Defining parameters
| Level: | \( N \) | \(=\) | \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1860.s (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 155 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(768\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1860, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 792 | 64 | 728 |
| Cusp forms | 744 | 64 | 680 |
| Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1860, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1860.2.s.a | $64$ | $14.852$ | None | \(0\) | \(0\) | \(0\) | \(-8\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1860, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1860, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(465, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(620, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(930, [\chi])\)\(^{\oplus 2}\)