Properties

Label 1860.2.a.g
Level $1860$
Weight $2$
Character orbit 1860.a
Self dual yes
Analytic conductor $14.852$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1860,2,Mod(1,1860)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1860, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1860.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.404.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} - q^{5} + (\beta_{2} - 1) q^{7} + q^{9} + 2 \beta_{2} q^{11} + (\beta_{2} - 2 \beta_1 + 1) q^{13} - q^{15} + ( - \beta_{2} - \beta_1 + 4) q^{17} + ( - 2 \beta_{2} + 2 \beta_1) q^{19} + (\beta_{2} - 1) q^{21}+ \cdots + 2 \beta_{2} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} - 3 q^{5} - 2 q^{7} + 3 q^{9} + 2 q^{11} + 2 q^{13} - 3 q^{15} + 10 q^{17} - 2 q^{21} + 2 q^{23} + 3 q^{25} + 3 q^{27} + 6 q^{29} + 3 q^{31} + 2 q^{33} + 2 q^{35} + 4 q^{37} + 2 q^{39} + 16 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 5x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.210756
−1.65544
2.86620
0 1.00000 0 −1.00000 0 −3.74483 0 1.00000 0
1.2 0 1.00000 0 −1.00000 0 0.395932 0 1.00000 0
1.3 0 1.00000 0 −1.00000 0 1.34889 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(31\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1860.2.a.g 3
3.b odd 2 1 5580.2.a.j 3
4.b odd 2 1 7440.2.a.bn 3
5.b even 2 1 9300.2.a.u 3
5.c odd 4 2 9300.2.g.q 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1860.2.a.g 3 1.a even 1 1 trivial
5580.2.a.j 3 3.b odd 2 1
7440.2.a.bn 3 4.b odd 2 1
9300.2.a.u 3 5.b even 2 1
9300.2.g.q 6 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} + 2T_{7}^{2} - 6T_{7} + 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1860))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( T^{3} - 2 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots - 18 \) Copy content Toggle raw display
$17$ \( T^{3} - 10 T^{2} + \cdots + 36 \) Copy content Toggle raw display
$19$ \( T^{3} - 32T + 32 \) Copy content Toggle raw display
$23$ \( T^{3} - 2 T^{2} + \cdots + 84 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 162 \) Copy content Toggle raw display
$31$ \( (T - 1)^{3} \) Copy content Toggle raw display
$37$ \( T^{3} - 4 T^{2} + \cdots + 446 \) Copy content Toggle raw display
$41$ \( T^{3} - 16 T^{2} + \cdots - 48 \) Copy content Toggle raw display
$43$ \( T^{3} - 2 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$47$ \( T^{3} - 12 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$53$ \( T^{3} - 6 T^{2} + \cdots + 12 \) Copy content Toggle raw display
$59$ \( T^{3} - 16 T^{2} + \cdots - 126 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 472 \) Copy content Toggle raw display
$67$ \( T^{3} - 8 T^{2} + \cdots - 86 \) Copy content Toggle raw display
$71$ \( T^{3} - 10 T^{2} + \cdots + 378 \) Copy content Toggle raw display
$73$ \( T^{3} - 8 T^{2} + \cdots - 86 \) Copy content Toggle raw display
$79$ \( T^{3} + 16 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$83$ \( T^{3} - 26 T^{2} + \cdots - 516 \) Copy content Toggle raw display
$89$ \( T^{3} + 8 T^{2} + \cdots - 222 \) Copy content Toggle raw display
$97$ \( T^{3} - 8 T^{2} + \cdots + 112 \) Copy content Toggle raw display
show more
show less