975052 + 0.221975i \(0.0712504\pi\)
0.221975 + 0.975052i \(0.428750\pi\)
\(354\) 0 0
\(355\) 18.7907 8.59735i 0.997304 0.456300i
\(356\) 0 0
\(357\) −20.6379 20.6379i −1.09227 1.09227i
\(358\) 0 0
\(359\) 4.18262i 0.220750i −0.993890 0.110375i \(-0.964795\pi\)
0.993890 0.110375i \(-0.0352052\pi\)
\(360\) 0 0
\(361\) 16.5880 0.873054
\(362\) 0 0
\(363\) −7.03708 7.03708i −0.369351 0.369351i
\(364\) 0 0
\(365\) −6.96586 2.59256i −0.364610 0.135701i
\(366\) 0 0
\(367\) 18.3267 18.3267i 0.956645 0.956645i −0.0424530 0.999098i \(-0.513517\pi\)
0.999098 + 0.0424530i \(0.0135173\pi\)
\(368\) 0 0
\(369\) 3.51578i 0.183024i
\(370\) 0 0
\(371\) 45.6129i 2.36810i
\(372\) 0 0
\(373\) 2.05895 2.05895i 0.106608 0.106608i −0.651791 0.758399i \(-0.725982\pi\)
0.758399 + 0.651791i \(0.225982\pi\)
\(374\) 0 0
\(375\) 9.80145 5.37882i 0.506144 0.277761i
\(376\) 0 0
\(377\) −11.0066 11.0066i −0.566869 0.566869i
\(378\) 0 0
\(379\) 1.81999i 0.0934868i −0.998907 0.0467434i \(-0.985116\pi\)
0.998907 0.0467434i \(-0.0148843\pi\)
\(380\) 0 0
\(381\) −14.2095 −0.727977
\(382\) 0 0
\(383\) −8.30075 8.30075i −0.424148 0.424148i 0.462481 0.886629i \(-0.346959\pi\)
−0.886629 + 0.462481i \(0.846959\pi\)
\(384\) 0 0
\(385\) −4.01102 + 10.7771i −0.204421 + 0.549250i
\(386\) 0 0
\(387\) −3.18311 + 3.18311i −0.161806 + 0.161806i
\(388\) 0 0
\(389\) 20.6917 1.04911 0.524556 0.851376i \(-0.324231\pi\)
0.524556 + 0.851376i \(0.324231\pi\)
\(390\) 0 0
\(391\) 10.6322 0.537691
\(392\) 0 0
\(393\) −13.0845 13.0845i −0.660023 0.660023i
\(394\) 0 0
\(395\) −7.60606 + 3.48002i −0.382702 + 0.175099i
\(396\) 0 0
\(397\) 6.09112 + 6.09112i 0.305704 + 0.305704i 0.843241 0.537536i \(-0.180645\pi\)
−0.537536 + 0.843241i \(0.680645\pi\)
\(398\) 0 0
\(399\) 7.80151 0.390564
\(400\) 0 0
\(401\) 17.2360i 0.860724i −0.902656 0.430362i \(-0.858386\pi\)
0.902656 0.430362i \(-0.141614\pi\)
\(402\) 0 0
\(403\) 16.7593 2.05749i 0.834842 0.102491i
\(404\) 0 0
\(405\) 2.03335 0.930324i 0.101038 0.0462281i
\(406\) 0 0
\(407\) 8.38505 + 8.38505i 0.415631 + 0.415631i
\(408\) 0 0
\(409\) 12.8179 0.633807 0.316903 0.948458i \(-0.397357\pi\)
0.316903 + 0.948458i \(0.397357\pi\)
\(410\) 0 0
\(411\) 14.0100 0.691060
\(412\) 0 0
\(413\) 6.80261 6.80261i 0.334735 0.334735i
\(414\) 0 0
\(415\) −12.0158 4.47205i −0.589831 0.219524i
\(416\) 0 0
\(417\) −5.16333 5.16333i −0.252849 0.252849i
\(418\) 0 0
\(419\) 33.2306i 1.62342i −0.584059 0.811711i \(-0.698536\pi\)
0.584059 0.811711i \(-0.301464\pi\)
\(420\) 0 0
\(421\) 6.24017 0.304127 0.152064 0.988371i \(-0.451408\pi\)
0.152064 + 0.988371i \(0.451408\pi\)
\(422\) 0 0
\(423\) −4.33874 + 4.33874i −0.210957 + 0.210957i
\(424\) 0 0
\(425\) −2.11313 28.9738i −0.102502 1.40544i
\(426\) 0 0
\(427\) −15.8151 + 15.8151i −0.765346 + 0.765346i
\(428\) 0 0
\(429\) 3.10468 0.149896
\(430\) 0 0
\(431\) −23.1353 −1.11439 −0.557193 0.830383i \(-0.688122\pi\)
−0.557193 + 0.830383i \(0.688122\pi\)
\(432\) 0 0
\(433\) 3.61218 + 3.61218i 0.173590 + 0.173590i 0.788555 0.614965i \(-0.210830\pi\)
−0.614965 + 0.788555i \(0.710830\pi\)
\(434\) 0 0
\(435\) 10.7562 + 4.00326i 0.515721 + 0.191942i
\(436\) 0 0
\(437\) −2.00957 + 2.00957i −0.0961310 + 0.0961310i
\(438\) 0 0
\(439\) 18.6910i 0.892074i 0.895015 + 0.446037i \(0.147165\pi\)
−0.895015 + 0.446037i \(0.852835\pi\)
\(440\) 0 0
\(441\) −18.2339 −0.868282
\(442\) 0 0
\(443\) −9.51625 + 9.51625i −0.452131 + 0.452131i −0.896061 0.443931i \(-0.853584\pi\)
0.443931 + 0.896061i \(0.353584\pi\)
\(444\) 0 0
\(445\) −26.6811 + 12.2075i −1.26481 + 0.578691i
\(446\) 0 0
\(447\) −3.36836 + 3.36836i −0.159318 + 0.159318i
\(448\) 0 0
\(449\) 7.11177 0.335625 0.167813 0.985819i \(-0.446330\pi\)
0.167813 + 0.985819i \(0.446330\pi\)
\(450\) 0 0
\(451\) 3.59927i 0.169483i
\(452\) 0 0
\(453\) 8.60544 8.60544i 0.404319 0.404319i
\(454\) 0 0
\(455\) 14.1726 + 30.9762i 0.664424 + 1.45219i
\(456\) 0 0
\(457\) −2.85154 + 2.85154i −0.133389 + 0.133389i −0.770649 0.637260i \(-0.780068\pi\)
0.637260 + 0.770649i \(0.280068\pi\)
\(458\) 0 0
\(459\) 5.81016i 0.271195i
\(460\) 0 0
\(461\) 18.3405i 0.854200i −0.904204 0.427100i \(-0.859535\pi\)
0.904204 0.427100i \(-0.140465\pi\)
\(462\) 0 0
\(463\) −28.8325 28.8325i −1.33996 1.33996i −0.896091 0.443870i \(-0.853605\pi\)
−0.443870 0.896091i \(-0.646395\pi\)
\(464\) 0 0
\(465\) −10.6057 + 6.52073i −0.491826 + 0.302392i
\(466\) 0 0
\(467\) −3.69035 3.69035i −0.170769 0.170769i 0.616548 0.787317i \(-0.288531\pi\)
−0.787317 + 0.616548i \(0.788531\pi\)
\(468\) 0 0
\(469\) 6.18273i 0.285492i
\(470\) 0 0
\(471\) 11.7806i 0.542822i
\(472\) 0 0
\(473\) 3.25870 3.25870i 0.149835 0.149835i
\(474\) 0 0
\(475\) 5.87572 + 5.07692i 0.269597 + 0.232945i
\(476\) 0 0
\(477\) 6.42067 6.42067i 0.293982 0.293982i
\(478\) 0 0
\(479\) 4.52547i 0.206774i −0.994641 0.103387i \(-0.967032\pi\)
0.994641 0.103387i \(-0.0329680\pi\)
\(480\) 0 0
\(481\) 35.1279 1.60169
\(482\) 0 0
\(483\) 6.49996 6.49996i 0.295758 0.295758i
\(484\) 0 0
\(485\) −16.1275 6.00236i −0.732313 0.272553i
\(486\) 0 0
\(487\) 5.17614 5.17614i 0.234553 0.234553i −0.580037 0.814590i \(-0.696962\pi\)
0.814590 + 0.580037i \(0.196962\pi\)
\(488\) 0 0
\(489\) −9.84761 −0.445324
\(490\) 0 0
\(491\) 5.26486i 0.237600i −0.992918 0.118800i \(-0.962095\pi\)
0.992918 0.118800i \(-0.0379047\pi\)
\(492\) 0 0
\(493\) 21.0871 21.0871i 0.949716 0.949716i
\(494\) 0 0
\(495\) −2.08163 + 0.952417i −0.0935625 + 0.0428080i
\(496\) 0 0
\(497\) −32.8252 32.8252i −1.47241 1.47241i
\(498\) 0 0
\(499\) 2.40122 0.107493 0.0537466 0.998555i \(-0.482884\pi\)
0.0537466 + 0.998555i \(0.482884\pi\)
\(500\) 0 0
\(501\) 8.99256 0.401758
\(502\) 0 0
\(503\) −11.1899 + 11.1899i −0.498931 + 0.498931i −0.911105 0.412174i \(-0.864770\pi\)
0.412174 + 0.911105i \(0.364770\pi\)
\(504\) 0 0
\(505\) 14.5059 6.63692i 0.645503 0.295339i
\(506\) 0 0
\(507\) −2.68909 + 2.68909i −0.119427 + 0.119427i
\(508\) 0 0
\(509\) −22.8056 −1.01084 −0.505420 0.862873i \(-0.668662\pi\)
−0.505420 + 0.862873i \(0.668662\pi\)
\(510\) 0 0
\(511\) 16.6975i 0.738655i
\(512\) 0 0
\(513\) 1.09817 + 1.09817i 0.0484855 + 0.0484855i
\(514\) 0 0
\(515\) 12.3657 33.2249i 0.544898 1.46407i
\(516\) 0 0
\(517\) 4.44178 4.44178i 0.195349 0.195349i
\(518\) 0 0
\(519\) −3.46462 −0.152080
\(520\) 0 0
\(521\) 11.1465 0.488337 0.244169 0.969733i \(-0.421485\pi\)
0.244169 + 0.969733i \(0.421485\pi\)
\(522\) 0 0
\(523\) 0.976480 + 0.976480i 0.0426985 + 0.0426985i 0.728134 0.685435i \(-0.240388\pi\)
−0.685435 + 0.728134i \(0.740388\pi\)
\(524\) 0 0
\(525\) −19.0050 16.4213i −0.829446 0.716683i
\(526\) 0 0
\(527\) 3.94186 + 32.1085i 0.171710 + 1.39867i
\(528\) 0 0
\(529\) 19.6514i 0.854408i
\(530\) 0 0
\(531\) 1.91513 0.0831095
\(532\) 0 0
\(533\) −7.53930 7.53930i −0.326563 0.326563i
\(534\) 0 0
\(535\) −29.7410 11.0691i −1.28582 0.478557i
\(536\) 0 0
\(537\) 13.9722 + 13.9722i 0.602946 + 0.602946i
\(538\) 0 0
\(539\) 18.6670 0.804043
\(540\) 0 0
\(541\) 10.4590 0.449668 0.224834 0.974397i \(-0.427816\pi\)
0.224834 + 0.974397i \(0.427816\pi\)
\(542\) 0 0
\(543\) −10.0507 + 10.0507i −0.431317 + 0.431317i
\(544\) 0 0
\(545\) −15.6579 34.2223i −0.670709 1.46592i
\(546\) 0 0
\(547\) 11.6513 + 11.6513i 0.498174 + 0.498174i 0.910869 0.412695i \(-0.135413\pi\)
−0.412695 + 0.910869i \(0.635413\pi\)
\(548\) 0 0
\(549\) −4.45240 −0.190024
\(550\) 0 0
\(551\) 7.97132i 0.339590i
\(552\) 0 0
\(553\) 13.2870 + 13.2870i 0.565019 + 0.565019i
\(554\) 0 0
\(555\) −23.5526 + 10.7761i −0.999752 + 0.457420i
\(556\) 0 0
\(557\) −7.51732 + 7.51732i −0.318519 + 0.318519i −0.848198 0.529679i \(-0.822312\pi\)
0.529679 + 0.848198i \(0.322312\pi\)
\(558\) 0 0
\(559\) 13.6518i 0.577410i
\(560\) 0 0
\(561\) 5.94814i 0.251131i
\(562\) 0 0
\(563\) 28.1064 28.1064i 1.18454 1.18454i 0.205988 0.978555i \(-0.433959\pi\)
0.978555 0.205988i \(-0.0660407\pi\)
\(564\) 0 0
\(565\) 3.35677 9.01917i 0.141220 0.379439i
\(566\) 0 0
\(567\) −3.55204 3.55204i −0.149172 0.149172i
\(568\) 0 0
\(569\) −29.9106 −1.25392 −0.626959 0.779052i \(-0.715701\pi\)
−0.626959 + 0.779052i \(0.715701\pi\)
\(570\) 0 0
\(571\) 24.2546i 1.01502i 0.861645 + 0.507511i \(0.169434\pi\)
−0.861645 + 0.507511i \(0.830566\pi\)
\(572\) 0 0
\(573\) −6.11834 6.11834i −0.255597 0.255597i
\(574\) 0 0
\(575\) 9.12539 0.665536i 0.380555 0.0277548i
\(576\) 0 0
\(577\) −25.4116 25.4116i −1.05790 1.05790i −0.998218 0.0596791i \(-0.980992\pi\)
−0.0596791 0.998218i \(-0.519008\pi\)
\(578\) 0 0
\(579\) 11.8259 0.491466
\(580\) 0 0
\(581\) 28.8024i 1.19493i
\(582\) 0 0
\(583\) −6.57315 + 6.57315i −0.272232 + 0.272232i
\(584\) 0 0
\(585\) −2.36534 + 6.35534i −0.0977948 + 0.262761i
\(586\) 0 0
\(587\) 10.2347 10.2347i 0.422430 0.422430i −0.463610 0.886039i \(-0.653446\pi\)
0.886039 + 0.463610i \(0.153446\pi\)
\(588\) 0 0
\(589\) −6.81386 5.32376i −0.280760 0.219362i
\(590\) 0 0
\(591\) 27.9477 1.14961
\(592\) 0 0
\(593\) 25.4713 25.4713i 1.04598 1.04598i 0.0470910 0.998891i \(-0.485005\pi\)
0.998891 0.0470910i \(-0.0149951\pi\)
\(594\) 0 0
\(595\) −59.3461 + 27.1528i −2.43295 + 1.11316i
\(596\) 0 0
\(597\) 1.40558 + 1.40558i 0.0575264 + 0.0575264i
\(598\) 0 0
\(599\) 19.5400i 0.798381i −0.916868 0.399191i \(-0.869291\pi\)
0.916868 0.399191i \(-0.130709\pi\)
\(600\) 0 0
\(601\) 18.3140i 0.747044i 0.927621 + 0.373522i \(0.121850\pi\)
−0.927621 + 0.373522i \(0.878150\pi\)
\(602\) 0 0
\(603\) −0.870307 + 0.870307i −0.0354416 + 0.0354416i
\(604\) 0 0
\(605\) −20.2357 + 9.25852i −0.822700 + 0.376413i
\(606\) 0 0
\(607\) −26.3948 26.3948i −1.07133 1.07133i −0.997252 0.0740800i \(-0.976398\pi\)
−0.0740800 0.997252i \(-0.523602\pi\)
\(608\) 0 0
\(609\) 25.7832i 1.04479i
\(610\) 0 0
\(611\) 18.6082i 0.752805i
\(612\) 0 0
\(613\) 20.1925 + 20.1925i 0.815568 + 0.815568i 0.985462 0.169895i \(-0.0543427\pi\)
−0.169895 + 0.985462i \(0.554343\pi\)
\(614\) 0 0
\(615\) 7.36778 + 2.74215i 0.297097 + 0.110574i
\(616\) 0 0
\(617\) 18.3952 + 18.3952i 0.740563 + 0.740563i 0.972686 0.232123i \(-0.0745673\pi\)
−0.232123 + 0.972686i \(0.574567\pi\)
\(618\) 0 0
\(619\) −14.1585 −0.569080 −0.284540 0.958664i \(-0.591841\pi\)
−0.284540 + 0.958664i \(0.591841\pi\)
\(620\) 0 0
\(621\) 1.82992 0.0734323
\(622\) 0 0
\(623\) 46.6090 + 46.6090i 1.86735 + 1.86735i
\(624\) 0 0
\(625\) −3.62733 24.7355i −0.145093 0.989418i
\(626\) 0 0
\(627\) −1.12425 1.12425i −0.0448983 0.0448983i
\(628\) 0 0
\(629\) 67.3001i 2.68343i
\(630\) 0 0
\(631\) 44.7781i 1.78259i −0.453426 0.891294i \(-0.649798\pi\)
0.453426 0.891294i \(-0.350202\pi\)
\(632\) 0 0
\(633\) −13.0901 13.0901i −0.520286 0.520286i
\(634\) 0 0
\(635\) −11.0828 + 29.7780i −0.439808 + 1.18170i
\(636\) 0 0
\(637\) 39.1012 39.1012i 1.54924 1.54924i
\(638\) 0 0
\(639\) 9.24125i 0.365578i
\(640\) 0 0
\(641\) 13.5164i 0.533868i 0.963715 + 0.266934i \(0.0860105\pi\)
−0.963715 + 0.266934i \(0.913989\pi\)
\(642\) 0 0
\(643\) −33.9393 33.9393i −1.33844 1.33844i −0.897575 0.440861i \(-0.854673\pi\)
−0.440861 0.897575i \(-0.645327\pi\)
\(644\) 0 0
\(645\) 4.18794 + 9.15330i 0.164900 + 0.360411i
\(646\) 0 0
\(647\) 18.7556 18.7556i 0.737358 0.737358i −0.234708 0.972066i \(-0.575413\pi\)
0.972066 + 0.234708i \(0.0754133\pi\)
\(648\) 0 0
\(649\) −1.96061 −0.0769607
\(650\) 0 0
\(651\) 22.0394 + 17.2197i 0.863792 + 0.674892i
\(652\) 0 0
\(653\) 16.1170 16.1170i 0.630709 0.630709i −0.317537 0.948246i \(-0.602856\pi\)
0.948246 + 0.317537i \(0.102856\pi\)
\(654\) 0 0
\(655\) −37.6255 + 17.2149i −1.47015 + 0.672642i
\(656\) 0 0
\(657\) −2.35042 + 2.35042i −0.0916985 + 0.0916985i
\(658\) 0 0
\(659\) 29.1112i 1.13401i 0.823714 + 0.567006i \(0.191898\pi\)
−0.823714 + 0.567006i \(0.808102\pi\)
\(660\) 0 0
\(661\) 9.88998 0.384676 0.192338 0.981329i \(-0.438393\pi\)
0.192338 + 0.981329i \(0.438393\pi\)
\(662\) 0 0
\(663\) 12.4594 + 12.4594i 0.483883 + 0.483883i
\(664\) 0 0
\(665\) 6.08482 16.3491i 0.235959 0.633990i
\(666\) 0 0
\(667\) 6.64144 + 6.64144i 0.257158 + 0.257158i
\(668\) 0 0
\(669\) 12.2056i 0.471896i
\(670\) 0 0
\(671\) 4.55814 0.175965
\(672\) 0 0
\(673\) −23.4547 23.4547i −0.904114 0.904114i 0.0916753 0.995789i \(-0.470778\pi\)
−0.995789 + 0.0916753i \(0.970778\pi\)
\(674\) 0 0
\(675\) −0.363696 4.98675i −0.0139987 0.191940i
\(676\) 0 0
\(677\) 26.7263 26.7263i 1.02718 1.02718i 0.0275551 0.999620i \(-0.491228\pi\)
0.999620 0.0275551i \(-0.00877216\pi\)
\(678\) 0 0
\(679\) 38.6585i 1.48358i
\(680\) 0 0
\(681\) 7.83029i 0.300058i
\(682\) 0 0
\(683\) 24.5885 24.5885i 0.940852 0.940852i −0.0574939 0.998346i \(-0.518311\pi\)
0.998346 + 0.0574939i \(0.0183110\pi\)
\(684\) 0 0
\(685\) 10.9271 29.3597i 0.417504 1.12178i
\(686\) 0 0
\(687\) −3.83102 3.83102i −0.146162 0.146162i
\(688\) 0 0
\(689\) 27.5372i 1.04908i
\(690\) 0 0
\(691\) 37.0886 1.41092 0.705459 0.708751i \(-0.250741\pi\)
0.705459 + 0.708751i \(0.250741\pi\)
\(692\) 0 0
\(693\) 3.63639 + 3.63639i 0.138135 + 0.138135i
\(694\) 0 0
\(695\) −14.8476 + 6.79327i −0.563202 + 0.257684i
\(696\) 0 0
\(697\) 14.4442 14.4442i 0.547115 0.547115i
\(698\) 0 0
\(699\) 14.1247 0.534247
\(700\) 0 0
\(701\) −4.34949 −0.164278 −0.0821390 0.996621i \(-0.526175\pi\)
−0.0821390 + 0.996621i \(0.526175\pi\)
\(702\) 0 0
\(703\) −12.7203 12.7203i −0.479756 0.479756i
\(704\) 0 0
\(705\) 5.70838 + 12.4764i 0.214990 + 0.469890i
\(706\) 0 0
\(707\) −25.3402 25.3402i −0.953016 0.953016i
\(708\) 0 0
\(709\) 39.1189 1.46914 0.734571 0.678532i \(-0.237384\pi\)
0.734571 + 0.678532i \(0.237384\pi\)
\(710\) 0 0
\(711\) 3.74066i 0.140286i
\(712\) 0 0
\(713\) −10.1127 + 1.24150i −0.378722 + 0.0464945i
\(714\) 0 0
\(715\) 2.42151 6.50627i 0.0905595 0.243321i
\(716\) 0 0
\(717\) −7.69751 7.69751i −0.287469 0.287469i
\(718\) 0 0
\(719\) −4.60677 −0.171804 −0.0859018 0.996304i \(-0.527377\pi\)
−0.0859018 + 0.996304i \(0.527377\pi\)
\(720\) 0 0
\(721\) −79.6419 −2.96602
\(722\) 0 0
\(723\) −14.3322 + 14.3322i −0.533021 + 0.533021i
\(724\) 0 0
\(725\) 16.7787 19.4187i 0.623146 0.721192i
\(726\) 0 0
\(727\) −7.67641 7.67641i −0.284702 0.284702i 0.550279 0.834981i \(-0.314521\pi\)
−0.834981 + 0.550279i \(0.814521\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) 26.1550 0.967376
\(732\) 0 0
\(733\) 4.75239 4.75239i 0.175533 0.175533i −0.613872 0.789405i \(-0.710389\pi\)
0.789405 + 0.613872i \(0.210389\pi\)
\(734\) 0 0
\(735\) −14.2216 + 38.2116i −0.524573 + 1.40946i
\(736\) 0 0
\(737\) 0.890975 0.890975i 0.0328195 0.0328195i
\(738\) 0 0
\(739\) 39.0534 1.43660 0.718300 0.695733i \(-0.244920\pi\)
0.718300 + 0.695733i \(0.244920\pi\)
\(740\) 0 0
\(741\) −4.70988 −0.173022
\(742\) 0 0
\(743\) 19.7451 + 19.7451i 0.724378 + 0.724378i 0.969494 0.245115i \(-0.0788259\pi\)
−0.245115 + 0.969494i \(0.578826\pi\)
\(744\) 0 0
\(745\) 4.43167 + 9.68602i 0.162364 + 0.354868i
\(746\) 0 0
\(747\) −4.05436 + 4.05436i −0.148341 + 0.148341i
\(748\) 0 0
\(749\) 71.2908i 2.60491i
\(750\) 0 0
\(751\) 1.62333 0.0592362 0.0296181 0.999561i \(-0.490571\pi\)
0.0296181 + 0.999561i \(0.490571\pi\)
\(752\) 0 0
\(753\) −16.2666 + 16.2666i −0.592788 + 0.592788i
\(754\) 0 0
\(755\) −11.3220 24.7457i −0.412049 0.900588i
\(756\) 0 0
\(757\) 6.73436 6.73436i 0.244765 0.244765i −0.574053 0.818818i \(-0.694630\pi\)
0.818818 + 0.574053i \(0.194630\pi\)
\(758\) 0 0
\(759\) −1.87338 −0.0679995
\(760\) 0 0
\(761\) 5.92302i 0.214709i −0.994221 0.107355i \(-0.965762\pi\)
0.994221 0.107355i \(-0.0342380\pi\)
\(762\) 0 0
\(763\) −59.7827 + 59.7827i −2.16428 + 2.16428i
\(764\) 0 0
\(765\) −12.1760 4.53166i −0.440223 0.163843i
\(766\) 0 0
\(767\) −4.10684 + 4.10684i −0.148289 + 0.148289i
\(768\) 0 0
\(769\) 12.3215i 0.444325i 0.975010 + 0.222162i \(0.0713115\pi\)
−0.975010 + 0.222162i \(0.928689\pi\)
\(770\) 0 0
\(771\) 9.92500i 0.357440i
\(772\) 0 0
\(773\) 6.41615 + 6.41615i 0.230773 + 0.230773i 0.813015 0.582242i \(-0.197825\pi\)
−0.582242 + 0.813015i \(0.697825\pi\)
\(774\) 0 0
\(775\) 5.39311 + 27.3114i 0.193726 + 0.981056i
\(776\) 0 0
\(777\) 41.1439 + 41.1439i 1.47603 + 1.47603i
\(778\) 0 0
\(779\) 5.46019i 0.195631i
\(780\) 0 0
\(781\) 9.46071i 0.338531i
\(782\) 0 0
\(783\) 3.62935 3.62935i 0.129703 0.129703i
\(784\) 0 0
\(785\) 24.6878 + 9.18834i 0.881145 + 0.327946i
\(786\) 0 0
\(787\) −1.14869 + 1.14869i −0.0409463 + 0.0409463i −0.727284 0.686337i \(-0.759217\pi\)
0.686337 + 0.727284i \(0.259217\pi\)
\(788\) 0 0
\(789\) 11.1094i 0.395506i
\(790\) 0 0
\(791\) −21.6194 −0.768699
\(792\) 0 0
\(793\) 9.54780 9.54780i 0.339052 0.339052i
\(794\) 0 0
\(795\) −8.44752 18.4632i −0.299603 0.654822i
\(796\) 0 0
\(797\) −7.73659 + 7.73659i −0.274044 + 0.274044i −0.830726 0.556682i \(-0.812074\pi\)
0.556682 + 0.830726i \(0.312074\pi\)
\(798\) 0 0
\(799\) 35.6506 1.26123
\(800\) 0 0
\(801\) 13.1218i 0.463635i
\(802\) 0 0
\(803\) 2.40623 2.40623i 0.0849142 0.0849142i
\(804\) 0 0
\(805\) −8.55184 18.6912i −0.301413 0.658778i
\(806\) 0 0
\(807\) 18.3247 + 18.3247i 0.645061 + 0.645061i
\(808\) 0 0
\(809\) −41.7842 −1.46905 −0.734526 0.678580i \(-0.762596\pi\)
−0.734526 + 0.678580i \(0.762596\pi\)
\(810\) 0 0
\(811\) 16.2271 0.569811 0.284905 0.958556i \(-0.408038\pi\)
0.284905 + 0.958556i \(0.408038\pi\)
\(812\) 0 0
\(813\) −15.8466 + 15.8466i −0.555766 + 0.555766i
\(814\) 0 0
\(815\) −7.68069 + 20.6370i −0.269043 + 0.722881i
\(816\) 0 0
\(817\) −4.94353 + 4.94353i −0.172952 + 0.172952i
\(818\) 0 0
\(819\) 15.2341 0.532322
\(820\) 0 0
\(821\) 40.6044i 1.41710i −0.705659 0.708552i \(-0.749349\pi\)
0.705659 0.708552i \(-0.250651\pi\)
\(822\) 0 0
\(823\) 15.3216 + 15.3216i 0.534076 + 0.534076i 0.921783 0.387707i \(-0.126733\pi\)
−0.387707 + 0.921783i \(0.626733\pi\)
\(824\) 0 0
\(825\) 0.372333 + 5.10518i 0.0129630 + 0.177740i
\(826\) 0 0
\(827\) 12.6570 12.6570i 0.440126 0.440126i −0.451928 0.892054i \(-0.649264\pi\)
0.892054 + 0.451928i \(0.149264\pi\)
\(828\) 0 0
\(829\) 47.3287 1.64380 0.821898 0.569635i \(-0.192915\pi\)
0.821898 + 0.569635i \(0.192915\pi\)
\(830\) 0 0
\(831\) 17.6892 0.613631
\(832\) 0 0
\(833\) 74.9123 + 74.9123i 2.59556 + 2.59556i
\(834\) 0 0
\(835\) 7.01379 18.8451i 0.242722 0.652161i
\(836\) 0 0
\(837\) 0.678443 + 5.52627i 0.0234504 + 0.191016i
\(838\) 0 0
\(839\) 15.6057i 0.538770i 0.963033 + 0.269385i \(0.0868205\pi\)
−0.963033 + 0.269385i \(0.913180\pi\)
\(840\) 0 0
\(841\) −2.65559 −0.0915720
\(842\) 0 0
\(843\) −11.1949 11.1949i −0.385573 0.385573i
\(844\) 0 0
\(845\) 3.53797 + 7.73272i 0.121710 + 0.266014i
\(846\) 0 0
\(847\) 35.3497 + 35.3497i 1.21463 + 1.21463i
\(848\) 0 0
\(849\) −9.53299 −0.327171
\(850\) 0 0
\(851\) −21.1963 −0.726601
\(852\) 0 0
\(853\) 27.4430 27.4430i 0.939630 0.939630i −0.0586490 0.998279i \(-0.518679\pi\)
0.998279 + 0.0586490i \(0.0186793\pi\)
\(854\) 0 0
\(855\) 3.15789 1.44484i 0.107998 0.0494125i
\(856\) 0 0
\(857\) −4.09409 4.09409i −0.139851 0.139851i 0.633715 0.773567i \(-0.281529\pi\)
−0.773567 + 0.633715i \(0.781529\pi\)
\(858\) 0 0
\(859\) −2.94083 −0.100340 −0.0501699 0.998741i \(-0.515976\pi\)
−0.0501699 + 0.998741i \(0.515976\pi\)
\(860\) 0 0
\(861\) 17.6609i 0.601883i
\(862\) 0 0
\(863\) −14.4017 14.4017i −0.490239 0.490239i 0.418143 0.908381i \(-0.362681\pi\)
−0.908381 + 0.418143i \(0.862681\pi\)
\(864\) 0 0
\(865\) −2.70225 + 7.26057i −0.0918793 + 0.246867i
\(866\) 0 0
\(867\) −11.8497 + 11.8497i −0.402436 + 0.402436i
\(868\) 0 0
\(869\) 3.82949i 0.129907i
\(870\) 0 0
\(871\) 3.73260i 0.126474i
\(872\) 0 0
\(873\) −5.44174 + 5.44174i −0.184175 + 0.184175i
\(874\) 0 0
\(875\) −49.2360 + 27.0196i −1.66448 + 0.913430i
\(876\) 0 0
\(877\) 17.5893 + 17.5893i 0.593947 + 0.593947i 0.938695 0.344748i \(-0.112036\pi\)
−0.344748 + 0.938695i \(0.612036\pi\)
\(878\) 0 0
\(879\) 8.22899 0.277557
\(880\) 0 0
\(881\) 14.9288i 0.502965i 0.967862 + 0.251482i \(0.0809180\pi\)
−0.967862 + 0.251482i \(0.919082\pi\)
\(882\) 0 0
\(883\) −20.8754 20.8754i −0.702512 0.702512i 0.262437 0.964949i \(-0.415474\pi\)
−0.964949 + 0.262437i \(0.915474\pi\)
\(884\) 0 0
\(885\) 1.49371 4.01340i 0.0502107 0.134909i
\(886\) 0 0
\(887\) 25.7169 + 25.7169i 0.863489 + 0.863489i 0.991742 0.128252i \(-0.0409367\pi\)
−0.128252 + 0.991742i \(0.540937\pi\)
\(888\) 0 0
\(889\) 71.3794 2.39399
\(890\) 0 0
\(891\) 1.02375i 0.0342969i
\(892\) 0 0
\(893\) −6.73830 + 6.73830i −0.225488 + 0.225488i
\(894\) 0 0
\(895\) 40.1783 18.3829i 1.34301 0.614473i
\(896\) 0 0
\(897\) −3.92412 + 3.92412i −0.131023 + 0.131023i
\(898\) 0 0
\(899\) −17.5945 + 22.5191i −0.586809 + 0.751055i
\(900\) 0 0
\(901\) −52.7574 −1.75760
\(902\) 0 0
\(903\) 15.9898 15.9898i 0.532108 0.532108i
\(904\) 0 0
\(905\) 13.2235 + 28.9016i 0.439563 + 0.960723i
\(906\) 0 0
\(907\) −39.1743 39.1743i −1.30076 1.30076i −0.927878 0.372883i \(-0.878369\pi\)
−0.372883 0.927878i \(-0.621631\pi\)
\(908\) 0 0
\(909\) 7.13399i 0.236619i
\(910\) 0 0
\(911\) 15.6644i 0.518985i −0.965745 0.259493i \(-0.916445\pi\)
0.965745 0.259493i \(-0.0835553\pi\)
\(912\) 0 0
\(913\) 4.15064 4.15064i 0.137366 0.137366i
\(914\) 0 0
\(915\) −3.47267 + 9.33059i −0.114803 + 0.308460i
\(916\) 0 0
\(917\) 65.7276 + 65.7276i 2.17052 + 2.17052i
\(918\) 0 0
\(919\) 2.15744i 0.0711672i 0.999367 + 0.0355836i \(0.0113290\pi\)
−0.999367 + 0.0355836i \(0.988671\pi\)
\(920\) 0 0
\(921\) 26.4889i 0.872840i
\(922\) 0 0
\(923\) 19.8171 + 19.8171i 0.652287 + 0.652287i
\(924\) 0 0
\(925\) 4.21275 + 57.7624i 0.138514 + 1.89922i
\(926\) 0 0
\(927\) −11.2107 11.2107i −0.368209 0.368209i
\(928\) 0 0
\(929\) −54.5132 −1.78852 −0.894260 0.447549i \(-0.852297\pi\)
−0.894260 + 0.447549i \(0.852297\pi\)
\(930\) 0 0
\(931\) −28.3182 −0.928093
\(932\) 0 0
\(933\) −24.4103 24.4103i −0.799157 0.799157i
\(934\) 0 0
\(935\) 12.4651 + 4.63928i 0.407653 + 0.151721i
\(936\) 0 0
\(937\) −11.9539 11.9539i −0.390516 0.390516i 0.484356 0.874871i \(-0.339054\pi\)
−0.874871 + 0.484356i \(0.839054\pi\)
\(938\) 0 0
\(939\) 22.2332i 0.725552i
\(940\) 0 0
\(941\) 23.0083i 0.750048i 0.927015 + 0.375024i \(0.122366\pi\)
−0.927015 + 0.375024i \(0.877634\pi\)
\(942\) 0 0
\(943\) 4.54925 + 4.54925i 0.148144 + 0.148144i
\(944\) 0 0
\(945\) −10.2142 + 4.67333i −0.332268 + 0.152023i
\(946\) 0 0
\(947\) −42.7108 + 42.7108i −1.38791 + 1.38791i −0.558222 + 0.829691i \(0.688516\pi\)
−0.829691 + 0.558222i \(0.811484\pi\)
\(948\) 0 0
\(949\) 10.0805i 0.327228i
\(950\) 0 0
\(951\) 27.0246i 0.876332i
\(952\) 0 0
\(953\) −12.1309 12.1309i −0.392957 0.392957i 0.482783 0.875740i \(-0.339626\pi\)
−0.875740 + 0.482783i \(0.839626\pi\)
\(954\) 0 0
\(955\) −17.5938 + 8.04976i −0.569323 + 0.260484i
\(956\) 0 0
\(957\) −3.71554 + 3.71554i −0.120106 + 0.120106i
\(958\) 0 0
\(959\) −70.3767 −2.27258
\(960\) 0 0
\(961\) −7.49853 30.0794i −0.241888 0.970304i
\(962\) 0 0
\(963\) −10.0352 + 10.0352i −0.323380 + 0.323380i
\(964\) 0 0
\(965\) 9.22364 24.7827i 0.296920 0.797782i
\(966\) 0 0
\(967\) 27.2341 27.2341i 0.875791 0.875791i −0.117305 0.993096i \(-0.537426\pi\)
0.993096 + 0.117305i \(0.0374256\pi\)
\(968\) 0 0
\(969\) 9.02348i 0.289876i
\(970\) 0 0
\(971\) −50.8704 −1.63251 −0.816254 0.577693i \(-0.803953\pi\)
−0.816254 + 0.577693i \(0.803953\pi\)
\(972\) 0 0
\(973\) 25.9372 + 25.9372i 0.831507 + 0.831507i
\(974\) 0 0
\(975\) 11.4736 + 9.91377i 0.367449 + 0.317495i
\(976\) 0 0
\(977\) −43.9716 43.9716i −1.40678 1.40678i −0.775807 0.630970i \(-0.782657\pi\)
−0.630970 0.775807i \(-0.717343\pi\)
\(978\) 0 0
\(979\) 13.4334i 0.429333i
\(980\) 0 0
\(981\) −16.8305 −0.537358
\(982\) 0 0
\(983\) 11.2694 + 11.2694i 0.359439 + 0.359439i 0.863606 0.504167i \(-0.168201\pi\)
−0.504167 + 0.863606i \(0.668201\pi\)
\(984\) 0 0
\(985\) 21.7979 58.5680i 0.694539 1.86613i
\(986\) 0 0
\(987\) 21.7950 21.7950i 0.693742 0.693742i
\(988\) 0 0
\(989\) 8.23757i 0.261940i
\(990\) 0 0
\(991\) 38.8970i 1.23561i −0.786333 0.617803i \(-0.788023\pi\)
0.786333 0.617803i \(-0.211977\pi\)
\(992\) 0 0
\(993\) 10.7243 10.7243i 0.340325 0.340325i
\(994\) 0 0
\(995\) 4.04185 1.84928i 0.128135 0.0586262i
\(996\) 0 0
\(997\) 5.14799 + 5.14799i 0.163039 + 0.163039i 0.783911 0.620873i \(-0.213222\pi\)
−0.620873 + 0.783911i \(0.713222\pi\)
\(998\) 0 0
\(999\) 11.5832i 0.366475i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.1177.14 yes 64
5.3 odd 4 inner 1860.2.s.a.433.21 yes 64
31.30 odd 2 inner 1860.2.s.a.1177.21 yes 64
155.123 even 4 inner 1860.2.s.a.433.14 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.14 64 155.123 even 4 inner
1860.2.s.a.433.21 yes 64 5.3 odd 4 inner
1860.2.s.a.1177.14 yes 64 1.1 even 1 trivial
1860.2.s.a.1177.21 yes 64 31.30 odd 2 inner