Properties

Label 1860.2.q.i
Level $1860$
Weight $2$
Character orbit 1860.q
Analytic conductor $14.852$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1860,2,Mod(1141,1860)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1860, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1860.1141");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 29 x^{10} + 405 x^{8} - 117 x^{7} + 2515 x^{6} + 1476 x^{5} + 7995 x^{4} - 2175 x^{3} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{7} q^{3} + ( - \beta_{7} + 1) q^{5} + ( - \beta_{9} - \beta_{4}) q^{7} + (\beta_{7} - 1) q^{9} - \beta_{6} q^{11} + \beta_{11} q^{13} - q^{15} + (\beta_{11} + \beta_{9} - \beta_{7} + \cdots + \beta_1) q^{17}+ \cdots + (\beta_{6} - \beta_{5}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{3} + 6 q^{5} - 2 q^{7} - 6 q^{9} - 2 q^{13} - 12 q^{15} - 2 q^{17} + 5 q^{19} - 2 q^{21} + 2 q^{23} - 6 q^{25} + 12 q^{27} - 20 q^{29} + 7 q^{31} - 4 q^{35} + 3 q^{37} + 4 q^{39} - 9 q^{41}+ \cdots - 76 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 3 x^{11} + 29 x^{10} + 405 x^{8} - 117 x^{7} + 2515 x^{6} + 1476 x^{5} + 7995 x^{4} - 2175 x^{3} + \cdots + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 1715905482153 \nu^{11} + 4307423742224 \nu^{10} - 47611747561143 \nu^{9} + \cdots + 42\!\cdots\!92 ) / 13\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3882514598555 \nu^{11} - 3654097505731 \nu^{10} + 83423074388066 \nu^{9} + \cdots + 34\!\cdots\!52 ) / 27\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 21589580391119 \nu^{11} - 42806520136345 \nu^{10} + 558994369293702 \nu^{9} + \cdots + 46\!\cdots\!64 ) / 27\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 25075145750338 \nu^{11} - 66873958754819 \nu^{10} + 701903809517062 \nu^{9} + \cdots + 79\!\cdots\!60 ) / 27\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 12926849045593 \nu^{11} - 34706543270271 \nu^{10} + 362382059783535 \nu^{9} + \cdots + 20\!\cdots\!76 ) / 13\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 19387396113109 \nu^{11} + 60071660832906 \nu^{10} - 569315897346363 \nu^{9} + \cdots + 248215096289260 ) / 13\!\cdots\!12 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 5238566167851 \nu^{11} - 16062118176933 \nu^{10} + 152835571159827 \nu^{9} + \cdots + 275888522976714 ) / 341492507115478 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 63056330068462 \nu^{11} - 189866016689827 \nu^{10} + \cdots + 26\!\cdots\!84 ) / 27\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 98159661622173 \nu^{11} - 301815112817580 \nu^{10} + \cdots - 12\!\cdots\!88 ) / 27\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 104845333135128 \nu^{11} + 301468108669177 \nu^{10} + \cdots - 35\!\cdots\!84 ) / 27\!\cdots\!24 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 67181011336704 \nu^{11} - 205968556515918 \nu^{10} + \cdots - 841726563234580 ) / 13\!\cdots\!12 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{11} - \beta_{10} - \beta_{9} - \beta_{7} + 2\beta_{6} - \beta_{3} + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5 \beta_{11} - 3 \beta_{10} + \beta_{9} + 3 \beta_{8} - 23 \beta_{7} + 4 \beta_{6} - 4 \beta_{5} + \cdots + 5 \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 12\beta_{10} + 35\beta_{8} - 34\beta_{5} - 23\beta_{4} + 23\beta_{3} + 23\beta_{2} + 23\beta _1 - 41 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 35 \beta_{11} + 65 \beta_{10} + 13 \beta_{9} + 32 \beta_{8} + 125 \beta_{7} - 44 \beta_{6} + \cdots - 125 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 551 \beta_{11} + 587 \beta_{10} + 515 \beta_{9} - 587 \beta_{8} + 1241 \beta_{7} - 778 \beta_{6} + \cdots - 551 \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 2444 \beta_{10} - 5267 \beta_{8} + 3668 \beta_{5} + 1747 \beta_{4} - 2823 \beta_{3} - 2823 \beta_{2} + \cdots + 8071 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 14047 \beta_{11} - 27067 \beta_{10} - 12391 \beta_{9} - 11700 \beta_{8} - 34921 \beta_{7} + 19826 \beta_{6} + \cdots + 34921 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 23539 \beta_{11} - 25721 \beta_{10} - 17989 \beta_{9} + 25721 \beta_{8} - 66077 \beta_{7} + \cdots + 23539 \beta_1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 320352 \beta_{10} + 727315 \beta_{8} - 521594 \beta_{5} - 314635 \beta_{4} + 406963 \beta_{3} + \cdots - 955705 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 1886153 \beta_{11} + 3770995 \beta_{10} + 1517003 \beta_{9} + 1691764 \beta_{8} + 5132327 \beta_{7} + \cdots - 5132327 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 9796751 \beta_{11} + 10833263 \beta_{10} + 8219663 \beta_{9} - 10833263 \beta_{8} + \cdots - 9796751 \beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 + \beta_{7}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1141.1
−0.979695 + 1.69688i
−0.0310901 + 0.0538497i
2.58466 4.47676i
0.175815 0.304520i
1.38292 2.39529i
−1.63261 + 2.82776i
−0.979695 1.69688i
−0.0310901 0.0538497i
2.58466 + 4.47676i
0.175815 + 0.304520i
1.38292 + 2.39529i
−1.63261 2.82776i
0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −2.40843 4.17152i 0 −0.500000 + 0.866025i 0
1141.2 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −1.45061 2.51254i 0 −0.500000 + 0.866025i 0
1141.3 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 −0.527660 0.913934i 0 −0.500000 + 0.866025i 0
1141.4 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0.374535 + 0.648713i 0 −0.500000 + 0.866025i 0
1141.5 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 0.600569 + 1.04022i 0 −0.500000 + 0.866025i 0
1141.6 0 −0.500000 0.866025i 0 0.500000 0.866025i 0 2.41160 + 4.17701i 0 −0.500000 + 0.866025i 0
1741.1 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −2.40843 + 4.17152i 0 −0.500000 0.866025i 0
1741.2 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −1.45061 + 2.51254i 0 −0.500000 0.866025i 0
1741.3 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 −0.527660 + 0.913934i 0 −0.500000 0.866025i 0
1741.4 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0.374535 0.648713i 0 −0.500000 0.866025i 0
1741.5 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 0.600569 1.04022i 0 −0.500000 0.866025i 0
1741.6 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i 0 2.41160 4.17701i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1141.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1860.2.q.i 12
31.c even 3 1 inner 1860.2.q.i 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1860.2.q.i 12 1.a even 1 1 trivial
1860.2.q.i 12 31.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1860, [\chi])\):

\( T_{7}^{12} + 2 T_{7}^{11} + 31 T_{7}^{10} + 44 T_{7}^{9} + 737 T_{7}^{8} + 1019 T_{7}^{7} + 4591 T_{7}^{6} + \cdots + 4096 \) Copy content Toggle raw display
\( T_{11}^{12} + 28 T_{11}^{10} + 4 T_{11}^{9} + 605 T_{11}^{8} + 50 T_{11}^{7} + 4440 T_{11}^{6} + \cdots + 82944 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( (T^{2} + T + 1)^{6} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{6} \) Copy content Toggle raw display
$7$ \( T^{12} + 2 T^{11} + \cdots + 4096 \) Copy content Toggle raw display
$11$ \( T^{12} + 28 T^{10} + \cdots + 82944 \) Copy content Toggle raw display
$13$ \( T^{12} + 2 T^{11} + \cdots + 82944 \) Copy content Toggle raw display
$17$ \( T^{12} + 2 T^{11} + \cdots + 82944 \) Copy content Toggle raw display
$19$ \( T^{12} - 5 T^{11} + \cdots + 15085456 \) Copy content Toggle raw display
$23$ \( (T^{6} - T^{5} - 92 T^{4} + \cdots - 2592)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + 10 T^{5} + \cdots - 324)^{2} \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 887503681 \) Copy content Toggle raw display
$37$ \( T^{12} - 3 T^{11} + \cdots + 6718464 \) Copy content Toggle raw display
$41$ \( T^{12} + 9 T^{11} + \cdots + 331776 \) Copy content Toggle raw display
$43$ \( T^{12} + 5 T^{11} + \cdots + 87086224 \) Copy content Toggle raw display
$47$ \( (T^{6} + 8 T^{5} + \cdots + 4248)^{2} \) Copy content Toggle raw display
$53$ \( T^{12} - 21 T^{11} + \cdots + 6718464 \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 153363456 \) Copy content Toggle raw display
$61$ \( (T^{6} - 9 T^{5} + \cdots - 446)^{2} \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 27090526464 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 95340147984 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 7664652304 \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 936115216 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 37053170064 \) Copy content Toggle raw display
$89$ \( (T^{6} - 4 T^{5} + \cdots - 130896)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + 38 T^{5} + \cdots + 6370992)^{2} \) Copy content Toggle raw display
show more
show less