Properties

Label 1860.2.i.a
Level $1860$
Weight $2$
Character orbit 1860.i
Analytic conductor $14.852$
Analytic rank $0$
Dimension $16$
CM discriminant -155
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(929,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.929"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.i (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 13x^{12} + 88x^{8} + 1053x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{31}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{10} q^{3} + \beta_{5} q^{5} + \beta_{8} q^{9} - \beta_{12} q^{13} - \beta_{6} q^{15} + ( - \beta_{15} + \beta_{13} + \cdots + \beta_1) q^{17} + ( - \beta_{11} + \beta_{9}) q^{19} + ( - \beta_{15} + \beta_{14} + \cdots + \beta_{3}) q^{23}+ \cdots + (3 \beta_{7} - \beta_{4} - \beta_{2}) q^{95}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 80 q^{25} - 4 q^{39} + 20 q^{45} + 112 q^{49} - 28 q^{51} + 44 q^{69} - 52 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 13x^{12} + 88x^{8} + 1053x^{4} + 6561 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{15} - 176\nu^{11} + 1276\nu^{7} + 16497\nu^{3} + 64152\nu ) / 32076 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -5\nu^{12} - 308\nu^{8} - 440\nu^{4} - 5265 ) / 3564 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{15} - 176\nu^{11} + 1276\nu^{7} + 16497\nu^{3} - 32076\nu ) / 32076 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 13\nu^{12} + 88\nu^{8} - 638\nu^{4} + 4779 ) / 1782 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 13\nu^{14} + 88\nu^{10} - 638\nu^{6} + 6561\nu^{2} ) / 16038 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 13\nu^{13} + 88\nu^{9} - 638\nu^{5} + 6561\nu ) / 5346 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -13\nu^{12} - 88\nu^{8} - 1144\nu^{4} - 10125 ) / 1188 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -\nu^{14} - 13\nu^{10} - 88\nu^{6} - 1053\nu^{2} ) / 729 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 5\nu^{14} - 16\nu^{10} + 116\nu^{6} + 6885\nu^{2} ) / 2916 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -\nu^{15} - 13\nu^{11} - 88\nu^{7} - 1053\nu^{3} ) / 2187 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -\nu^{14} - 4\nu^{10} - 52\nu^{6} - 261\nu^{2} ) / 324 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 9\nu^{15} - 5\nu^{13} - 308\nu^{9} - 440\nu^{5} + 9873\nu^{3} - 5265\nu ) / 10692 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -3\nu^{15} - 13\nu^{13} - 88\nu^{9} - 1144\nu^{5} - 3291\nu^{3} - 13689\nu ) / 3564 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 13\nu^{15} - 90\nu^{13} + 88\nu^{11} - 198\nu^{9} - 638\nu^{7} - 2574\nu^{5} + 6561\nu^{3} - 57348\nu ) / 16038 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( -125\nu^{15} - 572\nu^{11} - 3872\nu^{7} - 38961\nu^{3} ) / 96228 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{3} + \beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{11} + \beta_{9} - \beta_{8} ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{15} + \beta_{14} - \beta_{13} + \beta_{12} - 3\beta_{10} + \beta_{6} + \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{7} - 3\beta_{4} - 9 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -2\beta_{14} - 4\beta_{13} - 2\beta_{12} - 11\beta_{6} + 2\beta_{3} - 4\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -2\beta_{11} - 2\beta_{8} - 11\beta_{5} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -18\beta_{15} - 13\beta_{14} + 13\beta_{13} - 13\beta_{12} - 18\beta_{10} - 13\beta_{6} + 13\beta_{3} + 13\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 5\beta_{7} - 39\beta_{2} - 15 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 44\beta_{14} - 29\beta_{13} - 73\beta_{12} + 44\beta_{6} + 44\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 44\beta_{11} - 88\beta_{9} - 131\beta_{8} + 132\beta_{5} ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 132\beta_{15} - 393\beta_{10} - 176\beta_{3} - 88\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( -44\beta_{7} + 88\beta_{4} + 88\beta_{2} - 481 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( -396\beta_{14} + 396\beta_{12} + 396\beta_{6} + 305\beta_{3} - 701\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( -1097\beta_{11} + 91\beta_{9} + 1097\beta_{8} + 1188\beta_{5} ) / 3 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( -3291\beta_{15} + 91\beta_{14} - 91\beta_{13} + 91\beta_{12} + 3291\beta_{10} + 91\beta_{6} + 91\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
929.1
1.63710 0.565603i
1.63710 + 0.565603i
1.30838 1.13497i
1.30838 + 1.13497i
1.13497 1.30838i
1.13497 + 1.30838i
0.565603 1.63710i
0.565603 + 1.63710i
−0.565603 1.63710i
−0.565603 + 1.63710i
−1.13497 1.30838i
−1.13497 + 1.30838i
−1.30838 1.13497i
−1.30838 + 1.13497i
−1.63710 0.565603i
−1.63710 + 0.565603i
0 −1.63710 0.565603i 0 2.23607i 0 0 0 2.36019 + 1.85190i 0
929.2 0 −1.63710 + 0.565603i 0 2.23607i 0 0 0 2.36019 1.85190i 0
929.3 0 −1.30838 1.13497i 0 2.23607i 0 0 0 0.423695 + 2.96993i 0
929.4 0 −1.30838 + 1.13497i 0 2.23607i 0 0 0 0.423695 2.96993i 0
929.5 0 −1.13497 1.30838i 0 2.23607i 0 0 0 −0.423695 + 2.96993i 0
929.6 0 −1.13497 + 1.30838i 0 2.23607i 0 0 0 −0.423695 2.96993i 0
929.7 0 −0.565603 1.63710i 0 2.23607i 0 0 0 −2.36019 + 1.85190i 0
929.8 0 −0.565603 + 1.63710i 0 2.23607i 0 0 0 −2.36019 1.85190i 0
929.9 0 0.565603 1.63710i 0 2.23607i 0 0 0 −2.36019 1.85190i 0
929.10 0 0.565603 + 1.63710i 0 2.23607i 0 0 0 −2.36019 + 1.85190i 0
929.11 0 1.13497 1.30838i 0 2.23607i 0 0 0 −0.423695 2.96993i 0
929.12 0 1.13497 + 1.30838i 0 2.23607i 0 0 0 −0.423695 + 2.96993i 0
929.13 0 1.30838 1.13497i 0 2.23607i 0 0 0 0.423695 2.96993i 0
929.14 0 1.30838 + 1.13497i 0 2.23607i 0 0 0 0.423695 + 2.96993i 0
929.15 0 1.63710 0.565603i 0 2.23607i 0 0 0 2.36019 1.85190i 0
929.16 0 1.63710 + 0.565603i 0 2.23607i 0 0 0 2.36019 + 1.85190i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 929.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
155.c odd 2 1 CM by \(\Q(\sqrt{-155}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner
31.b odd 2 1 inner
93.c even 2 1 inner
465.g even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1860.2.i.a 16
3.b odd 2 1 inner 1860.2.i.a 16
5.b even 2 1 inner 1860.2.i.a 16
15.d odd 2 1 inner 1860.2.i.a 16
31.b odd 2 1 inner 1860.2.i.a 16
93.c even 2 1 inner 1860.2.i.a 16
155.c odd 2 1 CM 1860.2.i.a 16
465.g even 2 1 inner 1860.2.i.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1860.2.i.a 16 1.a even 1 1 trivial
1860.2.i.a 16 3.b odd 2 1 inner
1860.2.i.a 16 5.b even 2 1 inner
1860.2.i.a 16 15.d odd 2 1 inner
1860.2.i.a 16 31.b odd 2 1 inner
1860.2.i.a 16 93.c even 2 1 inner
1860.2.i.a 16 155.c odd 2 1 CM
1860.2.i.a 16 465.g even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} \) acting on \(S_{2}^{\mathrm{new}}(1860, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} + 13 T^{12} + \cdots + 6561 \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{8} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( T^{16} \) Copy content Toggle raw display
$13$ \( (T^{4} - 52 T^{2} + 180)^{4} \) Copy content Toggle raw display
$17$ \( (T^{8} + 136 T^{6} + \cdots + 66564)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} - 83 T^{2} + 676)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 92 T^{2} + 1620)^{4} \) Copy content Toggle raw display
$29$ \( T^{16} \) Copy content Toggle raw display
$31$ \( (T^{2} - 31)^{8} \) Copy content Toggle raw display
$37$ \( (T^{8} - 296 T^{6} + \cdots + 1790244)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 91 T^{2} + 1024)^{4} \) Copy content Toggle raw display
$43$ \( (T^{8} - 344 T^{6} + \cdots + 3617604)^{2} \) Copy content Toggle raw display
$47$ \( T^{16} \) Copy content Toggle raw display
$53$ \( (T^{8} + 424 T^{6} + \cdots + 70257924)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 199 T^{2} + 484)^{4} \) Copy content Toggle raw display
$61$ \( T^{16} \) Copy content Toggle raw display
$67$ \( T^{16} \) Copy content Toggle raw display
$71$ \( (T^{4} + 421 T^{2} + 43264)^{4} \) Copy content Toggle raw display
$73$ \( (T^{8} - 584 T^{6} + \cdots + 34363044)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} \) Copy content Toggle raw display
$83$ \( (T^{8} + 664 T^{6} + \cdots + 9847044)^{2} \) Copy content Toggle raw display
$89$ \( T^{16} \) Copy content Toggle raw display
$97$ \( T^{16} \) Copy content Toggle raw display
show more
show less