Properties

Label 1860.2.q.g
Level $1860$
Weight $2$
Character orbit 1860.q
Analytic conductor $14.852$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1860,2,Mod(1141,1860)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1860, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1860.1141");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64616643.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 19x^{4} + 106x^{2} + 147 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 + 1) q^{3} - \beta_1 q^{5} + (\beta_{2} - \beta_1 - 1) q^{7} + \beta_1 q^{9} + 3 \beta_1 q^{11} + (\beta_{4} - \beta_1) q^{13} + q^{15} + ( - \beta_{5} + \beta_{2} + 2 \beta_1 + 2) q^{17}+ \cdots + ( - 3 \beta_1 - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} + 3 q^{5} - 4 q^{7} - 3 q^{9} - 9 q^{11} + 3 q^{13} + 6 q^{15} + 5 q^{17} + 3 q^{19} + 4 q^{21} + 2 q^{23} - 3 q^{25} - 6 q^{27} - 22 q^{29} - 10 q^{31} - 18 q^{33} - 8 q^{35} - 22 q^{37}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 19x^{4} + 106x^{2} + 147 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{5} + 12\nu^{3} + 29\nu - 7 ) / 14 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} - 5\nu^{3} + 7\nu^{2} + 27\nu + 42 ) / 14 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 6 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{5} - 7\nu^{4} - 12\nu^{3} - 77\nu^{2} - 8\nu - 140 ) / 14 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{5} + 7\nu^{4} - 12\nu^{3} + 77\nu^{2} - 8\nu + 140 ) / 14 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + \beta_{4} + 2\beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -8\beta_{5} - 8\beta_{4} - 3\beta_{3} + 6\beta_{2} - 10\beta _1 - 5 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} - \beta_{4} - 11\beta_{3} + 46 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 67\beta_{5} + 67\beta_{4} + 36\beta_{3} - 72\beta_{2} + 104\beta _1 + 52 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(\beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1141.1
3.05165i
2.75941i
1.43982i
3.05165i
2.75941i
1.43982i
0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 −2.15628 3.73479i 0 −0.500000 + 0.866025i 0
1141.2 0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 −1.30718 2.26411i 0 −0.500000 + 0.866025i 0
1141.3 0 0.500000 + 0.866025i 0 0.500000 0.866025i 0 1.46346 + 2.53479i 0 −0.500000 + 0.866025i 0
1741.1 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 −2.15628 + 3.73479i 0 −0.500000 0.866025i 0
1741.2 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 −1.30718 + 2.26411i 0 −0.500000 0.866025i 0
1741.3 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0 1.46346 2.53479i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1141.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1860.2.q.g 6
31.c even 3 1 inner 1860.2.q.g 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1860.2.q.g 6 1.a even 1 1 trivial
1860.2.q.g 6 31.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1860, [\chi])\):

\( T_{7}^{6} + 4T_{7}^{5} + 25T_{7}^{4} + 30T_{7}^{3} + 213T_{7}^{2} + 297T_{7} + 1089 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{6} + 4 T^{5} + \cdots + 1089 \) Copy content Toggle raw display
$11$ \( (T^{2} + 3 T + 9)^{3} \) Copy content Toggle raw display
$13$ \( T^{6} - 3 T^{5} + \cdots + 121 \) Copy content Toggle raw display
$17$ \( T^{6} - 5 T^{5} + \cdots + 23409 \) Copy content Toggle raw display
$19$ \( T^{6} - 3 T^{5} + \cdots + 3969 \) Copy content Toggle raw display
$23$ \( (T^{3} - T^{2} - 14 T + 21)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 11 T^{2} + \cdots + 13)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 10 T^{5} + \cdots + 29791 \) Copy content Toggle raw display
$37$ \( T^{6} + 22 T^{5} + \cdots + 74529 \) Copy content Toggle raw display
$41$ \( T^{6} + 108 T^{4} + \cdots + 87616 \) Copy content Toggle raw display
$43$ \( T^{6} + 4 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$47$ \( (T^{3} - T^{2} - 82 T + 259)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} - 5 T^{5} + \cdots + 77841 \) Copy content Toggle raw display
$59$ \( T^{6} + 5 T^{5} + \cdots + 77841 \) Copy content Toggle raw display
$61$ \( (T^{3} + 7 T^{2} + \cdots - 117)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 27 T^{4} + \cdots + 1369 \) Copy content Toggle raw display
$71$ \( T^{6} - T^{5} + \cdots + 441 \) Copy content Toggle raw display
$73$ \( T^{6} + 23 T^{5} + \cdots + 14161 \) Copy content Toggle raw display
$79$ \( T^{6} - 15 T^{5} + \cdots + 2209 \) Copy content Toggle raw display
$83$ \( T^{6} - 15 T^{5} + \cdots + 729 \) Copy content Toggle raw display
$89$ \( (T^{3} + 21 T^{2} + \cdots + 191)^{2} \) Copy content Toggle raw display
$97$ \( (T^{3} - 9 T^{2} - 81 T + 1)^{2} \) Copy content Toggle raw display
show more
show less