Properties

Label 1860.2.s.a.1177.13
Level $1860$
Weight $2$
Character 1860.1177
Analytic conductor $14.852$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(433,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.433"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.s (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1177.13
Character \(\chi\) \(=\) 1860.1177
Dual form 1860.2.s.a.433.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 0.707107i) q^{3} +(-1.72803 + 1.41912i) q^{5} +(-0.575654 - 0.575654i) q^{7} +1.00000i q^{9} +5.07781i q^{11} +(0.293315 + 0.293315i) q^{13} +(2.22537 + 0.218435i) q^{15} +(-0.365849 + 0.365849i) q^{17} -0.439900i q^{19} +0.814097i q^{21} +(-4.26424 - 4.26424i) q^{23} +(0.972199 - 4.90457i) q^{25} +(0.707107 - 0.707107i) q^{27} -6.60907 q^{29} +(5.23909 - 1.88466i) q^{31} +(3.59055 - 3.59055i) q^{33} +(1.81167 + 0.177827i) q^{35} +(-0.849177 + 0.849177i) q^{37} -0.414810i q^{39} +10.3445 q^{41} +(6.93067 + 6.93067i) q^{43} +(-1.41912 - 1.72803i) q^{45} +(-3.89640 - 3.89640i) q^{47} -6.33725i q^{49} +0.517388 q^{51} +(-8.89919 - 8.89919i) q^{53} +(-7.20602 - 8.77462i) q^{55} +(-0.311057 + 0.311057i) q^{57} +8.14835i q^{59} -1.48893i q^{61} +(0.575654 - 0.575654i) q^{63} +(-0.923106 - 0.0906090i) q^{65} +(-6.46138 - 6.46138i) q^{67} +6.03054i q^{69} -11.3814 q^{71} +(-10.0788 - 10.0788i) q^{73} +(-4.15551 + 2.78061i) q^{75} +(2.92306 - 2.92306i) q^{77} -11.2244 q^{79} -1.00000 q^{81} +(-4.35534 - 4.35534i) q^{83} +(0.113016 - 1.15138i) q^{85} +(4.67332 + 4.67332i) q^{87} -4.17657 q^{89} -0.337695i q^{91} +(-5.03725 - 2.37194i) q^{93} +(0.624271 + 0.760163i) q^{95} +(-5.28842 - 5.28842i) q^{97} -5.07781 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 8 q^{7} + 16 q^{25} + 8 q^{31} - 8 q^{33} + 24 q^{35} + 16 q^{41} + 56 q^{47} + 8 q^{63} - 32 q^{67} - 16 q^{71} - 64 q^{81} - 32 q^{87} - 32 q^{95} + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.707107 0.707107i −0.408248 0.408248i
\(4\) 0 0
\(5\) −1.72803 + 1.41912i −0.772800 + 0.634650i
\(6\) 0 0
\(7\) −0.575654 0.575654i −0.217577 0.217577i 0.589900 0.807476i \(-0.299167\pi\)
−0.807476 + 0.589900i \(0.799167\pi\)
\(8\) 0 0
\(9\) 1.00000i 0.333333i
\(10\) 0 0
\(11\) 5.07781i 1.53102i 0.643426 + 0.765508i \(0.277512\pi\)
−0.643426 + 0.765508i \(0.722488\pi\)
\(12\) 0 0
\(13\) 0.293315 + 0.293315i 0.0813509 + 0.0813509i 0.746611 0.665260i \(-0.231680\pi\)
−0.665260 + 0.746611i \(0.731680\pi\)
\(14\) 0 0
\(15\) 2.22537 + 0.218435i 0.574589 + 0.0563997i
\(16\) 0 0
\(17\) −0.365849 + 0.365849i −0.0887314 + 0.0887314i −0.750079 0.661348i \(-0.769985\pi\)
0.661348 + 0.750079i \(0.269985\pi\)
\(18\) 0 0
\(19\) 0.439900i 0.100920i −0.998726 0.0504600i \(-0.983931\pi\)
0.998726 0.0504600i \(-0.0160688\pi\)
\(20\) 0 0
\(21\) 0.814097i 0.177651i
\(22\) 0 0
\(23\) −4.26424 4.26424i −0.889155 0.889155i 0.105287 0.994442i \(-0.466424\pi\)
−0.994442 + 0.105287i \(0.966424\pi\)
\(24\) 0 0
\(25\) 0.972199 4.90457i 0.194440 0.980914i
\(26\) 0 0
\(27\) 0.707107 0.707107i 0.136083 0.136083i
\(28\) 0 0
\(29\) −6.60907 −1.22727 −0.613637 0.789589i \(-0.710294\pi\)
−0.613637 + 0.789589i \(0.710294\pi\)
\(30\) 0 0
\(31\) 5.23909 1.88466i 0.940968 0.338495i
\(32\) 0 0
\(33\) 3.59055 3.59055i 0.625035 0.625035i
\(34\) 0 0
\(35\) 1.81167 + 0.177827i 0.306228 + 0.0300583i
\(36\) 0 0
\(37\) −0.849177 + 0.849177i −0.139604 + 0.139604i −0.773455 0.633851i \(-0.781473\pi\)
0.633851 + 0.773455i \(0.281473\pi\)
\(38\) 0 0
\(39\) 0.414810i 0.0664227i
\(40\) 0 0
\(41\) 10.3445 1.61554 0.807772 0.589495i \(-0.200673\pi\)
0.807772 + 0.589495i \(0.200673\pi\)
\(42\) 0 0
\(43\) 6.93067 + 6.93067i 1.05692 + 1.05692i 0.998279 + 0.0586379i \(0.0186757\pi\)
0.0586379 + 0.998279i \(0.481324\pi\)
\(44\) 0 0
\(45\) −1.41912 1.72803i −0.211550 0.257600i
\(46\) 0 0
\(47\) −3.89640 3.89640i −0.568348 0.568348i 0.363317 0.931666i \(-0.381644\pi\)
−0.931666 + 0.363317i \(0.881644\pi\)
\(48\) 0 0
\(49\) 6.33725i 0.905321i
\(50\) 0 0
\(51\) 0.517388 0.0724488
\(52\) 0 0
\(53\) −8.89919 8.89919i −1.22240 1.22240i −0.966777 0.255621i \(-0.917720\pi\)
−0.255621 0.966777i \(-0.582280\pi\)
\(54\) 0 0
\(55\) −7.20602 8.77462i −0.971659 1.18317i
\(56\) 0 0
\(57\) −0.311057 + 0.311057i −0.0412005 + 0.0412005i
\(58\) 0 0
\(59\) 8.14835i 1.06082i 0.847740 + 0.530412i \(0.177963\pi\)
−0.847740 + 0.530412i \(0.822037\pi\)
\(60\) 0 0
\(61\) 1.48893i 0.190638i −0.995447 0.0953188i \(-0.969613\pi\)
0.995447 0.0953188i \(-0.0303870\pi\)
\(62\) 0 0
\(63\) 0.575654 0.575654i 0.0725255 0.0725255i
\(64\) 0 0
\(65\) −0.923106 0.0906090i −0.114497 0.0112387i
\(66\) 0 0
\(67\) −6.46138 6.46138i −0.789383 0.789383i 0.192010 0.981393i \(-0.438499\pi\)
−0.981393 + 0.192010i \(0.938499\pi\)
\(68\) 0 0
\(69\) 6.03054i 0.725992i
\(70\) 0 0
\(71\) −11.3814 −1.35072 −0.675361 0.737488i \(-0.736012\pi\)
−0.675361 + 0.737488i \(0.736012\pi\)
\(72\) 0 0
\(73\) −10.0788 10.0788i −1.17963 1.17963i −0.979837 0.199797i \(-0.935972\pi\)
−0.199797 0.979837i \(-0.564028\pi\)
\(74\) 0 0
\(75\) −4.15551 + 2.78061i −0.479836 + 0.321077i
\(76\) 0 0
\(77\) 2.92306 2.92306i 0.333113 0.333113i
\(78\) 0 0
\(79\) −11.2244 −1.26285 −0.631424 0.775438i \(-0.717529\pi\)
−0.631424 + 0.775438i \(0.717529\pi\)
\(80\) 0 0
\(81\) −1.00000 −0.111111
\(82\) 0 0
\(83\) −4.35534 4.35534i −0.478061 0.478061i 0.426450 0.904511i \(-0.359764\pi\)
−0.904511 + 0.426450i \(0.859764\pi\)
\(84\) 0 0
\(85\) 0.113016 1.15138i 0.0122583 0.124885i
\(86\) 0 0
\(87\) 4.67332 + 4.67332i 0.501032 + 0.501032i
\(88\) 0 0
\(89\) −4.17657 −0.442716 −0.221358 0.975193i \(-0.571049\pi\)
−0.221358 + 0.975193i \(0.571049\pi\)
\(90\) 0 0
\(91\) 0.337695i 0.0354001i
\(92\) 0 0
\(93\) −5.03725 2.37194i −0.522339 0.245959i
\(94\) 0 0
\(95\) 0.624271 + 0.760163i 0.0640489 + 0.0779911i
\(96\) 0 0
\(97\) −5.28842 5.28842i −0.536958 0.536958i 0.385676 0.922634i \(-0.373968\pi\)
−0.922634 + 0.385676i \(0.873968\pi\)
\(98\) 0 0
\(99\) −5.07781 −0.510339
\(100\) 0 0
\(101\) 7.71583 0.767754 0.383877 0.923384i \(-0.374589\pi\)
0.383877 + 0.923384i \(0.374589\pi\)
\(102\) 0 0
\(103\) 11.0295 11.0295i 1.08677 1.08677i 0.0909079 0.995859i \(-0.471023\pi\)
0.995859 0.0909079i \(-0.0289769\pi\)
\(104\) 0 0
\(105\) −1.15530 1.40679i −0.112746 0.137288i
\(106\) 0 0
\(107\) 11.7750 + 11.7750i 1.13833 + 1.13833i 0.988750 + 0.149578i \(0.0477915\pi\)
0.149578 + 0.988750i \(0.452209\pi\)
\(108\) 0 0
\(109\) 5.33906i 0.511389i −0.966758 0.255695i \(-0.917696\pi\)
0.966758 0.255695i \(-0.0823041\pi\)
\(110\) 0 0
\(111\) 1.20092 0.113986
\(112\) 0 0
\(113\) −5.34569 + 5.34569i −0.502880 + 0.502880i −0.912332 0.409452i \(-0.865720\pi\)
0.409452 + 0.912332i \(0.365720\pi\)
\(114\) 0 0
\(115\) 13.4202 + 1.31728i 1.25144 + 0.122837i
\(116\) 0 0
\(117\) −0.293315 + 0.293315i −0.0271170 + 0.0271170i
\(118\) 0 0
\(119\) 0.421204 0.0386117
\(120\) 0 0
\(121\) −14.7841 −1.34401
\(122\) 0 0
\(123\) −7.31469 7.31469i −0.659543 0.659543i
\(124\) 0 0
\(125\) 5.28018 + 9.85493i 0.472274 + 0.881452i
\(126\) 0 0
\(127\) 1.85057 1.85057i 0.164212 0.164212i −0.620218 0.784430i \(-0.712956\pi\)
0.784430 + 0.620218i \(0.212956\pi\)
\(128\) 0 0
\(129\) 9.80145i 0.862969i
\(130\) 0 0
\(131\) −12.6937 −1.10906 −0.554528 0.832165i \(-0.687101\pi\)
−0.554528 + 0.832165i \(0.687101\pi\)
\(132\) 0 0
\(133\) −0.253230 + 0.253230i −0.0219579 + 0.0219579i
\(134\) 0 0
\(135\) −0.218435 + 2.22537i −0.0187999 + 0.191530i
\(136\) 0 0
\(137\) 8.40732 8.40732i 0.718286 0.718286i −0.249968 0.968254i \(-0.580420\pi\)
0.968254 + 0.249968i \(0.0804202\pi\)
\(138\) 0 0
\(139\) −20.3134 −1.72296 −0.861480 0.507791i \(-0.830462\pi\)
−0.861480 + 0.507791i \(0.830462\pi\)
\(140\) 0 0
\(141\) 5.51034i 0.464055i
\(142\) 0 0
\(143\) −1.48940 + 1.48940i −0.124550 + 0.124550i
\(144\) 0 0
\(145\) 11.4207 9.37906i 0.948437 0.778888i
\(146\) 0 0
\(147\) −4.48111 + 4.48111i −0.369596 + 0.369596i
\(148\) 0 0
\(149\) 18.9448i 1.55202i −0.630723 0.776008i \(-0.717242\pi\)
0.630723 0.776008i \(-0.282758\pi\)
\(150\) 0 0
\(151\) 10.0823i 0.820483i 0.911977 + 0.410241i \(0.134556\pi\)
−0.911977 + 0.410241i \(0.865444\pi\)
\(152\) 0 0
\(153\) −0.365849 0.365849i −0.0295771 0.0295771i
\(154\) 0 0
\(155\) −6.37877 + 10.6916i −0.512355 + 0.858774i
\(156\) 0 0
\(157\) −6.58857 6.58857i −0.525825 0.525825i 0.393500 0.919325i \(-0.371264\pi\)
−0.919325 + 0.393500i \(0.871264\pi\)
\(158\) 0 0
\(159\) 12.5854i 0.998084i
\(160\) 0 0
\(161\) 4.90945i 0.386919i
\(162\) 0 0
\(163\) 16.2980 16.2980i 1.27656 1.27656i 0.333973 0.942583i \(-0.391611\pi\)
0.942583 0.333973i \(-0.108389\pi\)
\(164\) 0 0
\(165\) −1.10917 + 11.3000i −0.0863489 + 0.879705i
\(166\) 0 0
\(167\) −13.5571 + 13.5571i −1.04908 + 1.04908i −0.0503509 + 0.998732i \(0.516034\pi\)
−0.998732 + 0.0503509i \(0.983966\pi\)
\(168\) 0 0
\(169\) 12.8279i 0.986764i
\(170\) 0 0
\(171\) 0.439900 0.0336400
\(172\) 0 0
\(173\) 8.44894 8.44894i 0.642361 0.642361i −0.308774 0.951135i \(-0.599919\pi\)
0.951135 + 0.308774i \(0.0999187\pi\)
\(174\) 0 0
\(175\) −3.38299 + 2.26368i −0.255730 + 0.171118i
\(176\) 0 0
\(177\) 5.76175 5.76175i 0.433080 0.433080i
\(178\) 0 0
\(179\) 13.8628 1.03616 0.518079 0.855333i \(-0.326647\pi\)
0.518079 + 0.855333i \(0.326647\pi\)
\(180\) 0 0
\(181\) 2.66204i 0.197868i −0.995094 0.0989341i \(-0.968457\pi\)
0.995094 0.0989341i \(-0.0315433\pi\)
\(182\) 0 0
\(183\) −1.05283 + 1.05283i −0.0778275 + 0.0778275i
\(184\) 0 0
\(185\) 0.262323 2.67249i 0.0192863 0.196485i
\(186\) 0 0
\(187\) −1.85771 1.85771i −0.135849 0.135849i
\(188\) 0 0
\(189\) −0.814097 −0.0592169
\(190\) 0 0
\(191\) 23.8209 1.72362 0.861810 0.507232i \(-0.169331\pi\)
0.861810 + 0.507232i \(0.169331\pi\)
\(192\) 0 0
\(193\) −13.3646 + 13.3646i −0.962003 + 0.962003i −0.999304 0.0373011i \(-0.988124\pi\)
0.0373011 + 0.999304i \(0.488124\pi\)
\(194\) 0 0
\(195\) 0.588665 + 0.716805i 0.0421551 + 0.0513315i
\(196\) 0 0
\(197\) 10.0820 10.0820i 0.718316 0.718316i −0.249944 0.968260i \(-0.580412\pi\)
0.968260 + 0.249944i \(0.0804122\pi\)
\(198\) 0 0
\(199\) 8.47035 0.600448 0.300224 0.953869i \(-0.402939\pi\)
0.300224 + 0.953869i \(0.402939\pi\)
\(200\) 0 0
\(201\) 9.13777i 0.644528i
\(202\) 0 0
\(203\) 3.80454 + 3.80454i 0.267026 + 0.267026i
\(204\) 0 0
\(205\) −17.8757 + 14.6801i −1.24849 + 1.02530i
\(206\) 0 0
\(207\) 4.26424 4.26424i 0.296385 0.296385i
\(208\) 0 0
\(209\) 2.23373 0.154510
\(210\) 0 0
\(211\) −21.0191 −1.44702 −0.723508 0.690316i \(-0.757471\pi\)
−0.723508 + 0.690316i \(0.757471\pi\)
\(212\) 0 0
\(213\) 8.04785 + 8.04785i 0.551430 + 0.551430i
\(214\) 0 0
\(215\) −21.8119 2.14098i −1.48756 0.146014i
\(216\) 0 0
\(217\) −4.10081 1.93099i −0.278381 0.131084i
\(218\) 0 0
\(219\) 14.2536i 0.963167i
\(220\) 0 0
\(221\) −0.214618 −0.0144367
\(222\) 0 0
\(223\) 6.52316 + 6.52316i 0.436823 + 0.436823i 0.890941 0.454118i \(-0.150046\pi\)
−0.454118 + 0.890941i \(0.650046\pi\)
\(224\) 0 0
\(225\) 4.90457 + 0.972199i 0.326971 + 0.0648133i
\(226\) 0 0
\(227\) −19.9575 19.9575i −1.32463 1.32463i −0.909985 0.414641i \(-0.863907\pi\)
−0.414641 0.909985i \(-0.636093\pi\)
\(228\) 0 0
\(229\) 5.62109 0.371452 0.185726 0.982602i \(-0.440536\pi\)
0.185726 + 0.982602i \(0.440536\pi\)
\(230\) 0 0
\(231\) −4.13383 −0.271986
\(232\) 0 0
\(233\) 0.444489 0.444489i 0.0291195 0.0291195i −0.692397 0.721517i \(-0.743445\pi\)
0.721517 + 0.692397i \(0.243445\pi\)
\(234\) 0 0
\(235\) 12.2626 + 1.20365i 0.799922 + 0.0785176i
\(236\) 0 0
\(237\) 7.93687 + 7.93687i 0.515555 + 0.515555i
\(238\) 0 0
\(239\) −27.3608 −1.76983 −0.884913 0.465757i \(-0.845782\pi\)
−0.884913 + 0.465757i \(0.845782\pi\)
\(240\) 0 0
\(241\) 3.86122i 0.248723i −0.992237 0.124361i \(-0.960312\pi\)
0.992237 0.124361i \(-0.0396882\pi\)
\(242\) 0 0
\(243\) 0.707107 + 0.707107i 0.0453609 + 0.0453609i
\(244\) 0 0
\(245\) 8.99331 + 10.9510i 0.574561 + 0.699632i
\(246\) 0 0
\(247\) 0.129029 0.129029i 0.00820994 0.00820994i
\(248\) 0 0
\(249\) 6.15938i 0.390335i
\(250\) 0 0
\(251\) 29.8469i 1.88392i 0.335725 + 0.941960i \(0.391019\pi\)
−0.335725 + 0.941960i \(0.608981\pi\)
\(252\) 0 0
\(253\) 21.6530 21.6530i 1.36131 1.36131i
\(254\) 0 0
\(255\) −0.894064 + 0.734236i −0.0559885 + 0.0459796i
\(256\) 0 0
\(257\) 11.2365 + 11.2365i 0.700917 + 0.700917i 0.964607 0.263691i \(-0.0849398\pi\)
−0.263691 + 0.964607i \(0.584940\pi\)
\(258\) 0 0
\(259\) 0.977664 0.0607491
\(260\) 0 0
\(261\) 6.60907i 0.409091i
\(262\) 0 0
\(263\) −2.39013 2.39013i −0.147382 0.147382i 0.629565 0.776947i \(-0.283233\pi\)
−0.776947 + 0.629565i \(0.783233\pi\)
\(264\) 0 0
\(265\) 28.0071 + 2.74908i 1.72046 + 0.168875i
\(266\) 0 0
\(267\) 2.95328 + 2.95328i 0.180738 + 0.180738i
\(268\) 0 0
\(269\) −12.9537 −0.789801 −0.394901 0.918724i \(-0.629221\pi\)
−0.394901 + 0.918724i \(0.629221\pi\)
\(270\) 0 0
\(271\) 9.57319i 0.581530i 0.956795 + 0.290765i \(0.0939097\pi\)
−0.956795 + 0.290765i \(0.906090\pi\)
\(272\) 0 0
\(273\) −0.238787 + 0.238787i −0.0144520 + 0.0144520i
\(274\) 0 0
\(275\) 24.9045 + 4.93664i 1.50180 + 0.297691i
\(276\) 0 0
\(277\) 9.98683 9.98683i 0.600050 0.600050i −0.340275 0.940326i \(-0.610520\pi\)
0.940326 + 0.340275i \(0.110520\pi\)
\(278\) 0 0
\(279\) 1.88466 + 5.23909i 0.112832 + 0.313656i
\(280\) 0 0
\(281\) 6.68935 0.399053 0.199527 0.979892i \(-0.436060\pi\)
0.199527 + 0.979892i \(0.436060\pi\)
\(282\) 0 0
\(283\) −7.46041 + 7.46041i −0.443475 + 0.443475i −0.893178 0.449703i \(-0.851530\pi\)
0.449703 + 0.893178i \(0.351530\pi\)
\(284\) 0 0
\(285\) 0.0960897 0.978943i 0.00569186 0.0579876i
\(286\) 0 0
\(287\) −5.95487 5.95487i −0.351505 0.351505i
\(288\) 0 0
\(289\) 16.7323i 0.984253i
\(290\) 0 0
\(291\) 7.47896i 0.438424i
\(292\) 0 0
\(293\) −5.50982 + 5.50982i −0.321887 + 0.321887i −0.849491 0.527604i \(-0.823091\pi\)
0.527604 + 0.849491i \(0.323091\pi\)
\(294\) 0 0
\(295\) −11.5635 14.0806i −0.673252 0.819806i
\(296\) 0 0
\(297\) 3.59055 + 3.59055i 0.208345 + 0.208345i
\(298\) 0 0
\(299\) 2.50153i 0.144667i
\(300\) 0 0
\(301\) 7.97933i 0.459921i
\(302\) 0 0
\(303\) −5.45592 5.45592i −0.313434 0.313434i
\(304\) 0 0
\(305\) 2.11297 + 2.57292i 0.120988 + 0.147325i
\(306\) 0 0
\(307\) 4.80394 + 4.80394i 0.274175 + 0.274175i 0.830778 0.556603i \(-0.187896\pi\)
−0.556603 + 0.830778i \(0.687896\pi\)
\(308\) 0 0
\(309\) −15.5980 −0.887342
\(310\) 0 0
\(311\) −23.7495 −1.34671 −0.673356 0.739318i \(-0.735148\pi\)
−0.673356 + 0.739318i \(0.735148\pi\)
\(312\) 0 0
\(313\) −3.39387 3.39387i −0.191833 0.191833i 0.604655 0.796488i \(-0.293311\pi\)
−0.796488 + 0.604655i \(0.793311\pi\)
\(314\) 0 0
\(315\) −0.177827 + 1.81167i −0.0100194 + 0.102076i
\(316\) 0 0
\(317\) 16.1463 + 16.1463i 0.906866 + 0.906866i 0.996018 0.0891519i \(-0.0284156\pi\)
−0.0891519 + 0.996018i \(0.528416\pi\)
\(318\) 0 0
\(319\) 33.5596i 1.87898i
\(320\) 0 0
\(321\) 16.6523i 0.929441i
\(322\) 0 0
\(323\) 0.160937 + 0.160937i 0.00895478 + 0.00895478i
\(324\) 0 0
\(325\) 1.72374 1.15342i 0.0956161 0.0639804i
\(326\) 0 0
\(327\) −3.77528 + 3.77528i −0.208774 + 0.208774i
\(328\) 0 0
\(329\) 4.48595i 0.247319i
\(330\) 0 0
\(331\) 27.2963i 1.50034i 0.661245 + 0.750170i \(0.270028\pi\)
−0.661245 + 0.750170i \(0.729972\pi\)
\(332\) 0 0
\(333\) −0.849177 0.849177i −0.0465346 0.0465346i
\(334\) 0 0
\(335\) 20.3349 + 1.99601i 1.11102 + 0.109054i
\(336\) 0 0
\(337\) 14.2054 14.2054i 0.773819 0.773819i −0.204953 0.978772i \(-0.565704\pi\)
0.978772 + 0.204953i \(0.0657041\pi\)
\(338\) 0 0
\(339\) 7.55994 0.410600
\(340\) 0 0
\(341\) 9.56993 + 26.6031i 0.518241 + 1.44064i
\(342\) 0 0
\(343\) −7.67763 + 7.67763i −0.414553 + 0.414553i
\(344\) 0 0
\(345\) −8.55806 10.4210i −0.460750 0.561046i
\(346\) 0 0
\(347\) 12.1576 12.1576i 0.652652 0.652652i −0.300979 0.953631i \(-0.597313\pi\)
0.953631 + 0.300979i \(0.0973133\pi\)
\(348\) 0 0
\(349\) 8.30114i 0.444350i −0.975007 0.222175i \(-0.928684\pi\)
0.975007 0.222175i \(-0.0713156\pi\)
\(350\) 0 0
\(351\) 0.414810 0.0221409
\(352\) 0 0
\(353\) 6.60632 + 6.60632i 0.351619 + 0.351619i 0.860712 0.509093i \(-0.170019\pi\)
−0.509093 + 0.860712i \(0.670019\pi\)
\(354\) 0 0
\(355\) 19.6674 16.1515i 1.04384 0.857235i
\(356\) 0 0
\(357\) −0.297836 0.297836i −0.0157632 0.0157632i
\(358\) 0 0
\(359\) 10.2070i 0.538707i −0.963041 0.269353i \(-0.913190\pi\)
0.963041 0.269353i \(-0.0868099\pi\)
\(360\) 0 0
\(361\) 18.8065 0.989815
\(362\) 0 0
\(363\) 10.4540 + 10.4540i 0.548690 + 0.548690i
\(364\) 0 0
\(365\) 31.7195 + 3.11348i 1.66028 + 0.162967i
\(366\) 0 0
\(367\) 4.28767 4.28767i 0.223815 0.223815i −0.586288 0.810103i \(-0.699411\pi\)
0.810103 + 0.586288i \(0.199411\pi\)
\(368\) 0 0
\(369\) 10.3445i 0.538515i
\(370\) 0 0
\(371\) 10.2457i 0.531931i
\(372\) 0 0
\(373\) 2.94743 2.94743i 0.152612 0.152612i −0.626672 0.779283i \(-0.715583\pi\)
0.779283 + 0.626672i \(0.215583\pi\)
\(374\) 0 0
\(375\) 3.23484 10.7021i 0.167046 0.552656i
\(376\) 0 0
\(377\) −1.93854 1.93854i −0.0998398 0.0998398i
\(378\) 0 0
\(379\) 4.60786i 0.236690i −0.992973 0.118345i \(-0.962241\pi\)
0.992973 0.118345i \(-0.0377588\pi\)
\(380\) 0 0
\(381\) −2.61711 −0.134078
\(382\) 0 0
\(383\) −20.2250 20.2250i −1.03345 1.03345i −0.999421 0.0340280i \(-0.989166\pi\)
−0.0340280 0.999421i \(-0.510834\pi\)
\(384\) 0 0
\(385\) −0.902973 + 9.19931i −0.0460198 + 0.468840i
\(386\) 0 0
\(387\) −6.93067 + 6.93067i −0.352306 + 0.352306i
\(388\) 0 0
\(389\) 26.3586 1.33643 0.668217 0.743966i \(-0.267058\pi\)
0.668217 + 0.743966i \(0.267058\pi\)
\(390\) 0 0
\(391\) 3.12013 0.157792
\(392\) 0 0
\(393\) 8.97583 + 8.97583i 0.452771 + 0.452771i
\(394\) 0 0
\(395\) 19.3962 15.9288i 0.975929 0.801466i
\(396\) 0 0
\(397\) 2.18912 + 2.18912i 0.109869 + 0.109869i 0.759904 0.650035i \(-0.225246\pi\)
−0.650035 + 0.759904i \(0.725246\pi\)
\(398\) 0 0
\(399\) 0.358122 0.0179285
\(400\) 0 0
\(401\) 26.3320i 1.31496i −0.753473 0.657479i \(-0.771623\pi\)
0.753473 0.657479i \(-0.228377\pi\)
\(402\) 0 0
\(403\) 2.08950 + 0.983904i 0.104085 + 0.0490118i
\(404\) 0 0
\(405\) 1.72803 1.41912i 0.0858667 0.0705166i
\(406\) 0 0
\(407\) −4.31196 4.31196i −0.213736 0.213736i
\(408\) 0 0
\(409\) 11.2663 0.557082 0.278541 0.960424i \(-0.410149\pi\)
0.278541 + 0.960424i \(0.410149\pi\)
\(410\) 0 0
\(411\) −11.8897 −0.586478
\(412\) 0 0
\(413\) 4.69063 4.69063i 0.230811 0.230811i
\(414\) 0 0
\(415\) 13.7069 + 1.34543i 0.672847 + 0.0660444i
\(416\) 0 0
\(417\) 14.3637 + 14.3637i 0.703396 + 0.703396i
\(418\) 0 0
\(419\) 13.2921i 0.649361i 0.945824 + 0.324680i \(0.105257\pi\)
−0.945824 + 0.324680i \(0.894743\pi\)
\(420\) 0 0
\(421\) −27.3668 −1.33377 −0.666887 0.745159i \(-0.732374\pi\)
−0.666887 + 0.745159i \(0.732374\pi\)
\(422\) 0 0
\(423\) 3.89640 3.89640i 0.189449 0.189449i
\(424\) 0 0
\(425\) 1.43865 + 2.15001i 0.0697850 + 0.104291i
\(426\) 0 0
\(427\) −0.857106 + 0.857106i −0.0414783 + 0.0414783i
\(428\) 0 0
\(429\) 2.10632 0.101694
\(430\) 0 0
\(431\) 5.25254 0.253006 0.126503 0.991966i \(-0.459625\pi\)
0.126503 + 0.991966i \(0.459625\pi\)
\(432\) 0 0
\(433\) −16.1942 16.1942i −0.778244 0.778244i 0.201288 0.979532i \(-0.435487\pi\)
−0.979532 + 0.201288i \(0.935487\pi\)
\(434\) 0 0
\(435\) −14.7076 1.44365i −0.705178 0.0692179i
\(436\) 0 0
\(437\) −1.87584 + 1.87584i −0.0897336 + 0.0897336i
\(438\) 0 0
\(439\) 18.2878i 0.872831i 0.899745 + 0.436415i \(0.143752\pi\)
−0.899745 + 0.436415i \(0.856248\pi\)
\(440\) 0 0
\(441\) 6.33725 0.301774
\(442\) 0 0
\(443\) −11.5612 + 11.5612i −0.549288 + 0.549288i −0.926235 0.376947i \(-0.876974\pi\)
0.376947 + 0.926235i \(0.376974\pi\)
\(444\) 0 0
\(445\) 7.21726 5.92706i 0.342131 0.280970i
\(446\) 0 0
\(447\) −13.3960 + 13.3960i −0.633608 + 0.633608i
\(448\) 0 0
\(449\) 9.29786 0.438793 0.219397 0.975636i \(-0.429591\pi\)
0.219397 + 0.975636i \(0.429591\pi\)
\(450\) 0 0
\(451\) 52.5275i 2.47342i
\(452\) 0 0
\(453\) 7.12923 7.12923i 0.334961 0.334961i
\(454\) 0 0
\(455\) 0.479230 + 0.583549i 0.0224667 + 0.0273572i
\(456\) 0 0
\(457\) −1.87262 + 1.87262i −0.0875973 + 0.0875973i −0.749548 0.661950i \(-0.769729\pi\)
0.661950 + 0.749548i \(0.269729\pi\)
\(458\) 0 0
\(459\) 0.517388i 0.0241496i
\(460\) 0 0
\(461\) 24.9462i 1.16186i 0.813954 + 0.580930i \(0.197311\pi\)
−0.813954 + 0.580930i \(0.802689\pi\)
\(462\) 0 0
\(463\) −12.5924 12.5924i −0.585219 0.585219i 0.351114 0.936333i \(-0.385803\pi\)
−0.936333 + 0.351114i \(0.885803\pi\)
\(464\) 0 0
\(465\) 12.0706 3.04967i 0.559761 0.141425i
\(466\) 0 0
\(467\) −1.95220 1.95220i −0.0903370 0.0903370i 0.660494 0.750831i \(-0.270347\pi\)
−0.750831 + 0.660494i \(0.770347\pi\)
\(468\) 0 0
\(469\) 7.43903i 0.343503i
\(470\) 0 0
\(471\) 9.31764i 0.429334i
\(472\) 0 0
\(473\) −35.1926 + 35.1926i −1.61816 + 1.61816i
\(474\) 0 0
\(475\) −2.15752 0.427671i −0.0989940 0.0196229i
\(476\) 0 0
\(477\) 8.89919 8.89919i 0.407466 0.407466i
\(478\) 0 0
\(479\) 12.3481i 0.564200i −0.959385 0.282100i \(-0.908969\pi\)
0.959385 0.282100i \(-0.0910310\pi\)
\(480\) 0 0
\(481\) −0.498152 −0.0227138
\(482\) 0 0
\(483\) 3.47150 3.47150i 0.157959 0.157959i
\(484\) 0 0
\(485\) 16.6435 + 1.63367i 0.755741 + 0.0741810i
\(486\) 0 0
\(487\) 5.83590 5.83590i 0.264450 0.264450i −0.562409 0.826859i \(-0.690125\pi\)
0.826859 + 0.562409i \(0.190125\pi\)
\(488\) 0 0
\(489\) −23.0488 −1.04230
\(490\) 0 0
\(491\) 2.22265i 0.100307i −0.998742 0.0501533i \(-0.984029\pi\)
0.998742 0.0501533i \(-0.0159710\pi\)
\(492\) 0 0
\(493\) 2.41792 2.41792i 0.108898 0.108898i
\(494\) 0 0
\(495\) 8.77462 7.20602i 0.394390 0.323886i
\(496\) 0 0
\(497\) 6.55173 + 6.55173i 0.293885 + 0.293885i
\(498\) 0 0
\(499\) 11.3548 0.508312 0.254156 0.967163i \(-0.418202\pi\)
0.254156 + 0.967163i \(0.418202\pi\)
\(500\) 0 0
\(501\) 19.1727 0.856572
\(502\) 0 0
\(503\) −19.0779 + 19.0779i −0.850643 + 0.850643i −0.990212 0.139569i \(-0.955428\pi\)
0.139569 + 0.990212i \(0.455428\pi\)
\(504\) 0 0
\(505\) −13.3332 + 10.9497i −0.593320 + 0.487255i
\(506\) 0 0
\(507\) −9.07072 + 9.07072i −0.402845 + 0.402845i
\(508\) 0 0
\(509\) −6.25137 −0.277087 −0.138543 0.990356i \(-0.544242\pi\)
−0.138543 + 0.990356i \(0.544242\pi\)
\(510\) 0 0
\(511\) 11.6038i 0.513322i
\(512\) 0 0
\(513\) −0.311057 0.311057i −0.0137335 0.0137335i
\(514\) 0 0
\(515\) −3.40716 + 34.7115i −0.150137 + 1.52957i
\(516\) 0 0
\(517\) 19.7852 19.7852i 0.870151 0.870151i
\(518\) 0 0
\(519\) −11.9486 −0.524486
\(520\) 0 0
\(521\) 7.50173 0.328657 0.164328 0.986406i \(-0.447454\pi\)
0.164328 + 0.986406i \(0.447454\pi\)
\(522\) 0 0
\(523\) 25.8067 + 25.8067i 1.12845 + 1.12845i 0.990430 + 0.138016i \(0.0440726\pi\)
0.138016 + 0.990430i \(0.455927\pi\)
\(524\) 0 0
\(525\) 3.99280 + 0.791465i 0.174260 + 0.0345424i
\(526\) 0 0
\(527\) −1.22721 + 2.60621i −0.0534583 + 0.113528i
\(528\) 0 0
\(529\) 13.3674i 0.581192i
\(530\) 0 0
\(531\) −8.14835 −0.353608
\(532\) 0 0
\(533\) 3.03420 + 3.03420i 0.131426 + 0.131426i
\(534\) 0 0
\(535\) −37.0576 3.63745i −1.60214 0.157261i
\(536\) 0 0
\(537\) −9.80251 9.80251i −0.423010 0.423010i
\(538\) 0 0
\(539\) 32.1793 1.38606
\(540\) 0 0
\(541\) −23.5126 −1.01089 −0.505443 0.862860i \(-0.668671\pi\)
−0.505443 + 0.862860i \(0.668671\pi\)
\(542\) 0 0
\(543\) −1.88235 + 1.88235i −0.0807793 + 0.0807793i
\(544\) 0 0
\(545\) 7.57676 + 9.22607i 0.324553 + 0.395201i
\(546\) 0 0
\(547\) −6.68445 6.68445i −0.285807 0.285807i 0.549613 0.835419i \(-0.314775\pi\)
−0.835419 + 0.549613i \(0.814775\pi\)
\(548\) 0 0
\(549\) 1.48893 0.0635459
\(550\) 0 0
\(551\) 2.90733i 0.123857i
\(552\) 0 0
\(553\) 6.46139 + 6.46139i 0.274766 + 0.274766i
\(554\) 0 0
\(555\) −2.07523 + 1.70425i −0.0880884 + 0.0723412i
\(556\) 0 0
\(557\) 25.6613 25.6613i 1.08730 1.08730i 0.0914983 0.995805i \(-0.470834\pi\)
0.995805 0.0914983i \(-0.0291656\pi\)
\(558\) 0 0
\(559\) 4.06574i 0.171962i
\(560\) 0 0
\(561\) 2.62720i 0.110920i
\(562\) 0 0
\(563\) −23.8281 + 23.8281i −1.00423 + 1.00423i −0.00424364 + 0.999991i \(0.501351\pi\)
−0.999991 + 0.00424364i \(0.998649\pi\)
\(564\) 0 0
\(565\) 1.65136 16.8237i 0.0694731 0.707778i
\(566\) 0 0
\(567\) 0.575654 + 0.575654i 0.0241752 + 0.0241752i
\(568\) 0 0
\(569\) −27.4294 −1.14990 −0.574951 0.818188i \(-0.694979\pi\)
−0.574951 + 0.818188i \(0.694979\pi\)
\(570\) 0 0
\(571\) 10.0366i 0.420019i 0.977699 + 0.210010i \(0.0673495\pi\)
−0.977699 + 0.210010i \(0.932650\pi\)
\(572\) 0 0
\(573\) −16.8439 16.8439i −0.703665 0.703665i
\(574\) 0 0
\(575\) −25.0599 + 16.7686i −1.04507 + 0.699297i
\(576\) 0 0
\(577\) −4.32282 4.32282i −0.179961 0.179961i 0.611378 0.791339i \(-0.290616\pi\)
−0.791339 + 0.611378i \(0.790616\pi\)
\(578\) 0 0
\(579\) 18.9004 0.785472
\(580\) 0 0
\(581\) 5.01434i 0.208030i
\(582\) 0 0
\(583\) 45.1884 45.1884i 1.87151 1.87151i
\(584\) 0 0
\(585\) 0.0906090 0.923106i 0.00374622 0.0381658i
\(586\) 0 0
\(587\) −21.6379 + 21.6379i −0.893090 + 0.893090i −0.994813 0.101723i \(-0.967565\pi\)
0.101723 + 0.994813i \(0.467565\pi\)
\(588\) 0 0
\(589\) −0.829062 2.30468i −0.0341609 0.0949626i
\(590\) 0 0
\(591\) −14.2582 −0.586503
\(592\) 0 0
\(593\) −18.1551 + 18.1551i −0.745541 + 0.745541i −0.973638 0.228098i \(-0.926749\pi\)
0.228098 + 0.973638i \(0.426749\pi\)
\(594\) 0 0
\(595\) −0.727855 + 0.597739i −0.0298392 + 0.0245049i
\(596\) 0 0
\(597\) −5.98945 5.98945i −0.245132 0.245132i
\(598\) 0 0
\(599\) 5.05341i 0.206477i −0.994657 0.103238i \(-0.967080\pi\)
0.994657 0.103238i \(-0.0329204\pi\)
\(600\) 0 0
\(601\) 6.47060i 0.263941i 0.991254 + 0.131971i \(0.0421305\pi\)
−0.991254 + 0.131971i \(0.957870\pi\)
\(602\) 0 0
\(603\) 6.46138 6.46138i 0.263128 0.263128i
\(604\) 0 0
\(605\) 25.5475 20.9804i 1.03865 0.852976i
\(606\) 0 0
\(607\) 25.7718 + 25.7718i 1.04605 + 1.04605i 0.998887 + 0.0471585i \(0.0150166\pi\)
0.0471585 + 0.998887i \(0.484983\pi\)
\(608\) 0 0
\(609\) 5.38043i 0.218026i
\(610\) 0 0
\(611\) 2.28574i 0.0924713i
\(612\) 0 0
\(613\) −2.03353 2.03353i −0.0821336 0.0821336i 0.664846 0.746980i \(-0.268497\pi\)
−0.746980 + 0.664846i \(0.768497\pi\)
\(614\) 0 0
\(615\) 23.0204 + 2.25961i 0.928274 + 0.0911162i
\(616\) 0 0
\(617\) −26.2948 26.2948i −1.05859 1.05859i −0.998173 0.0604158i \(-0.980757\pi\)
−0.0604158 0.998173i \(-0.519243\pi\)
\(618\) 0 0
\(619\) −8.62552 −0.346689 −0.173344 0.984861i \(-0.555457\pi\)
−0.173344 + 0.984861i \(0.555457\pi\)
\(620\) 0 0
\(621\) −6.03054 −0.241997
\(622\) 0 0
\(623\) 2.40426 + 2.40426i 0.0963247 + 0.0963247i
\(624\) 0 0
\(625\) −23.1097 9.53644i −0.924386 0.381458i
\(626\) 0 0
\(627\) −1.57949 1.57949i −0.0630786 0.0630786i
\(628\) 0 0
\(629\) 0.621341i 0.0247745i
\(630\) 0 0
\(631\) 16.6281i 0.661954i −0.943639 0.330977i \(-0.892622\pi\)
0.943639 0.330977i \(-0.107378\pi\)
\(632\) 0 0
\(633\) 14.8628 + 14.8628i 0.590742 + 0.590742i
\(634\) 0 0
\(635\) −0.571668 + 5.82404i −0.0226860 + 0.231120i
\(636\) 0 0
\(637\) 1.85881 1.85881i 0.0736486 0.0736486i
\(638\) 0 0
\(639\) 11.3814i 0.450240i
\(640\) 0 0
\(641\) 18.1311i 0.716137i 0.933695 + 0.358068i \(0.116565\pi\)
−0.933695 + 0.358068i \(0.883435\pi\)
\(642\) 0 0
\(643\) −20.0275 20.0275i −0.789807 0.789807i 0.191655 0.981462i \(-0.438614\pi\)
−0.981462 + 0.191655i \(0.938614\pi\)
\(644\) 0 0
\(645\) 13.9094 + 16.9372i 0.547683 + 0.666903i
\(646\) 0 0
\(647\) 7.68799 7.68799i 0.302246 0.302246i −0.539646 0.841892i \(-0.681442\pi\)
0.841892 + 0.539646i \(0.181442\pi\)
\(648\) 0 0
\(649\) −41.3758 −1.62414
\(650\) 0 0
\(651\) 1.53429 + 4.26513i 0.0601338 + 0.167164i
\(652\) 0 0
\(653\) −1.59545 + 1.59545i −0.0624348 + 0.0624348i −0.737635 0.675200i \(-0.764057\pi\)
0.675200 + 0.737635i \(0.264057\pi\)
\(654\) 0 0
\(655\) 21.9352 18.0139i 0.857079 0.703862i
\(656\) 0 0
\(657\) 10.0788 10.0788i 0.393211 0.393211i
\(658\) 0 0
\(659\) 11.5424i 0.449629i −0.974402 0.224814i \(-0.927822\pi\)
0.974402 0.224814i \(-0.0721776\pi\)
\(660\) 0 0
\(661\) −5.01044 −0.194884 −0.0974418 0.995241i \(-0.531066\pi\)
−0.0974418 + 0.995241i \(0.531066\pi\)
\(662\) 0 0
\(663\) 0.151758 + 0.151758i 0.00589378 + 0.00589378i
\(664\) 0 0
\(665\) 0.0782264 0.796955i 0.00303349 0.0309046i
\(666\) 0 0
\(667\) 28.1826 + 28.1826i 1.09124 + 1.09124i
\(668\) 0 0
\(669\) 9.22514i 0.356664i
\(670\) 0 0
\(671\) 7.56048 0.291869
\(672\) 0 0
\(673\) −19.2226 19.2226i −0.740978 0.740978i 0.231788 0.972766i \(-0.425542\pi\)
−0.972766 + 0.231788i \(0.925542\pi\)
\(674\) 0 0
\(675\) −2.78061 4.15551i −0.107026 0.159945i
\(676\) 0 0
\(677\) −18.0400 + 18.0400i −0.693335 + 0.693335i −0.962964 0.269629i \(-0.913099\pi\)
0.269629 + 0.962964i \(0.413099\pi\)
\(678\) 0 0
\(679\) 6.08860i 0.233659i
\(680\) 0 0
\(681\) 28.2242i 1.08155i
\(682\) 0 0
\(683\) 19.3030 19.3030i 0.738609 0.738609i −0.233700 0.972309i \(-0.575083\pi\)
0.972309 + 0.233700i \(0.0750834\pi\)
\(684\) 0 0
\(685\) −2.59714 + 26.4591i −0.0992315 + 1.01095i
\(686\) 0 0
\(687\) −3.97471 3.97471i −0.151645 0.151645i
\(688\) 0 0
\(689\) 5.22053i 0.198886i
\(690\) 0 0
\(691\) −28.2777 −1.07573 −0.537867 0.843030i \(-0.680770\pi\)
−0.537867 + 0.843030i \(0.680770\pi\)
\(692\) 0 0
\(693\) 2.92306 + 2.92306i 0.111038 + 0.111038i
\(694\) 0 0
\(695\) 35.1022 28.8272i 1.33150 1.09348i
\(696\) 0 0
\(697\) −3.78453 + 3.78453i −0.143349 + 0.143349i
\(698\) 0 0
\(699\) −0.628603 −0.0237759
\(700\) 0 0
\(701\) −40.7139 −1.53774 −0.768871 0.639403i \(-0.779181\pi\)
−0.768871 + 0.639403i \(0.779181\pi\)
\(702\) 0 0
\(703\) 0.373553 + 0.373553i 0.0140888 + 0.0140888i
\(704\) 0 0
\(705\) −7.81983 9.52206i −0.294512 0.358621i
\(706\) 0 0
\(707\) −4.44165 4.44165i −0.167045 0.167045i
\(708\) 0 0
\(709\) 33.8075 1.26967 0.634834 0.772649i \(-0.281069\pi\)
0.634834 + 0.772649i \(0.281069\pi\)
\(710\) 0 0
\(711\) 11.2244i 0.420949i
\(712\) 0 0
\(713\) −30.3773 14.3041i −1.13764 0.535692i
\(714\) 0 0
\(715\) 0.460095 4.68736i 0.0172066 0.175297i
\(716\) 0 0
\(717\) 19.3470 + 19.3470i 0.722528 + 0.722528i
\(718\) 0 0
\(719\) −12.7320 −0.474822 −0.237411 0.971409i \(-0.576299\pi\)
−0.237411 + 0.971409i \(0.576299\pi\)
\(720\) 0 0
\(721\) −12.6983 −0.472910
\(722\) 0 0
\(723\) −2.73029 + 2.73029i −0.101541 + 0.101541i
\(724\) 0 0
\(725\) −6.42533 + 32.4147i −0.238631 + 1.20385i
\(726\) 0 0
\(727\) 8.08237 + 8.08237i 0.299759 + 0.299759i 0.840919 0.541161i \(-0.182015\pi\)
−0.541161 + 0.840919i \(0.682015\pi\)
\(728\) 0 0
\(729\) 1.00000i 0.0370370i
\(730\) 0 0
\(731\) −5.07115 −0.187563
\(732\) 0 0
\(733\) 5.30399 5.30399i 0.195907 0.195907i −0.602336 0.798243i \(-0.705763\pi\)
0.798243 + 0.602336i \(0.205763\pi\)
\(734\) 0 0
\(735\) 1.38428 14.1027i 0.0510598 0.520187i
\(736\) 0 0
\(737\) 32.8096 32.8096i 1.20856 1.20856i
\(738\) 0 0
\(739\) 43.6596 1.60604 0.803021 0.595950i \(-0.203224\pi\)
0.803021 + 0.595950i \(0.203224\pi\)
\(740\) 0 0
\(741\) −0.182475 −0.00670339
\(742\) 0 0
\(743\) −7.66124 7.66124i −0.281063 0.281063i 0.552470 0.833533i \(-0.313686\pi\)
−0.833533 + 0.552470i \(0.813686\pi\)
\(744\) 0 0
\(745\) 26.8849 + 32.7372i 0.984986 + 1.19940i
\(746\) 0 0
\(747\) 4.35534 4.35534i 0.159354 0.159354i
\(748\) 0 0
\(749\) 13.5566i 0.495347i
\(750\) 0 0
\(751\) −21.3600 −0.779439 −0.389720 0.920934i \(-0.627428\pi\)
−0.389720 + 0.920934i \(0.627428\pi\)
\(752\) 0 0
\(753\) 21.1050 21.1050i 0.769107 0.769107i
\(754\) 0 0
\(755\) −14.3079 17.4225i −0.520719 0.634069i
\(756\) 0 0
\(757\) −17.1881 + 17.1881i −0.624713 + 0.624713i −0.946733 0.322020i \(-0.895638\pi\)
0.322020 + 0.946733i \(0.395638\pi\)
\(758\) 0 0
\(759\) −30.6219 −1.11151
\(760\) 0 0
\(761\) 24.6522i 0.893642i −0.894623 0.446821i \(-0.852556\pi\)
0.894623 0.446821i \(-0.147444\pi\)
\(762\) 0 0
\(763\) −3.07345 + 3.07345i −0.111266 + 0.111266i
\(764\) 0 0
\(765\) 1.15138 + 0.113016i 0.0416283 + 0.00408609i
\(766\) 0 0
\(767\) −2.39003 + 2.39003i −0.0862990 + 0.0862990i
\(768\) 0 0
\(769\) 27.1546i 0.979220i 0.871941 + 0.489610i \(0.162861\pi\)
−0.871941 + 0.489610i \(0.837139\pi\)
\(770\) 0 0
\(771\) 15.8909i 0.572296i
\(772\) 0 0
\(773\) −30.5805 30.5805i −1.09990 1.09990i −0.994421 0.105482i \(-0.966361\pi\)
−0.105482 0.994421i \(-0.533639\pi\)
\(774\) 0 0
\(775\) −4.15000 27.5278i −0.149072 0.988826i
\(776\) 0 0
\(777\) −0.691313 0.691313i −0.0248007 0.0248007i
\(778\) 0 0
\(779\) 4.55056i 0.163041i
\(780\) 0 0
\(781\) 57.7924i 2.06798i
\(782\) 0 0
\(783\) −4.67332 + 4.67332i −0.167011 + 0.167011i
\(784\) 0 0
\(785\) 20.7352 + 2.03530i 0.740072 + 0.0726430i
\(786\) 0 0
\(787\) −14.7092 + 14.7092i −0.524328 + 0.524328i −0.918875 0.394548i \(-0.870901\pi\)
0.394548 + 0.918875i \(0.370901\pi\)
\(788\) 0 0
\(789\) 3.38016i 0.120337i
\(790\) 0 0
\(791\) 6.15453 0.218830
\(792\) 0 0
\(793\) 0.436724 0.436724i 0.0155085 0.0155085i
\(794\) 0 0
\(795\) −17.8601 21.7479i −0.633434 0.771319i
\(796\) 0 0
\(797\) −21.5382 + 21.5382i −0.762922 + 0.762922i −0.976850 0.213927i \(-0.931374\pi\)
0.213927 + 0.976850i \(0.431374\pi\)
\(798\) 0 0
\(799\) 2.85099 0.100861
\(800\) 0 0
\(801\) 4.17657i 0.147572i
\(802\) 0 0
\(803\) 51.1782 51.1782i 1.80604 1.80604i
\(804\) 0 0
\(805\) −6.96709 8.48369i −0.245558 0.299011i
\(806\) 0 0
\(807\) 9.15965 + 9.15965i 0.322435 + 0.322435i
\(808\) 0 0
\(809\) −56.4758 −1.98558 −0.992792 0.119851i \(-0.961758\pi\)
−0.992792 + 0.119851i \(0.961758\pi\)
\(810\) 0 0
\(811\) 32.6065 1.14497 0.572484 0.819916i \(-0.305980\pi\)
0.572484 + 0.819916i \(0.305980\pi\)
\(812\) 0 0
\(813\) 6.76926 6.76926i 0.237408 0.237408i
\(814\) 0 0
\(815\) −5.03467 + 51.2922i −0.176357 + 1.79669i
\(816\) 0 0
\(817\) 3.04881 3.04881i 0.106664 0.106664i
\(818\) 0 0
\(819\) 0.337695 0.0118000
\(820\) 0 0
\(821\) 28.7387i 1.00299i −0.865161 0.501494i \(-0.832784\pi\)
0.865161 0.501494i \(-0.167216\pi\)
\(822\) 0 0
\(823\) −10.5214 10.5214i −0.366754 0.366754i 0.499538 0.866292i \(-0.333503\pi\)
−0.866292 + 0.499538i \(0.833503\pi\)
\(824\) 0 0
\(825\) −14.1194 21.1009i −0.491574 0.734637i
\(826\) 0 0
\(827\) −4.30689 + 4.30689i −0.149765 + 0.149765i −0.778013 0.628248i \(-0.783772\pi\)
0.628248 + 0.778013i \(0.283772\pi\)
\(828\) 0 0
\(829\) −43.3977 −1.50726 −0.753632 0.657297i \(-0.771700\pi\)
−0.753632 + 0.657297i \(0.771700\pi\)
\(830\) 0 0
\(831\) −14.1235 −0.489939
\(832\) 0 0
\(833\) 2.31847 + 2.31847i 0.0803303 + 0.0803303i
\(834\) 0 0
\(835\) 4.18799 42.6664i 0.144931 1.47653i
\(836\) 0 0
\(837\) 2.37194 5.03725i 0.0819863 0.174113i
\(838\) 0 0
\(839\) 22.4676i 0.775668i −0.921729 0.387834i \(-0.873223\pi\)
0.921729 0.387834i \(-0.126777\pi\)
\(840\) 0 0
\(841\) 14.6798 0.506200
\(842\) 0 0
\(843\) −4.73009 4.73009i −0.162913 0.162913i
\(844\) 0 0
\(845\) 18.2044 + 22.1671i 0.626249 + 0.762571i
\(846\) 0 0
\(847\) 8.51054 + 8.51054i 0.292426 + 0.292426i
\(848\) 0 0
\(849\) 10.5506 0.362096
\(850\) 0 0
\(851\) 7.24218 0.248259
\(852\) 0 0
\(853\) −33.8441 + 33.8441i −1.15880 + 1.15880i −0.174066 + 0.984734i \(0.555691\pi\)
−0.984734 + 0.174066i \(0.944309\pi\)
\(854\) 0 0
\(855\) −0.760163 + 0.624271i −0.0259970 + 0.0213496i
\(856\) 0 0
\(857\) 16.4510 + 16.4510i 0.561955 + 0.561955i 0.929862 0.367908i \(-0.119926\pi\)
−0.367908 + 0.929862i \(0.619926\pi\)
\(858\) 0 0
\(859\) −3.65653 −0.124759 −0.0623796 0.998052i \(-0.519869\pi\)
−0.0623796 + 0.998052i \(0.519869\pi\)
\(860\) 0 0
\(861\) 8.42145i 0.287002i
\(862\) 0 0
\(863\) 5.67721 + 5.67721i 0.193254 + 0.193254i 0.797101 0.603846i \(-0.206366\pi\)
−0.603846 + 0.797101i \(0.706366\pi\)
\(864\) 0 0
\(865\) −2.61000 + 26.5901i −0.0887425 + 0.904091i
\(866\) 0 0
\(867\) 11.8315 11.8315i 0.401820 0.401820i
\(868\) 0 0
\(869\) 56.9955i 1.93344i
\(870\) 0 0
\(871\) 3.79043i 0.128434i
\(872\) 0 0
\(873\) 5.28842 5.28842i 0.178986 0.178986i
\(874\) 0 0
\(875\) 2.63347 8.71258i 0.0890276 0.294539i
\(876\) 0 0
\(877\) −1.31955 1.31955i −0.0445579 0.0445579i 0.684477 0.729035i \(-0.260031\pi\)
−0.729035 + 0.684477i \(0.760031\pi\)
\(878\) 0 0
\(879\) 7.79206 0.262820
\(880\) 0 0
\(881\) 53.1298i 1.78999i 0.446076 + 0.894995i \(0.352821\pi\)
−0.446076 + 0.894995i \(0.647179\pi\)
\(882\) 0 0
\(883\) 7.16831 + 7.16831i 0.241233 + 0.241233i 0.817360 0.576127i \(-0.195437\pi\)
−0.576127 + 0.817360i \(0.695437\pi\)
\(884\) 0 0
\(885\) −1.77989 + 18.1331i −0.0598302 + 0.609538i
\(886\) 0 0
\(887\) −17.5734 17.5734i −0.590057 0.590057i 0.347590 0.937647i \(-0.387000\pi\)
−0.937647 + 0.347590i \(0.887000\pi\)
\(888\) 0 0
\(889\) −2.13058 −0.0714573
\(890\) 0 0
\(891\) 5.07781i 0.170113i
\(892\) 0 0
\(893\) −1.71403 + 1.71403i −0.0573578 + 0.0573578i
\(894\) 0 0
\(895\) −23.9555 + 19.6730i −0.800743 + 0.657597i
\(896\) 0 0
\(897\) −1.76885 + 1.76885i −0.0590601 + 0.0590601i
\(898\) 0 0
\(899\) −34.6255 + 12.4558i −1.15483 + 0.415425i
\(900\) 0 0
\(901\) 6.51152 0.216930
\(902\) 0 0
\(903\) −5.64224 + 5.64224i −0.187762 + 0.187762i
\(904\) 0 0
\(905\) 3.77776 + 4.60010i 0.125577 + 0.152912i
\(906\) 0 0
\(907\) 33.1694 + 33.1694i 1.10137 + 1.10137i 0.994246 + 0.107125i \(0.0341645\pi\)
0.107125 + 0.994246i \(0.465836\pi\)
\(908\) 0 0
\(909\) 7.71583i 0.255918i
\(910\) 0 0
\(911\) 19.2876i 0.639027i 0.947582 + 0.319514i \(0.103520\pi\)
−0.947582 + 0.319514i \(0.896480\pi\)
\(912\) 0 0
\(913\) 22.1156 22.1156i 0.731919 0.731919i
\(914\) 0 0
\(915\) 0.325234 3.31342i 0.0107519 0.109538i
\(916\) 0 0
\(917\) 7.30720 + 7.30720i 0.241305 + 0.241305i
\(918\) 0 0
\(919\) 29.1593i 0.961876i −0.876754 0.480938i \(-0.840296\pi\)
0.876754 0.480938i \(-0.159704\pi\)
\(920\) 0 0
\(921\) 6.79380i 0.223863i
\(922\) 0 0
\(923\) −3.33833 3.33833i −0.109882 0.109882i
\(924\) 0 0
\(925\) 3.33928 + 4.99042i 0.109795 + 0.164084i
\(926\) 0 0
\(927\) 11.0295 + 11.0295i 0.362256 + 0.362256i
\(928\) 0 0
\(929\) 15.0570 0.494004 0.247002 0.969015i \(-0.420555\pi\)
0.247002 + 0.969015i \(0.420555\pi\)
\(930\) 0 0
\(931\) −2.78776 −0.0913651
\(932\) 0 0
\(933\) 16.7935 + 16.7935i 0.549793 + 0.549793i
\(934\) 0 0
\(935\) 5.84650 + 0.573872i 0.191201 + 0.0187676i
\(936\) 0 0
\(937\) −19.4744 19.4744i −0.636201 0.636201i 0.313415 0.949616i \(-0.398527\pi\)
−0.949616 + 0.313415i \(0.898527\pi\)
\(938\) 0 0
\(939\) 4.79965i 0.156631i
\(940\) 0 0
\(941\) 39.7367i 1.29538i −0.761904 0.647690i \(-0.775735\pi\)
0.761904 0.647690i \(-0.224265\pi\)
\(942\) 0 0
\(943\) −44.1115 44.1115i −1.43647 1.43647i
\(944\) 0 0
\(945\) 1.40679 1.15530i 0.0457628 0.0375820i
\(946\) 0 0
\(947\) 23.3073 23.3073i 0.757384 0.757384i −0.218461 0.975846i \(-0.570104\pi\)
0.975846 + 0.218461i \(0.0701037\pi\)
\(948\) 0 0
\(949\) 5.91252i 0.191929i
\(950\) 0 0
\(951\) 22.8343i 0.740453i
\(952\) 0 0
\(953\) −0.489238 0.489238i −0.0158480 0.0158480i 0.699138 0.714986i \(-0.253567\pi\)
−0.714986 + 0.699138i \(0.753567\pi\)
\(954\) 0 0
\(955\) −41.1633 + 33.8047i −1.33201 + 1.09389i
\(956\) 0 0
\(957\) −23.7302 + 23.7302i −0.767089 + 0.767089i
\(958\) 0 0
\(959\) −9.67941 −0.312564
\(960\) 0 0
\(961\) 23.8961 19.7478i 0.770843 0.637025i
\(962\) 0 0
\(963\) −11.7750 + 11.7750i −0.379443 + 0.379443i
\(964\) 0 0
\(965\) 4.12850 42.0604i 0.132901 1.35397i
\(966\) 0 0
\(967\) −41.4729 + 41.4729i −1.33368 + 1.33368i −0.431627 + 0.902052i \(0.642060\pi\)
−0.902052 + 0.431627i \(0.857940\pi\)
\(968\) 0 0
\(969\) 0.227599i 0.00731154i
\(970\) 0 0
\(971\) −9.32210 −0.299161 −0.149580 0.988750i \(-0.547792\pi\)
−0.149580 + 0.988750i \(0.547792\pi\)
\(972\) 0 0
\(973\) 11.6935 + 11.6935i 0.374876 + 0.374876i
\(974\) 0 0
\(975\) −2.03446 0.403278i −0.0651550 0.0129152i
\(976\) 0 0
\(977\) −41.0885 41.0885i −1.31454 1.31454i −0.918034 0.396503i \(-0.870224\pi\)
−0.396503 0.918034i \(-0.629776\pi\)
\(978\) 0 0
\(979\) 21.2078i 0.677806i
\(980\) 0 0
\(981\) 5.33906 0.170463
\(982\) 0 0
\(983\) −14.4307 14.4307i −0.460269 0.460269i 0.438474 0.898744i \(-0.355519\pi\)
−0.898744 + 0.438474i \(0.855519\pi\)
\(984\) 0 0
\(985\) −3.11449 + 31.7298i −0.0992358 + 1.01099i
\(986\) 0 0
\(987\) 3.17205 3.17205i 0.100967 0.100967i
\(988\) 0 0
\(989\) 59.1080i 1.87953i
\(990\) 0 0
\(991\) 46.5039i 1.47724i −0.674120 0.738622i \(-0.735477\pi\)
0.674120 0.738622i \(-0.264523\pi\)
\(992\) 0 0
\(993\) 19.3014 19.3014i 0.612511 0.612511i
\(994\) 0 0
\(995\) −14.6371 + 12.0204i −0.464026 + 0.381074i
\(996\) 0 0
\(997\) 30.9891 + 30.9891i 0.981433 + 0.981433i 0.999831 0.0183976i \(-0.00585648\pi\)
−0.0183976 + 0.999831i \(0.505856\pi\)
\(998\) 0 0
\(999\) 1.20092i 0.0379954i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.s.a.1177.13 yes 64
5.3 odd 4 inner 1860.2.s.a.433.20 yes 64
31.30 odd 2 inner 1860.2.s.a.1177.20 yes 64
155.123 even 4 inner 1860.2.s.a.433.13 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.s.a.433.13 64 155.123 even 4 inner
1860.2.s.a.433.20 yes 64 5.3 odd 4 inner
1860.2.s.a.1177.13 yes 64 1.1 even 1 trivial
1860.2.s.a.1177.20 yes 64 31.30 odd 2 inner