Properties

Label 1860.2.a.f.1.3
Level $1860$
Weight $2$
Character 1860.1
Self dual yes
Analytic conductor $14.852$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,2,Mod(1,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1860.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-3,0,-3,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.8521747760\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.564.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 5x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.08613\) of defining polynomial
Character \(\chi\) \(=\) 1860.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{3} -1.00000 q^{5} +4.43807 q^{7} +1.00000 q^{9} +4.17226 q^{11} +4.43807 q^{13} +1.00000 q^{15} -1.35194 q^{17} +2.70388 q^{19} -4.43807 q^{21} -1.35194 q^{23} +1.00000 q^{25} -1.00000 q^{27} -7.25839 q^{29} -1.00000 q^{31} -4.17226 q^{33} -4.43807 q^{35} -10.7826 q^{37} -4.43807 q^{39} +2.17226 q^{41} +9.46838 q^{43} -1.00000 q^{45} -4.11644 q^{47} +12.6965 q^{49} +1.35194 q^{51} +12.8203 q^{53} -4.17226 q^{55} -2.70388 q^{57} +5.25839 q^{59} +6.00000 q^{61} +4.43807 q^{63} -4.43807 q^{65} -1.14195 q^{67} +1.35194 q^{69} -10.7268 q^{71} +10.4381 q^{73} -1.00000 q^{75} +18.5168 q^{77} -2.05582 q^{79} +1.00000 q^{81} -6.99258 q^{83} +1.35194 q^{85} +7.25839 q^{87} -2.55451 q^{89} +19.6965 q^{91} +1.00000 q^{93} -2.70388 q^{95} -15.9245 q^{97} +4.17226 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - 3 q^{5} + 4 q^{7} + 3 q^{9} - 2 q^{11} + 4 q^{13} + 3 q^{15} - 2 q^{17} + 4 q^{19} - 4 q^{21} - 2 q^{23} + 3 q^{25} - 3 q^{27} - 3 q^{31} + 2 q^{33} - 4 q^{35} + 6 q^{37} - 4 q^{39} - 8 q^{41}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 −0.577350
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.43807 1.67743 0.838716 0.544569i \(-0.183307\pi\)
0.838716 + 0.544569i \(0.183307\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.17226 1.25798 0.628992 0.777412i \(-0.283468\pi\)
0.628992 + 0.777412i \(0.283468\pi\)
\(12\) 0 0
\(13\) 4.43807 1.23090 0.615449 0.788176i \(-0.288975\pi\)
0.615449 + 0.788176i \(0.288975\pi\)
\(14\) 0 0
\(15\) 1.00000 0.258199
\(16\) 0 0
\(17\) −1.35194 −0.327893 −0.163947 0.986469i \(-0.552423\pi\)
−0.163947 + 0.986469i \(0.552423\pi\)
\(18\) 0 0
\(19\) 2.70388 0.620312 0.310156 0.950686i \(-0.399619\pi\)
0.310156 + 0.950686i \(0.399619\pi\)
\(20\) 0 0
\(21\) −4.43807 −0.968466
\(22\) 0 0
\(23\) −1.35194 −0.281899 −0.140949 0.990017i \(-0.545015\pi\)
−0.140949 + 0.990017i \(0.545015\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) −7.25839 −1.34785 −0.673925 0.738800i \(-0.735393\pi\)
−0.673925 + 0.738800i \(0.735393\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 0 0
\(33\) −4.17226 −0.726297
\(34\) 0 0
\(35\) −4.43807 −0.750171
\(36\) 0 0
\(37\) −10.7826 −1.77265 −0.886323 0.463067i \(-0.846749\pi\)
−0.886323 + 0.463067i \(0.846749\pi\)
\(38\) 0 0
\(39\) −4.43807 −0.710660
\(40\) 0 0
\(41\) 2.17226 0.339250 0.169625 0.985509i \(-0.445744\pi\)
0.169625 + 0.985509i \(0.445744\pi\)
\(42\) 0 0
\(43\) 9.46838 1.44391 0.721957 0.691938i \(-0.243243\pi\)
0.721957 + 0.691938i \(0.243243\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −4.11644 −0.600445 −0.300222 0.953869i \(-0.597061\pi\)
−0.300222 + 0.953869i \(0.597061\pi\)
\(48\) 0 0
\(49\) 12.6965 1.81378
\(50\) 0 0
\(51\) 1.35194 0.189309
\(52\) 0 0
\(53\) 12.8203 1.76101 0.880503 0.474040i \(-0.157205\pi\)
0.880503 + 0.474040i \(0.157205\pi\)
\(54\) 0 0
\(55\) −4.17226 −0.562587
\(56\) 0 0
\(57\) −2.70388 −0.358137
\(58\) 0 0
\(59\) 5.25839 0.684584 0.342292 0.939594i \(-0.388797\pi\)
0.342292 + 0.939594i \(0.388797\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 4.43807 0.559144
\(64\) 0 0
\(65\) −4.43807 −0.550475
\(66\) 0 0
\(67\) −1.14195 −0.139511 −0.0697556 0.997564i \(-0.522222\pi\)
−0.0697556 + 0.997564i \(0.522222\pi\)
\(68\) 0 0
\(69\) 1.35194 0.162754
\(70\) 0 0
\(71\) −10.7268 −1.27303 −0.636517 0.771263i \(-0.719625\pi\)
−0.636517 + 0.771263i \(0.719625\pi\)
\(72\) 0 0
\(73\) 10.4381 1.22168 0.610842 0.791753i \(-0.290831\pi\)
0.610842 + 0.791753i \(0.290831\pi\)
\(74\) 0 0
\(75\) −1.00000 −0.115470
\(76\) 0 0
\(77\) 18.5168 2.11018
\(78\) 0 0
\(79\) −2.05582 −0.231298 −0.115649 0.993290i \(-0.536895\pi\)
−0.115649 + 0.993290i \(0.536895\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.99258 −0.767536 −0.383768 0.923430i \(-0.625374\pi\)
−0.383768 + 0.923430i \(0.625374\pi\)
\(84\) 0 0
\(85\) 1.35194 0.146638
\(86\) 0 0
\(87\) 7.25839 0.778181
\(88\) 0 0
\(89\) −2.55451 −0.270778 −0.135389 0.990793i \(-0.543228\pi\)
−0.135389 + 0.990793i \(0.543228\pi\)
\(90\) 0 0
\(91\) 19.6965 2.06475
\(92\) 0 0
\(93\) 1.00000 0.103695
\(94\) 0 0
\(95\) −2.70388 −0.277412
\(96\) 0 0
\(97\) −15.9245 −1.61689 −0.808446 0.588570i \(-0.799691\pi\)
−0.808446 + 0.588570i \(0.799691\pi\)
\(98\) 0 0
\(99\) 4.17226 0.419328
\(100\) 0 0
\(101\) −0.876139 −0.0871791 −0.0435895 0.999050i \(-0.513879\pi\)
−0.0435895 + 0.999050i \(0.513879\pi\)
\(102\) 0 0
\(103\) 6.43807 0.634362 0.317181 0.948365i \(-0.397264\pi\)
0.317181 + 0.948365i \(0.397264\pi\)
\(104\) 0 0
\(105\) 4.43807 0.433111
\(106\) 0 0
\(107\) 11.6965 1.13074 0.565370 0.824838i \(-0.308733\pi\)
0.565370 + 0.824838i \(0.308733\pi\)
\(108\) 0 0
\(109\) 11.5242 1.10382 0.551909 0.833904i \(-0.313900\pi\)
0.551909 + 0.833904i \(0.313900\pi\)
\(110\) 0 0
\(111\) 10.7826 1.02344
\(112\) 0 0
\(113\) 17.5800 1.65379 0.826894 0.562357i \(-0.190105\pi\)
0.826894 + 0.562357i \(0.190105\pi\)
\(114\) 0 0
\(115\) 1.35194 0.126069
\(116\) 0 0
\(117\) 4.43807 0.410300
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) 6.40776 0.582523
\(122\) 0 0
\(123\) −2.17226 −0.195866
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 15.8129 1.40317 0.701584 0.712587i \(-0.252476\pi\)
0.701584 + 0.712587i \(0.252476\pi\)
\(128\) 0 0
\(129\) −9.46838 −0.833645
\(130\) 0 0
\(131\) −10.1345 −0.885458 −0.442729 0.896655i \(-0.645990\pi\)
−0.442729 + 0.896655i \(0.645990\pi\)
\(132\) 0 0
\(133\) 12.0000 1.04053
\(134\) 0 0
\(135\) 1.00000 0.0860663
\(136\) 0 0
\(137\) −15.1042 −1.29044 −0.645220 0.763997i \(-0.723234\pi\)
−0.645220 + 0.763997i \(0.723234\pi\)
\(138\) 0 0
\(139\) −17.2207 −1.46064 −0.730319 0.683107i \(-0.760628\pi\)
−0.730319 + 0.683107i \(0.760628\pi\)
\(140\) 0 0
\(141\) 4.11644 0.346667
\(142\) 0 0
\(143\) 18.5168 1.54845
\(144\) 0 0
\(145\) 7.25839 0.602777
\(146\) 0 0
\(147\) −12.6965 −1.04719
\(148\) 0 0
\(149\) 1.82774 0.149734 0.0748671 0.997194i \(-0.476147\pi\)
0.0748671 + 0.997194i \(0.476147\pi\)
\(150\) 0 0
\(151\) −16.4610 −1.33957 −0.669787 0.742553i \(-0.733615\pi\)
−0.669787 + 0.742553i \(0.733615\pi\)
\(152\) 0 0
\(153\) −1.35194 −0.109298
\(154\) 0 0
\(155\) 1.00000 0.0803219
\(156\) 0 0
\(157\) 4.53162 0.361662 0.180831 0.983514i \(-0.442121\pi\)
0.180831 + 0.983514i \(0.442121\pi\)
\(158\) 0 0
\(159\) −12.8203 −1.01672
\(160\) 0 0
\(161\) −6.00000 −0.472866
\(162\) 0 0
\(163\) −2.78259 −0.217949 −0.108975 0.994045i \(-0.534757\pi\)
−0.108975 + 0.994045i \(0.534757\pi\)
\(164\) 0 0
\(165\) 4.17226 0.324810
\(166\) 0 0
\(167\) −12.7645 −0.987747 −0.493873 0.869534i \(-0.664419\pi\)
−0.493873 + 0.869534i \(0.664419\pi\)
\(168\) 0 0
\(169\) 6.69646 0.515112
\(170\) 0 0
\(171\) 2.70388 0.206771
\(172\) 0 0
\(173\) 25.5800 1.94481 0.972406 0.233294i \(-0.0749503\pi\)
0.972406 + 0.233294i \(0.0749503\pi\)
\(174\) 0 0
\(175\) 4.43807 0.335487
\(176\) 0 0
\(177\) −5.25839 −0.395245
\(178\) 0 0
\(179\) 5.64064 0.421601 0.210801 0.977529i \(-0.432393\pi\)
0.210801 + 0.977529i \(0.432393\pi\)
\(180\) 0 0
\(181\) 8.93676 0.664264 0.332132 0.943233i \(-0.392232\pi\)
0.332132 + 0.943233i \(0.392232\pi\)
\(182\) 0 0
\(183\) −6.00000 −0.443533
\(184\) 0 0
\(185\) 10.7826 0.792752
\(186\) 0 0
\(187\) −5.64064 −0.412485
\(188\) 0 0
\(189\) −4.43807 −0.322822
\(190\) 0 0
\(191\) −2.32163 −0.167987 −0.0839935 0.996466i \(-0.526767\pi\)
−0.0839935 + 0.996466i \(0.526767\pi\)
\(192\) 0 0
\(193\) −5.22066 −0.375791 −0.187896 0.982189i \(-0.560167\pi\)
−0.187896 + 0.982189i \(0.560167\pi\)
\(194\) 0 0
\(195\) 4.43807 0.317817
\(196\) 0 0
\(197\) −9.58482 −0.682890 −0.341445 0.939902i \(-0.610916\pi\)
−0.341445 + 0.939902i \(0.610916\pi\)
\(198\) 0 0
\(199\) 12.9171 0.915670 0.457835 0.889037i \(-0.348625\pi\)
0.457835 + 0.889037i \(0.348625\pi\)
\(200\) 0 0
\(201\) 1.14195 0.0805468
\(202\) 0 0
\(203\) −32.2132 −2.26093
\(204\) 0 0
\(205\) −2.17226 −0.151717
\(206\) 0 0
\(207\) −1.35194 −0.0939663
\(208\) 0 0
\(209\) 11.2813 0.780343
\(210\) 0 0
\(211\) 5.82774 0.401198 0.200599 0.979673i \(-0.435711\pi\)
0.200599 + 0.979673i \(0.435711\pi\)
\(212\) 0 0
\(213\) 10.7268 0.734986
\(214\) 0 0
\(215\) −9.46838 −0.645738
\(216\) 0 0
\(217\) −4.43807 −0.301276
\(218\) 0 0
\(219\) −10.4381 −0.705339
\(220\) 0 0
\(221\) −6.00000 −0.403604
\(222\) 0 0
\(223\) −2.00000 −0.133930 −0.0669650 0.997755i \(-0.521332\pi\)
−0.0669650 + 0.997755i \(0.521332\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) 25.7933 1.71196 0.855979 0.517010i \(-0.172955\pi\)
0.855979 + 0.517010i \(0.172955\pi\)
\(228\) 0 0
\(229\) −7.93937 −0.524649 −0.262324 0.964980i \(-0.584489\pi\)
−0.262324 + 0.964980i \(0.584489\pi\)
\(230\) 0 0
\(231\) −18.5168 −1.21831
\(232\) 0 0
\(233\) 24.4610 1.60249 0.801246 0.598336i \(-0.204171\pi\)
0.801246 + 0.598336i \(0.204171\pi\)
\(234\) 0 0
\(235\) 4.11644 0.268527
\(236\) 0 0
\(237\) 2.05582 0.133540
\(238\) 0 0
\(239\) −18.0000 −1.16432 −0.582162 0.813073i \(-0.697793\pi\)
−0.582162 + 0.813073i \(0.697793\pi\)
\(240\) 0 0
\(241\) −2.64325 −0.170267 −0.0851335 0.996370i \(-0.527132\pi\)
−0.0851335 + 0.996370i \(0.527132\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) 0 0
\(245\) −12.6965 −0.811147
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 0 0
\(249\) 6.99258 0.443137
\(250\) 0 0
\(251\) −16.4562 −1.03870 −0.519352 0.854561i \(-0.673827\pi\)
−0.519352 + 0.854561i \(0.673827\pi\)
\(252\) 0 0
\(253\) −5.64064 −0.354624
\(254\) 0 0
\(255\) −1.35194 −0.0846617
\(256\) 0 0
\(257\) 7.16484 0.446931 0.223465 0.974712i \(-0.428263\pi\)
0.223465 + 0.974712i \(0.428263\pi\)
\(258\) 0 0
\(259\) −47.8539 −2.97350
\(260\) 0 0
\(261\) −7.25839 −0.449283
\(262\) 0 0
\(263\) −8.87614 −0.547326 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(264\) 0 0
\(265\) −12.8203 −0.787546
\(266\) 0 0
\(267\) 2.55451 0.156334
\(268\) 0 0
\(269\) 3.90164 0.237887 0.118944 0.992901i \(-0.462049\pi\)
0.118944 + 0.992901i \(0.462049\pi\)
\(270\) 0 0
\(271\) −4.87614 −0.296204 −0.148102 0.988972i \(-0.547316\pi\)
−0.148102 + 0.988972i \(0.547316\pi\)
\(272\) 0 0
\(273\) −19.6965 −1.19208
\(274\) 0 0
\(275\) 4.17226 0.251597
\(276\) 0 0
\(277\) 29.5981 1.77838 0.889189 0.457540i \(-0.151269\pi\)
0.889189 + 0.457540i \(0.151269\pi\)
\(278\) 0 0
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −15.2207 −0.907988 −0.453994 0.891005i \(-0.650001\pi\)
−0.453994 + 0.891005i \(0.650001\pi\)
\(282\) 0 0
\(283\) −20.0181 −1.18995 −0.594976 0.803744i \(-0.702838\pi\)
−0.594976 + 0.803744i \(0.702838\pi\)
\(284\) 0 0
\(285\) 2.70388 0.160164
\(286\) 0 0
\(287\) 9.64064 0.569069
\(288\) 0 0
\(289\) −15.1723 −0.892486
\(290\) 0 0
\(291\) 15.9245 0.933513
\(292\) 0 0
\(293\) −8.46096 −0.494295 −0.247147 0.968978i \(-0.579493\pi\)
−0.247147 + 0.968978i \(0.579493\pi\)
\(294\) 0 0
\(295\) −5.25839 −0.306155
\(296\) 0 0
\(297\) −4.17226 −0.242099
\(298\) 0 0
\(299\) −6.00000 −0.346989
\(300\) 0 0
\(301\) 42.0213 2.42207
\(302\) 0 0
\(303\) 0.876139 0.0503329
\(304\) 0 0
\(305\) −6.00000 −0.343559
\(306\) 0 0
\(307\) −8.43807 −0.481586 −0.240793 0.970576i \(-0.577408\pi\)
−0.240793 + 0.970576i \(0.577408\pi\)
\(308\) 0 0
\(309\) −6.43807 −0.366249
\(310\) 0 0
\(311\) −20.6661 −1.17187 −0.585935 0.810358i \(-0.699273\pi\)
−0.585935 + 0.810358i \(0.699273\pi\)
\(312\) 0 0
\(313\) 21.3142 1.20475 0.602375 0.798213i \(-0.294221\pi\)
0.602375 + 0.798213i \(0.294221\pi\)
\(314\) 0 0
\(315\) −4.43807 −0.250057
\(316\) 0 0
\(317\) 13.5242 0.759595 0.379797 0.925070i \(-0.375994\pi\)
0.379797 + 0.925070i \(0.375994\pi\)
\(318\) 0 0
\(319\) −30.2839 −1.69557
\(320\) 0 0
\(321\) −11.6965 −0.652833
\(322\) 0 0
\(323\) −3.65548 −0.203396
\(324\) 0 0
\(325\) 4.43807 0.246180
\(326\) 0 0
\(327\) −11.5242 −0.637290
\(328\) 0 0
\(329\) −18.2691 −1.00721
\(330\) 0 0
\(331\) 12.9926 0.714137 0.357068 0.934078i \(-0.383776\pi\)
0.357068 + 0.934078i \(0.383776\pi\)
\(332\) 0 0
\(333\) −10.7826 −0.590882
\(334\) 0 0
\(335\) 1.14195 0.0623913
\(336\) 0 0
\(337\) 22.5955 1.23085 0.615427 0.788194i \(-0.288983\pi\)
0.615427 + 0.788194i \(0.288983\pi\)
\(338\) 0 0
\(339\) −17.5800 −0.954815
\(340\) 0 0
\(341\) −4.17226 −0.225941
\(342\) 0 0
\(343\) 25.2813 1.36506
\(344\) 0 0
\(345\) −1.35194 −0.0727860
\(346\) 0 0
\(347\) −0.419983 −0.0225459 −0.0112729 0.999936i \(-0.503588\pi\)
−0.0112729 + 0.999936i \(0.503588\pi\)
\(348\) 0 0
\(349\) −11.8687 −0.635318 −0.317659 0.948205i \(-0.602897\pi\)
−0.317659 + 0.948205i \(0.602897\pi\)
\(350\) 0 0
\(351\) −4.43807 −0.236887
\(352\) 0 0
\(353\) −1.69646 −0.0902935 −0.0451467 0.998980i \(-0.514376\pi\)
−0.0451467 + 0.998980i \(0.514376\pi\)
\(354\) 0 0
\(355\) 10.7268 0.569318
\(356\) 0 0
\(357\) 6.00000 0.317554
\(358\) 0 0
\(359\) −4.80223 −0.253452 −0.126726 0.991938i \(-0.540447\pi\)
−0.126726 + 0.991938i \(0.540447\pi\)
\(360\) 0 0
\(361\) −11.6890 −0.615213
\(362\) 0 0
\(363\) −6.40776 −0.336320
\(364\) 0 0
\(365\) −10.4381 −0.546354
\(366\) 0 0
\(367\) −31.6258 −1.65085 −0.825427 0.564509i \(-0.809065\pi\)
−0.825427 + 0.564509i \(0.809065\pi\)
\(368\) 0 0
\(369\) 2.17226 0.113083
\(370\) 0 0
\(371\) 56.8975 2.95397
\(372\) 0 0
\(373\) 17.9245 0.928097 0.464049 0.885810i \(-0.346396\pi\)
0.464049 + 0.885810i \(0.346396\pi\)
\(374\) 0 0
\(375\) 1.00000 0.0516398
\(376\) 0 0
\(377\) −32.2132 −1.65907
\(378\) 0 0
\(379\) 32.8007 1.68486 0.842429 0.538808i \(-0.181125\pi\)
0.842429 + 0.538808i \(0.181125\pi\)
\(380\) 0 0
\(381\) −15.8129 −0.810120
\(382\) 0 0
\(383\) −29.8081 −1.52312 −0.761561 0.648093i \(-0.775567\pi\)
−0.761561 + 0.648093i \(0.775567\pi\)
\(384\) 0 0
\(385\) −18.5168 −0.943703
\(386\) 0 0
\(387\) 9.46838 0.481305
\(388\) 0 0
\(389\) −32.7629 −1.66115 −0.830574 0.556909i \(-0.811987\pi\)
−0.830574 + 0.556909i \(0.811987\pi\)
\(390\) 0 0
\(391\) 1.82774 0.0924328
\(392\) 0 0
\(393\) 10.1345 0.511219
\(394\) 0 0
\(395\) 2.05582 0.103439
\(396\) 0 0
\(397\) 34.4562 1.72930 0.864652 0.502371i \(-0.167539\pi\)
0.864652 + 0.502371i \(0.167539\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 29.7145 1.48387 0.741937 0.670470i \(-0.233907\pi\)
0.741937 + 0.670470i \(0.233907\pi\)
\(402\) 0 0
\(403\) −4.43807 −0.221076
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −44.9878 −2.22996
\(408\) 0 0
\(409\) −28.0968 −1.38930 −0.694649 0.719349i \(-0.744440\pi\)
−0.694649 + 0.719349i \(0.744440\pi\)
\(410\) 0 0
\(411\) 15.1042 0.745036
\(412\) 0 0
\(413\) 23.3371 1.14834
\(414\) 0 0
\(415\) 6.99258 0.343252
\(416\) 0 0
\(417\) 17.2207 0.843299
\(418\) 0 0
\(419\) 6.83841 0.334078 0.167039 0.985950i \(-0.446579\pi\)
0.167039 + 0.985950i \(0.446579\pi\)
\(420\) 0 0
\(421\) −5.24030 −0.255397 −0.127698 0.991813i \(-0.540759\pi\)
−0.127698 + 0.991813i \(0.540759\pi\)
\(422\) 0 0
\(423\) −4.11644 −0.200148
\(424\) 0 0
\(425\) −1.35194 −0.0655787
\(426\) 0 0
\(427\) 26.6284 1.28864
\(428\) 0 0
\(429\) −18.5168 −0.893999
\(430\) 0 0
\(431\) 6.83841 0.329395 0.164697 0.986344i \(-0.447335\pi\)
0.164697 + 0.986344i \(0.447335\pi\)
\(432\) 0 0
\(433\) −11.3142 −0.543726 −0.271863 0.962336i \(-0.587640\pi\)
−0.271863 + 0.962336i \(0.587640\pi\)
\(434\) 0 0
\(435\) −7.25839 −0.348013
\(436\) 0 0
\(437\) −3.65548 −0.174865
\(438\) 0 0
\(439\) −10.8155 −0.516196 −0.258098 0.966119i \(-0.583096\pi\)
−0.258098 + 0.966119i \(0.583096\pi\)
\(440\) 0 0
\(441\) 12.6965 0.604593
\(442\) 0 0
\(443\) −17.4487 −0.829015 −0.414507 0.910046i \(-0.636046\pi\)
−0.414507 + 0.910046i \(0.636046\pi\)
\(444\) 0 0
\(445\) 2.55451 0.121095
\(446\) 0 0
\(447\) −1.82774 −0.0864491
\(448\) 0 0
\(449\) 3.96227 0.186991 0.0934955 0.995620i \(-0.470196\pi\)
0.0934955 + 0.995620i \(0.470196\pi\)
\(450\) 0 0
\(451\) 9.06324 0.426771
\(452\) 0 0
\(453\) 16.4610 0.773404
\(454\) 0 0
\(455\) −19.6965 −0.923384
\(456\) 0 0
\(457\) 33.8310 1.58255 0.791273 0.611462i \(-0.209418\pi\)
0.791273 + 0.611462i \(0.209418\pi\)
\(458\) 0 0
\(459\) 1.35194 0.0631031
\(460\) 0 0
\(461\) −7.55712 −0.351970 −0.175985 0.984393i \(-0.556311\pi\)
−0.175985 + 0.984393i \(0.556311\pi\)
\(462\) 0 0
\(463\) 28.7401 1.33566 0.667832 0.744312i \(-0.267223\pi\)
0.667832 + 0.744312i \(0.267223\pi\)
\(464\) 0 0
\(465\) −1.00000 −0.0463739
\(466\) 0 0
\(467\) −7.16484 −0.331549 −0.165775 0.986164i \(-0.553012\pi\)
−0.165775 + 0.986164i \(0.553012\pi\)
\(468\) 0 0
\(469\) −5.06804 −0.234021
\(470\) 0 0
\(471\) −4.53162 −0.208806
\(472\) 0 0
\(473\) 39.5046 1.81642
\(474\) 0 0
\(475\) 2.70388 0.124062
\(476\) 0 0
\(477\) 12.8203 0.587002
\(478\) 0 0
\(479\) −30.8384 −1.40904 −0.704521 0.709683i \(-0.748838\pi\)
−0.704521 + 0.709683i \(0.748838\pi\)
\(480\) 0 0
\(481\) −47.8539 −2.18195
\(482\) 0 0
\(483\) 6.00000 0.273009
\(484\) 0 0
\(485\) 15.9245 0.723096
\(486\) 0 0
\(487\) −6.17226 −0.279692 −0.139846 0.990173i \(-0.544661\pi\)
−0.139846 + 0.990173i \(0.544661\pi\)
\(488\) 0 0
\(489\) 2.78259 0.125833
\(490\) 0 0
\(491\) 1.10902 0.0500496 0.0250248 0.999687i \(-0.492034\pi\)
0.0250248 + 0.999687i \(0.492034\pi\)
\(492\) 0 0
\(493\) 9.81290 0.441951
\(494\) 0 0
\(495\) −4.17226 −0.187529
\(496\) 0 0
\(497\) −47.6062 −2.13543
\(498\) 0 0
\(499\) −30.2180 −1.35275 −0.676373 0.736559i \(-0.736449\pi\)
−0.676373 + 0.736559i \(0.736449\pi\)
\(500\) 0 0
\(501\) 12.7645 0.570276
\(502\) 0 0
\(503\) −15.2765 −0.681144 −0.340572 0.940218i \(-0.610621\pi\)
−0.340572 + 0.940218i \(0.610621\pi\)
\(504\) 0 0
\(505\) 0.876139 0.0389877
\(506\) 0 0
\(507\) −6.69646 −0.297400
\(508\) 0 0
\(509\) −7.08613 −0.314087 −0.157044 0.987592i \(-0.550196\pi\)
−0.157044 + 0.987592i \(0.550196\pi\)
\(510\) 0 0
\(511\) 46.3249 2.04929
\(512\) 0 0
\(513\) −2.70388 −0.119379
\(514\) 0 0
\(515\) −6.43807 −0.283695
\(516\) 0 0
\(517\) −17.1749 −0.755350
\(518\) 0 0
\(519\) −25.5800 −1.12284
\(520\) 0 0
\(521\) 16.7645 0.734466 0.367233 0.930129i \(-0.380305\pi\)
0.367233 + 0.930129i \(0.380305\pi\)
\(522\) 0 0
\(523\) −20.9878 −0.917731 −0.458866 0.888506i \(-0.651744\pi\)
−0.458866 + 0.888506i \(0.651744\pi\)
\(524\) 0 0
\(525\) −4.43807 −0.193693
\(526\) 0 0
\(527\) 1.35194 0.0588914
\(528\) 0 0
\(529\) −21.1723 −0.920533
\(530\) 0 0
\(531\) 5.25839 0.228195
\(532\) 0 0
\(533\) 9.64064 0.417583
\(534\) 0 0
\(535\) −11.6965 −0.505682
\(536\) 0 0
\(537\) −5.64064 −0.243412
\(538\) 0 0
\(539\) 52.9729 2.28171
\(540\) 0 0
\(541\) −24.4003 −1.04905 −0.524526 0.851394i \(-0.675758\pi\)
−0.524526 + 0.851394i \(0.675758\pi\)
\(542\) 0 0
\(543\) −8.93676 −0.383513
\(544\) 0 0
\(545\) −11.5242 −0.493642
\(546\) 0 0
\(547\) 23.4355 1.00203 0.501014 0.865439i \(-0.332961\pi\)
0.501014 + 0.865439i \(0.332961\pi\)
\(548\) 0 0
\(549\) 6.00000 0.256074
\(550\) 0 0
\(551\) −19.6258 −0.836087
\(552\) 0 0
\(553\) −9.12386 −0.387986
\(554\) 0 0
\(555\) −10.7826 −0.457695
\(556\) 0 0
\(557\) −26.1526 −1.10812 −0.554061 0.832476i \(-0.686923\pi\)
−0.554061 + 0.832476i \(0.686923\pi\)
\(558\) 0 0
\(559\) 42.0213 1.77731
\(560\) 0 0
\(561\) 5.64064 0.238148
\(562\) 0 0
\(563\) 37.9049 1.59750 0.798750 0.601663i \(-0.205495\pi\)
0.798750 + 0.601663i \(0.205495\pi\)
\(564\) 0 0
\(565\) −17.5800 −0.739597
\(566\) 0 0
\(567\) 4.43807 0.186381
\(568\) 0 0
\(569\) −9.19777 −0.385590 −0.192795 0.981239i \(-0.561755\pi\)
−0.192795 + 0.981239i \(0.561755\pi\)
\(570\) 0 0
\(571\) 29.2207 1.22285 0.611423 0.791304i \(-0.290597\pi\)
0.611423 + 0.791304i \(0.290597\pi\)
\(572\) 0 0
\(573\) 2.32163 0.0969873
\(574\) 0 0
\(575\) −1.35194 −0.0563798
\(576\) 0 0
\(577\) −18.2084 −0.758027 −0.379014 0.925391i \(-0.623737\pi\)
−0.379014 + 0.925391i \(0.623737\pi\)
\(578\) 0 0
\(579\) 5.22066 0.216963
\(580\) 0 0
\(581\) −31.0336 −1.28749
\(582\) 0 0
\(583\) 53.4897 2.21532
\(584\) 0 0
\(585\) −4.43807 −0.183492
\(586\) 0 0
\(587\) −40.3807 −1.66669 −0.833345 0.552754i \(-0.813577\pi\)
−0.833345 + 0.552754i \(0.813577\pi\)
\(588\) 0 0
\(589\) −2.70388 −0.111411
\(590\) 0 0
\(591\) 9.58482 0.394267
\(592\) 0 0
\(593\) −36.7497 −1.50913 −0.754564 0.656226i \(-0.772152\pi\)
−0.754564 + 0.656226i \(0.772152\pi\)
\(594\) 0 0
\(595\) 6.00000 0.245976
\(596\) 0 0
\(597\) −12.9171 −0.528663
\(598\) 0 0
\(599\) −12.5545 −0.512963 −0.256482 0.966549i \(-0.582563\pi\)
−0.256482 + 0.966549i \(0.582563\pi\)
\(600\) 0 0
\(601\) −30.0362 −1.22520 −0.612601 0.790393i \(-0.709877\pi\)
−0.612601 + 0.790393i \(0.709877\pi\)
\(602\) 0 0
\(603\) −1.14195 −0.0465037
\(604\) 0 0
\(605\) −6.40776 −0.260512
\(606\) 0 0
\(607\) −10.1297 −0.411153 −0.205576 0.978641i \(-0.565907\pi\)
−0.205576 + 0.978641i \(0.565907\pi\)
\(608\) 0 0
\(609\) 32.2132 1.30535
\(610\) 0 0
\(611\) −18.2691 −0.739087
\(612\) 0 0
\(613\) −38.8794 −1.57032 −0.785162 0.619291i \(-0.787420\pi\)
−0.785162 + 0.619291i \(0.787420\pi\)
\(614\) 0 0
\(615\) 2.17226 0.0875940
\(616\) 0 0
\(617\) −27.4078 −1.10339 −0.551697 0.834044i \(-0.686020\pi\)
−0.551697 + 0.834044i \(0.686020\pi\)
\(618\) 0 0
\(619\) 26.2887 1.05663 0.528316 0.849048i \(-0.322824\pi\)
0.528316 + 0.849048i \(0.322824\pi\)
\(620\) 0 0
\(621\) 1.35194 0.0542515
\(622\) 0 0
\(623\) −11.3371 −0.454211
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −11.2813 −0.450531
\(628\) 0 0
\(629\) 14.5774 0.581239
\(630\) 0 0
\(631\) −3.87875 −0.154411 −0.0772053 0.997015i \(-0.524600\pi\)
−0.0772053 + 0.997015i \(0.524600\pi\)
\(632\) 0 0
\(633\) −5.82774 −0.231632
\(634\) 0 0
\(635\) −15.8129 −0.627516
\(636\) 0 0
\(637\) 56.3478 2.23258
\(638\) 0 0
\(639\) −10.7268 −0.424345
\(640\) 0 0
\(641\) 4.08874 0.161496 0.0807478 0.996735i \(-0.474269\pi\)
0.0807478 + 0.996735i \(0.474269\pi\)
\(642\) 0 0
\(643\) 15.2355 0.600829 0.300415 0.953809i \(-0.402875\pi\)
0.300415 + 0.953809i \(0.402875\pi\)
\(644\) 0 0
\(645\) 9.46838 0.372817
\(646\) 0 0
\(647\) −21.6406 −0.850781 −0.425391 0.905010i \(-0.639863\pi\)
−0.425391 + 0.905010i \(0.639863\pi\)
\(648\) 0 0
\(649\) 21.9394 0.861196
\(650\) 0 0
\(651\) 4.43807 0.173942
\(652\) 0 0
\(653\) −0.228078 −0.00892538 −0.00446269 0.999990i \(-0.501421\pi\)
−0.00446269 + 0.999990i \(0.501421\pi\)
\(654\) 0 0
\(655\) 10.1345 0.395989
\(656\) 0 0
\(657\) 10.4381 0.407228
\(658\) 0 0
\(659\) 50.9500 1.98473 0.992366 0.123328i \(-0.0393568\pi\)
0.992366 + 0.123328i \(0.0393568\pi\)
\(660\) 0 0
\(661\) −7.82774 −0.304464 −0.152232 0.988345i \(-0.548646\pi\)
−0.152232 + 0.988345i \(0.548646\pi\)
\(662\) 0 0
\(663\) 6.00000 0.233021
\(664\) 0 0
\(665\) −12.0000 −0.465340
\(666\) 0 0
\(667\) 9.81290 0.379957
\(668\) 0 0
\(669\) 2.00000 0.0773245
\(670\) 0 0
\(671\) 25.0336 0.966410
\(672\) 0 0
\(673\) −45.3962 −1.74989 −0.874947 0.484219i \(-0.839104\pi\)
−0.874947 + 0.484219i \(0.839104\pi\)
\(674\) 0 0
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 51.9507 1.99663 0.998313 0.0580539i \(-0.0184895\pi\)
0.998313 + 0.0580539i \(0.0184895\pi\)
\(678\) 0 0
\(679\) −70.6742 −2.71223
\(680\) 0 0
\(681\) −25.7933 −0.988400
\(682\) 0 0
\(683\) 47.0894 1.80183 0.900913 0.434001i \(-0.142898\pi\)
0.900913 + 0.434001i \(0.142898\pi\)
\(684\) 0 0
\(685\) 15.1042 0.577102
\(686\) 0 0
\(687\) 7.93937 0.302906
\(688\) 0 0
\(689\) 56.8975 2.16762
\(690\) 0 0
\(691\) −29.9097 −1.13782 −0.568909 0.822400i \(-0.692634\pi\)
−0.568909 + 0.822400i \(0.692634\pi\)
\(692\) 0 0
\(693\) 18.5168 0.703394
\(694\) 0 0
\(695\) 17.2207 0.653217
\(696\) 0 0
\(697\) −2.93676 −0.111238
\(698\) 0 0
\(699\) −24.4610 −0.925199
\(700\) 0 0
\(701\) 40.4562 1.52801 0.764004 0.645212i \(-0.223231\pi\)
0.764004 + 0.645212i \(0.223231\pi\)
\(702\) 0 0
\(703\) −29.1548 −1.09959
\(704\) 0 0
\(705\) −4.11644 −0.155034
\(706\) 0 0
\(707\) −3.88836 −0.146237
\(708\) 0 0
\(709\) −52.7858 −1.98241 −0.991207 0.132321i \(-0.957757\pi\)
−0.991207 + 0.132321i \(0.957757\pi\)
\(710\) 0 0
\(711\) −2.05582 −0.0770992
\(712\) 0 0
\(713\) 1.35194 0.0506305
\(714\) 0 0
\(715\) −18.5168 −0.692488
\(716\) 0 0
\(717\) 18.0000 0.672222
\(718\) 0 0
\(719\) 3.82774 0.142751 0.0713753 0.997450i \(-0.477261\pi\)
0.0713753 + 0.997450i \(0.477261\pi\)
\(720\) 0 0
\(721\) 28.5726 1.06410
\(722\) 0 0
\(723\) 2.64325 0.0983036
\(724\) 0 0
\(725\) −7.25839 −0.269570
\(726\) 0 0
\(727\) −11.8554 −0.439694 −0.219847 0.975534i \(-0.570556\pi\)
−0.219847 + 0.975534i \(0.570556\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −12.8007 −0.473450
\(732\) 0 0
\(733\) −5.16003 −0.190590 −0.0952951 0.995449i \(-0.530379\pi\)
−0.0952951 + 0.995449i \(0.530379\pi\)
\(734\) 0 0
\(735\) 12.6965 0.468316
\(736\) 0 0
\(737\) −4.76450 −0.175503
\(738\) 0 0
\(739\) −9.52420 −0.350353 −0.175177 0.984537i \(-0.556050\pi\)
−0.175177 + 0.984537i \(0.556050\pi\)
\(740\) 0 0
\(741\) −12.0000 −0.440831
\(742\) 0 0
\(743\) −33.7885 −1.23958 −0.619789 0.784768i \(-0.712782\pi\)
−0.619789 + 0.784768i \(0.712782\pi\)
\(744\) 0 0
\(745\) −1.82774 −0.0669632
\(746\) 0 0
\(747\) −6.99258 −0.255845
\(748\) 0 0
\(749\) 51.9097 1.89674
\(750\) 0 0
\(751\) 41.1090 1.50009 0.750045 0.661387i \(-0.230032\pi\)
0.750045 + 0.661387i \(0.230032\pi\)
\(752\) 0 0
\(753\) 16.4562 0.599696
\(754\) 0 0
\(755\) 16.4610 0.599076
\(756\) 0 0
\(757\) −24.3626 −0.885474 −0.442737 0.896652i \(-0.645992\pi\)
−0.442737 + 0.896652i \(0.645992\pi\)
\(758\) 0 0
\(759\) 5.64064 0.204742
\(760\) 0 0
\(761\) 26.4184 0.957667 0.478834 0.877906i \(-0.341060\pi\)
0.478834 + 0.877906i \(0.341060\pi\)
\(762\) 0 0
\(763\) 51.1452 1.85158
\(764\) 0 0
\(765\) 1.35194 0.0488795
\(766\) 0 0
\(767\) 23.3371 0.842654
\(768\) 0 0
\(769\) 32.9023 1.18649 0.593243 0.805023i \(-0.297847\pi\)
0.593243 + 0.805023i \(0.297847\pi\)
\(770\) 0 0
\(771\) −7.16484 −0.258035
\(772\) 0 0
\(773\) 44.8661 1.61372 0.806861 0.590741i \(-0.201165\pi\)
0.806861 + 0.590741i \(0.201165\pi\)
\(774\) 0 0
\(775\) −1.00000 −0.0359211
\(776\) 0 0
\(777\) 47.8539 1.71675
\(778\) 0 0
\(779\) 5.87353 0.210441
\(780\) 0 0
\(781\) −44.7549 −1.60146
\(782\) 0 0
\(783\) 7.25839 0.259394
\(784\) 0 0
\(785\) −4.53162 −0.161740
\(786\) 0 0
\(787\) −42.4265 −1.51234 −0.756170 0.654375i \(-0.772932\pi\)
−0.756170 + 0.654375i \(0.772932\pi\)
\(788\) 0 0
\(789\) 8.87614 0.315999
\(790\) 0 0
\(791\) 78.0213 2.77412
\(792\) 0 0
\(793\) 26.6284 0.945603
\(794\) 0 0
\(795\) 12.8203 0.454690
\(796\) 0 0
\(797\) 28.9681 1.02610 0.513052 0.858358i \(-0.328515\pi\)
0.513052 + 0.858358i \(0.328515\pi\)
\(798\) 0 0
\(799\) 5.56518 0.196882
\(800\) 0 0
\(801\) −2.55451 −0.0902593
\(802\) 0 0
\(803\) 43.5503 1.53686
\(804\) 0 0
\(805\) 6.00000 0.211472
\(806\) 0 0
\(807\) −3.90164 −0.137344
\(808\) 0 0
\(809\) 26.4429 0.929682 0.464841 0.885394i \(-0.346111\pi\)
0.464841 + 0.885394i \(0.346111\pi\)
\(810\) 0 0
\(811\) −26.2542 −0.921910 −0.460955 0.887423i \(-0.652493\pi\)
−0.460955 + 0.887423i \(0.652493\pi\)
\(812\) 0 0
\(813\) 4.87614 0.171014
\(814\) 0 0
\(815\) 2.78259 0.0974699
\(816\) 0 0
\(817\) 25.6014 0.895678
\(818\) 0 0
\(819\) 19.6965 0.688250
\(820\) 0 0
\(821\) 13.5571 0.473147 0.236573 0.971614i \(-0.423976\pi\)
0.236573 + 0.971614i \(0.423976\pi\)
\(822\) 0 0
\(823\) 44.8613 1.56377 0.781883 0.623425i \(-0.214259\pi\)
0.781883 + 0.623425i \(0.214259\pi\)
\(824\) 0 0
\(825\) −4.17226 −0.145259
\(826\) 0 0
\(827\) −29.8081 −1.03653 −0.518265 0.855220i \(-0.673422\pi\)
−0.518265 + 0.855220i \(0.673422\pi\)
\(828\) 0 0
\(829\) −43.4535 −1.50920 −0.754602 0.656183i \(-0.772170\pi\)
−0.754602 + 0.656183i \(0.772170\pi\)
\(830\) 0 0
\(831\) −29.5981 −1.02675
\(832\) 0 0
\(833\) −17.1648 −0.594727
\(834\) 0 0
\(835\) 12.7645 0.441734
\(836\) 0 0
\(837\) 1.00000 0.0345651
\(838\) 0 0
\(839\) −12.9958 −0.448666 −0.224333 0.974513i \(-0.572020\pi\)
−0.224333 + 0.974513i \(0.572020\pi\)
\(840\) 0 0
\(841\) 23.6842 0.816698
\(842\) 0 0
\(843\) 15.2207 0.524227
\(844\) 0 0
\(845\) −6.69646 −0.230365
\(846\) 0 0
\(847\) 28.4381 0.977144
\(848\) 0 0
\(849\) 20.0181 0.687019
\(850\) 0 0
\(851\) 14.5774 0.499707
\(852\) 0 0
\(853\) −49.7523 −1.70349 −0.851743 0.523960i \(-0.824454\pi\)
−0.851743 + 0.523960i \(0.824454\pi\)
\(854\) 0 0
\(855\) −2.70388 −0.0924707
\(856\) 0 0
\(857\) −21.2058 −0.724377 −0.362189 0.932105i \(-0.617970\pi\)
−0.362189 + 0.932105i \(0.617970\pi\)
\(858\) 0 0
\(859\) −10.4710 −0.357266 −0.178633 0.983916i \(-0.557167\pi\)
−0.178633 + 0.983916i \(0.557167\pi\)
\(860\) 0 0
\(861\) −9.64064 −0.328552
\(862\) 0 0
\(863\) −4.83997 −0.164754 −0.0823772 0.996601i \(-0.526251\pi\)
−0.0823772 + 0.996601i \(0.526251\pi\)
\(864\) 0 0
\(865\) −25.5800 −0.869747
\(866\) 0 0
\(867\) 15.1723 0.515277
\(868\) 0 0
\(869\) −8.57741 −0.290969
\(870\) 0 0
\(871\) −5.06804 −0.171724
\(872\) 0 0
\(873\) −15.9245 −0.538964
\(874\) 0 0
\(875\) −4.43807 −0.150034
\(876\) 0 0
\(877\) −36.8007 −1.24267 −0.621335 0.783545i \(-0.713409\pi\)
−0.621335 + 0.783545i \(0.713409\pi\)
\(878\) 0 0
\(879\) 8.46096 0.285381
\(880\) 0 0
\(881\) −39.1319 −1.31839 −0.659194 0.751973i \(-0.729102\pi\)
−0.659194 + 0.751973i \(0.729102\pi\)
\(882\) 0 0
\(883\) −17.7671 −0.597911 −0.298956 0.954267i \(-0.596638\pi\)
−0.298956 + 0.954267i \(0.596638\pi\)
\(884\) 0 0
\(885\) 5.25839 0.176759
\(886\) 0 0
\(887\) −57.2520 −1.92233 −0.961167 0.275966i \(-0.911002\pi\)
−0.961167 + 0.275966i \(0.911002\pi\)
\(888\) 0 0
\(889\) 70.1788 2.35372
\(890\) 0 0
\(891\) 4.17226 0.139776
\(892\) 0 0
\(893\) −11.1304 −0.372463
\(894\) 0 0
\(895\) −5.64064 −0.188546
\(896\) 0 0
\(897\) 6.00000 0.200334
\(898\) 0 0
\(899\) 7.25839 0.242081
\(900\) 0 0
\(901\) −17.3323 −0.577422
\(902\) 0 0
\(903\) −42.0213 −1.39838
\(904\) 0 0
\(905\) −8.93676 −0.297068
\(906\) 0 0
\(907\) 16.8581 0.559762 0.279881 0.960035i \(-0.409705\pi\)
0.279881 + 0.960035i \(0.409705\pi\)
\(908\) 0 0
\(909\) −0.876139 −0.0290597
\(910\) 0 0
\(911\) 45.5800 1.51013 0.755067 0.655648i \(-0.227604\pi\)
0.755067 + 0.655648i \(0.227604\pi\)
\(912\) 0 0
\(913\) −29.1749 −0.965547
\(914\) 0 0
\(915\) 6.00000 0.198354
\(916\) 0 0
\(917\) −44.9777 −1.48530
\(918\) 0 0
\(919\) −35.8491 −1.18255 −0.591276 0.806469i \(-0.701376\pi\)
−0.591276 + 0.806469i \(0.701376\pi\)
\(920\) 0 0
\(921\) 8.43807 0.278044
\(922\) 0 0
\(923\) −47.6062 −1.56698
\(924\) 0 0
\(925\) −10.7826 −0.354529
\(926\) 0 0
\(927\) 6.43807 0.211454
\(928\) 0 0
\(929\) 45.7752 1.50183 0.750917 0.660396i \(-0.229612\pi\)
0.750917 + 0.660396i \(0.229612\pi\)
\(930\) 0 0
\(931\) 34.3297 1.12511
\(932\) 0 0
\(933\) 20.6661 0.676579
\(934\) 0 0
\(935\) 5.64064 0.184469
\(936\) 0 0
\(937\) 25.8277 0.843755 0.421878 0.906653i \(-0.361371\pi\)
0.421878 + 0.906653i \(0.361371\pi\)
\(938\) 0 0
\(939\) −21.3142 −0.695563
\(940\) 0 0
\(941\) −1.52095 −0.0495815 −0.0247908 0.999693i \(-0.507892\pi\)
−0.0247908 + 0.999693i \(0.507892\pi\)
\(942\) 0 0
\(943\) −2.93676 −0.0956342
\(944\) 0 0
\(945\) 4.43807 0.144370
\(946\) 0 0
\(947\) 18.6481 0.605981 0.302990 0.952994i \(-0.402015\pi\)
0.302990 + 0.952994i \(0.402015\pi\)
\(948\) 0 0
\(949\) 46.3249 1.50377
\(950\) 0 0
\(951\) −13.5242 −0.438552
\(952\) 0 0
\(953\) 33.3519 1.08038 0.540188 0.841545i \(-0.318353\pi\)
0.540188 + 0.841545i \(0.318353\pi\)
\(954\) 0 0
\(955\) 2.32163 0.0751261
\(956\) 0 0
\(957\) 30.2839 0.978939
\(958\) 0 0
\(959\) −67.0336 −2.16463
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 11.6965 0.376913
\(964\) 0 0
\(965\) 5.22066 0.168059
\(966\) 0 0
\(967\) −2.00000 −0.0643157 −0.0321578 0.999483i \(-0.510238\pi\)
−0.0321578 + 0.999483i \(0.510238\pi\)
\(968\) 0 0
\(969\) 3.65548 0.117431
\(970\) 0 0
\(971\) 21.6932 0.696168 0.348084 0.937463i \(-0.386832\pi\)
0.348084 + 0.937463i \(0.386832\pi\)
\(972\) 0 0
\(973\) −76.4265 −2.45012
\(974\) 0 0
\(975\) −4.43807 −0.142132
\(976\) 0 0
\(977\) 17.2813 0.552877 0.276439 0.961032i \(-0.410846\pi\)
0.276439 + 0.961032i \(0.410846\pi\)
\(978\) 0 0
\(979\) −10.6581 −0.340634
\(980\) 0 0
\(981\) 11.5242 0.367939
\(982\) 0 0
\(983\) 29.1452 0.929587 0.464794 0.885419i \(-0.346128\pi\)
0.464794 + 0.885419i \(0.346128\pi\)
\(984\) 0 0
\(985\) 9.58482 0.305398
\(986\) 0 0
\(987\) 18.2691 0.581511
\(988\) 0 0
\(989\) −12.8007 −0.407038
\(990\) 0 0
\(991\) −5.34191 −0.169691 −0.0848457 0.996394i \(-0.527040\pi\)
−0.0848457 + 0.996394i \(0.527040\pi\)
\(992\) 0 0
\(993\) −12.9926 −0.412307
\(994\) 0 0
\(995\) −12.9171 −0.409500
\(996\) 0 0
\(997\) 1.23550 0.0391286 0.0195643 0.999809i \(-0.493772\pi\)
0.0195643 + 0.999809i \(0.493772\pi\)
\(998\) 0 0
\(999\) 10.7826 0.341146
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.2.a.f.1.3 3
3.2 odd 2 5580.2.a.l.1.3 3
4.3 odd 2 7440.2.a.bt.1.1 3
5.2 odd 4 9300.2.g.p.3349.6 6
5.3 odd 4 9300.2.g.p.3349.1 6
5.4 even 2 9300.2.a.v.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.2.a.f.1.3 3 1.1 even 1 trivial
5580.2.a.l.1.3 3 3.2 odd 2
7440.2.a.bt.1.1 3 4.3 odd 2
9300.2.a.v.1.1 3 5.4 even 2
9300.2.g.p.3349.1 6 5.3 odd 4
9300.2.g.p.3349.6 6 5.2 odd 4