Properties

Label 1860.1.df.a.1739.1
Level $1860$
Weight $1$
Character 1860.1739
Analytic conductor $0.928$
Analytic rank $0$
Dimension $8$
Projective image $D_{30}$
CM discriminant -15
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1860,1,Mod(179,1860)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1860.179"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1860, base_ring=CyclotomicField(30)) chi = DirichletCharacter(H, H._module([15, 15, 15, 13])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1860.df (of order \(30\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-1,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.928260923497\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{15})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{30}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{30} + \cdots)\)

Embedding invariants

Embedding label 1739.1
Root \(-0.104528 - 0.994522i\) of defining polynomial
Character \(\chi\) \(=\) 1860.1739
Dual form 1860.1.df.a.1199.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.669131 + 0.743145i) q^{2} +(0.104528 - 0.994522i) q^{3} +(-0.104528 - 0.994522i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(0.669131 + 0.743145i) q^{6} +(0.809017 + 0.587785i) q^{8} +(-0.978148 - 0.207912i) q^{9} +(-0.309017 - 0.951057i) q^{10} -1.00000 q^{12} +(0.809017 + 0.587785i) q^{15} +(-0.978148 + 0.207912i) q^{16} +(-1.28716 - 1.15897i) q^{17} +(0.809017 - 0.587785i) q^{18} +(0.809017 - 1.81708i) q^{19} +(0.913545 + 0.406737i) q^{20} +(0.190983 + 0.587785i) q^{23} +(0.669131 - 0.743145i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-0.309017 + 0.951057i) q^{27} +(-0.978148 + 0.207912i) q^{30} +(0.809017 - 0.587785i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.72256 - 0.181049i) q^{34} +(-0.104528 + 0.994522i) q^{36} +(0.809017 + 1.81708i) q^{38} +(-0.913545 + 0.406737i) q^{40} +(0.669131 - 0.743145i) q^{45} +(-0.564602 - 0.251377i) q^{46} +(0.873619 - 1.20243i) q^{47} +(0.104528 + 0.994522i) q^{48} +(-0.913545 + 0.406737i) q^{49} +(0.978148 + 0.207912i) q^{50} +(-1.28716 + 1.15897i) q^{51} +(0.244415 - 1.14988i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(-1.72256 - 0.994522i) q^{57} +(0.500000 - 0.866025i) q^{60} -0.813473i q^{61} +(-0.104528 + 0.994522i) q^{62} +(0.309017 + 0.951057i) q^{64} +(-1.01807 + 1.40126i) q^{68} +(0.604528 - 0.128496i) q^{69} +(-0.669131 - 0.743145i) q^{72} +(-0.913545 + 0.406737i) q^{75} +(-1.89169 - 0.614648i) q^{76} +(-0.139886 + 0.155360i) q^{79} +(0.309017 - 0.951057i) q^{80} +(0.913545 + 0.406737i) q^{81} +(-0.139886 - 1.33093i) q^{83} +(1.64728 - 0.535233i) q^{85} +(0.104528 + 0.994522i) q^{90} +(0.564602 - 0.251377i) q^{92} +(-0.500000 - 0.866025i) q^{93} +(0.309017 + 1.45381i) q^{94} +(1.16913 + 1.60917i) q^{95} +(-0.809017 - 0.587785i) q^{96} +(0.309017 - 0.951057i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - q^{3} + q^{4} - 4 q^{5} + q^{6} + 2 q^{8} + q^{9} + 2 q^{10} - 8 q^{12} + 2 q^{15} + q^{16} + 3 q^{17} + 2 q^{18} + 2 q^{19} + q^{20} + 6 q^{23} + q^{24} - 4 q^{25} + 2 q^{27} + q^{30}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1860\mathbb{Z}\right)^\times\).

\(n\) \(931\) \(1117\) \(1241\) \(1801\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{1}{30}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(3\) 0.104528 0.994522i 0.104528 0.994522i
\(4\) −0.104528 0.994522i −0.104528 0.994522i
\(5\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(6\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(7\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(8\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(9\) −0.978148 0.207912i −0.978148 0.207912i
\(10\) −0.309017 0.951057i −0.309017 0.951057i
\(11\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(12\) −1.00000 −1.00000
\(13\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(14\) 0 0
\(15\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(16\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(17\) −1.28716 1.15897i −1.28716 1.15897i −0.978148 0.207912i \(-0.933333\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(18\) 0.809017 0.587785i 0.809017 0.587785i
\(19\) 0.809017 1.81708i 0.809017 1.81708i 0.309017 0.951057i \(-0.400000\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(20\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(21\) 0 0
\(22\) 0 0
\(23\) 0.190983 + 0.587785i 0.190983 + 0.587785i 1.00000 \(0\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(24\) 0.669131 0.743145i 0.669131 0.743145i
\(25\) −0.500000 0.866025i −0.500000 0.866025i
\(26\) 0 0
\(27\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(28\) 0 0
\(29\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(30\) −0.978148 + 0.207912i −0.978148 + 0.207912i
\(31\) 0.809017 0.587785i 0.809017 0.587785i
\(32\) 0.500000 0.866025i 0.500000 0.866025i
\(33\) 0 0
\(34\) 1.72256 0.181049i 1.72256 0.181049i
\(35\) 0 0
\(36\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(37\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(38\) 0.809017 + 1.81708i 0.809017 + 1.81708i
\(39\) 0 0
\(40\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(41\) 0 0 −0.104528 0.994522i \(-0.533333\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(42\) 0 0
\(43\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(44\) 0 0
\(45\) 0.669131 0.743145i 0.669131 0.743145i
\(46\) −0.564602 0.251377i −0.564602 0.251377i
\(47\) 0.873619 1.20243i 0.873619 1.20243i −0.104528 0.994522i \(-0.533333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(48\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(49\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(50\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(51\) −1.28716 + 1.15897i −1.28716 + 1.15897i
\(52\) 0 0
\(53\) 0.244415 1.14988i 0.244415 1.14988i −0.669131 0.743145i \(-0.733333\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) 0 0
\(56\) 0 0
\(57\) −1.72256 0.994522i −1.72256 0.994522i
\(58\) 0 0
\(59\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(60\) 0.500000 0.866025i 0.500000 0.866025i
\(61\) 0.813473i 0.813473i −0.913545 0.406737i \(-0.866667\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(62\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(68\) −1.01807 + 1.40126i −1.01807 + 1.40126i
\(69\) 0.604528 0.128496i 0.604528 0.128496i
\(70\) 0 0
\(71\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(72\) −0.669131 0.743145i −0.669131 0.743145i
\(73\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(74\) 0 0
\(75\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(76\) −1.89169 0.614648i −1.89169 0.614648i
\(77\) 0 0
\(78\) 0 0
\(79\) −0.139886 + 0.155360i −0.139886 + 0.155360i −0.809017 0.587785i \(-0.800000\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(80\) 0.309017 0.951057i 0.309017 0.951057i
\(81\) 0.913545 + 0.406737i 0.913545 + 0.406737i
\(82\) 0 0
\(83\) −0.139886 1.33093i −0.139886 1.33093i −0.809017 0.587785i \(-0.800000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(84\) 0 0
\(85\) 1.64728 0.535233i 1.64728 0.535233i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(90\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(91\) 0 0
\(92\) 0.564602 0.251377i 0.564602 0.251377i
\(93\) −0.500000 0.866025i −0.500000 0.866025i
\(94\) 0.309017 + 1.45381i 0.309017 + 1.45381i
\(95\) 1.16913 + 1.60917i 1.16913 + 1.60917i
\(96\) −0.809017 0.587785i −0.809017 0.587785i
\(97\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(98\) 0.309017 0.951057i 0.309017 0.951057i
\(99\) 0 0
\(100\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(101\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(102\) 1.73205i 1.73205i
\(103\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.690983 + 0.951057i 0.690983 + 0.951057i
\(107\) −1.41355 1.27276i −1.41355 1.27276i −0.913545 0.406737i \(-0.866667\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(108\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(109\) −1.30902 0.951057i −1.30902 0.951057i −0.309017 0.951057i \(-0.600000\pi\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.669131 0.743145i −0.669131 0.743145i 0.309017 0.951057i \(-0.400000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(114\) 1.89169 0.614648i 1.89169 0.614648i
\(115\) −0.604528 0.128496i −0.604528 0.128496i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(121\) −0.104528 + 0.994522i −0.104528 + 0.994522i
\(122\) 0.604528 + 0.544320i 0.604528 + 0.544320i
\(123\) 0 0
\(124\) −0.669131 0.743145i −0.669131 0.743145i
\(125\) 1.00000 1.00000
\(126\) 0 0
\(127\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(128\) −0.913545 0.406737i −0.913545 0.406737i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.669131 0.743145i −0.669131 0.743145i
\(136\) −0.360114 1.69420i −0.360114 1.69420i
\(137\) 0.169131 + 0.379874i 0.169131 + 0.379874i 0.978148 0.207912i \(-0.0666667\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(138\) −0.309017 + 0.535233i −0.309017 + 0.535233i
\(139\) 1.08268 + 0.786610i 1.08268 + 0.786610i 0.978148 0.207912i \(-0.0666667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(140\) 0 0
\(141\) −1.10453 0.994522i −1.10453 0.994522i
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0.309017 0.951057i 0.309017 0.951057i
\(151\) −0.500000 + 1.53884i −0.500000 + 1.53884i 0.309017 + 0.951057i \(0.400000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(152\) 1.72256 0.994522i 1.72256 0.994522i
\(153\) 1.01807 + 1.40126i 1.01807 + 1.40126i
\(154\) 0 0
\(155\) 0.104528 + 0.994522i 0.104528 + 0.994522i
\(156\) 0 0
\(157\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(158\) −0.0218524 0.207912i −0.0218524 0.207912i
\(159\) −1.11803 0.363271i −1.11803 0.363271i
\(160\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(161\) 0 0
\(162\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(163\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 1.08268 + 0.786610i 1.08268 + 0.786610i
\(167\) 1.78716 + 0.795697i 1.78716 + 0.795697i 0.978148 + 0.207912i \(0.0666667\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(168\) 0 0
\(169\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(170\) −0.704489 + 1.58231i −0.704489 + 1.58231i
\(171\) −1.16913 + 1.60917i −1.16913 + 1.60917i
\(172\) 0 0
\(173\) 0.564602 0.251377i 0.564602 0.251377i −0.104528 0.994522i \(-0.533333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(180\) −0.809017 0.587785i −0.809017 0.587785i
\(181\) 1.64728 + 0.951057i 1.64728 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(182\) 0 0
\(183\) −0.809017 0.0850311i −0.809017 0.0850311i
\(184\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(185\) 0 0
\(186\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(187\) 0 0
\(188\) −1.28716 0.743145i −1.28716 0.743145i
\(189\) 0 0
\(190\) −1.97815 0.207912i −1.97815 0.207912i
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0.978148 0.207912i 0.978148 0.207912i
\(193\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(197\) −1.10453 + 0.994522i −1.10453 + 0.994522i −0.104528 + 0.994522i \(0.533333\pi\)
−1.00000 \(\pi\)
\(198\) 0 0
\(199\) −0.913545 + 0.406737i −0.913545 + 0.406737i −0.809017 0.587785i \(-0.800000\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(200\) 0.104528 0.994522i 0.104528 0.994522i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 1.28716 + 1.15897i 1.28716 + 1.15897i
\(205\) 0 0
\(206\) 0 0
\(207\) −0.0646021 0.614648i −0.0646021 0.614648i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 1.64728 0.951057i 1.64728 0.951057i 0.669131 0.743145i \(-0.266667\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(212\) −1.16913 0.122881i −1.16913 0.122881i
\(213\) 0 0
\(214\) 1.89169 0.198825i 1.89169 0.198825i
\(215\) 0 0
\(216\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(217\) 0 0
\(218\) 1.58268 0.336408i 1.58268 0.336408i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 0 0
\(225\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(226\) 1.00000 1.00000
\(227\) 1.72256 0.181049i 1.72256 0.181049i 0.809017 0.587785i \(-0.200000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(228\) −0.809017 + 1.81708i −0.809017 + 1.81708i
\(229\) −0.478148 + 1.07394i −0.478148 + 1.07394i 0.500000 + 0.866025i \(0.333333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(230\) 0.500000 0.363271i 0.500000 0.363271i
\(231\) 0 0
\(232\) 0 0
\(233\) 1.47815 + 1.07394i 1.47815 + 1.07394i 0.978148 + 0.207912i \(0.0666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(234\) 0 0
\(235\) 0.604528 + 1.35779i 0.604528 + 1.35779i
\(236\) 0 0
\(237\) 0.139886 + 0.155360i 0.139886 + 0.155360i
\(238\) 0 0
\(239\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(240\) −0.913545 0.406737i −0.913545 0.406737i
\(241\) 0.413545 + 1.94558i 0.413545 + 1.94558i 0.309017 + 0.951057i \(0.400000\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(242\) −0.669131 0.743145i −0.669131 0.743145i
\(243\) 0.500000 0.866025i 0.500000 0.866025i
\(244\) −0.809017 + 0.0850311i −0.809017 + 0.0850311i
\(245\) 0.104528 0.994522i 0.104528 0.994522i
\(246\) 0 0
\(247\) 0 0
\(248\) 1.00000 1.00000
\(249\) −1.33826 −1.33826
\(250\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(251\) 0 0 0.104528 0.994522i \(-0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.360114 1.69420i −0.360114 1.69420i
\(256\) 0.913545 0.406737i 0.913545 0.406737i
\(257\) −0.204489 0.0434654i −0.204489 0.0434654i 0.104528 0.994522i \(-0.466667\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −0.169131 0.122881i −0.169131 0.122881i 0.500000 0.866025i \(-0.333333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(264\) 0 0
\(265\) 0.873619 + 0.786610i 0.873619 + 0.786610i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(270\) 1.00000 1.00000
\(271\) −0.564602 1.73767i −0.564602 1.73767i −0.669131 0.743145i \(-0.733333\pi\)
0.104528 0.994522i \(-0.466667\pi\)
\(272\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(273\) 0 0
\(274\) −0.395472 0.128496i −0.395472 0.128496i
\(275\) 0 0
\(276\) −0.190983 0.587785i −0.190983 0.587785i
\(277\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(278\) −1.30902 + 0.278240i −1.30902 + 0.278240i
\(279\) −0.913545 + 0.406737i −0.913545 + 0.406737i
\(280\) 0 0
\(281\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(282\) 1.47815 0.155360i 1.47815 0.155360i
\(283\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(284\) 0 0
\(285\) 1.72256 0.994522i 1.72256 0.994522i
\(286\) 0 0
\(287\) 0 0
\(288\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(289\) 0.209057 + 1.98904i 0.209057 + 1.98904i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.22256 + 1.35779i −1.22256 + 1.35779i −0.309017 + 0.951057i \(0.600000\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(294\) −0.913545 0.406737i −0.913545 0.406737i
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(301\) 0 0
\(302\) −0.809017 1.40126i −0.809017 1.40126i
\(303\) 0 0
\(304\) −0.413545 + 1.94558i −0.413545 + 1.94558i
\(305\) 0.704489 + 0.406737i 0.704489 + 0.406737i
\(306\) −1.72256 0.181049i −1.72256 0.181049i
\(307\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.809017 0.587785i −0.809017 0.587785i
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.169131 + 0.122881i 0.169131 + 0.122881i
\(317\) 1.30902 0.278240i 1.30902 0.278240i 0.500000 0.866025i \(-0.333333\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(318\) 1.01807 0.587785i 1.01807 0.587785i
\(319\) 0 0
\(320\) −0.978148 0.207912i −0.978148 0.207912i
\(321\) −1.41355 + 1.27276i −1.41355 + 1.27276i
\(322\) 0 0
\(323\) −3.14728 + 1.40126i −3.14728 + 1.40126i
\(324\) 0.309017 0.951057i 0.309017 0.951057i
\(325\) 0 0
\(326\) 0 0
\(327\) −1.08268 + 1.20243i −1.08268 + 1.20243i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.190983 1.81708i −0.190983 1.81708i −0.500000 0.866025i \(-0.666667\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(332\) −1.30902 + 0.278240i −1.30902 + 0.278240i
\(333\) 0 0
\(334\) −1.78716 + 0.795697i −1.78716 + 0.795697i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(338\) −0.104528 0.994522i −0.104528 0.994522i
\(339\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(340\) −0.704489 1.58231i −0.704489 1.58231i
\(341\) 0 0
\(342\) −0.413545 1.94558i −0.413545 1.94558i
\(343\) 0 0
\(344\) 0 0
\(345\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(346\) −0.190983 + 0.587785i −0.190983 + 0.587785i
\(347\) −0.978148 1.69420i −0.978148 1.69420i −0.669131 0.743145i \(-0.733333\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(348\) 0 0
\(349\) −0.413545 1.27276i −0.413545 1.27276i −0.913545 0.406737i \(-0.866667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.604528 + 1.35779i −0.604528 + 1.35779i 0.309017 + 0.951057i \(0.400000\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(360\) 0.978148 0.207912i 0.978148 0.207912i
\(361\) −1.97815 2.19696i −1.97815 2.19696i
\(362\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(363\) 0.978148 + 0.207912i 0.978148 + 0.207912i
\(364\) 0 0
\(365\) 0 0
\(366\) 0.604528 0.544320i 0.604528 0.544320i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −0.309017 0.535233i −0.309017 0.535233i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0.104528 0.994522i 0.104528 0.994522i
\(376\) 1.41355 0.459289i 1.41355 0.459289i
\(377\) 0 0
\(378\) 0 0
\(379\) −0.244415 1.14988i −0.244415 1.14988i −0.913545 0.406737i \(-0.866667\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(380\) 1.47815 1.33093i 1.47815 1.33093i
\(381\) 0 0
\(382\) 0 0
\(383\) 1.22256 + 1.35779i 1.22256 + 1.35779i 0.913545 + 0.406737i \(0.133333\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(384\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(390\) 0 0
\(391\) 0.435398 0.977920i 0.435398 0.977920i
\(392\) −0.978148 0.207912i −0.978148 0.207912i
\(393\) 0 0
\(394\) 1.48629i 1.48629i
\(395\) −0.0646021 0.198825i −0.0646021 0.198825i
\(396\) 0 0
\(397\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(398\) 0.309017 0.951057i 0.309017 0.951057i
\(399\) 0 0
\(400\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(401\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(406\) 0 0
\(407\) 0 0
\(408\) −1.72256 + 0.181049i −1.72256 + 0.181049i
\(409\) −1.28716 + 0.743145i −1.28716 + 0.743145i −0.978148 0.207912i \(-0.933333\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(410\) 0 0
\(411\) 0.395472 0.128496i 0.395472 0.128496i
\(412\) 0 0
\(413\) 0 0
\(414\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(415\) 1.22256 + 0.544320i 1.22256 + 0.544320i
\(416\) 0 0
\(417\) 0.895472 0.994522i 0.895472 0.994522i
\(418\) 0 0
\(419\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(420\) 0 0
\(421\) 0.913545 0.406737i 0.913545 0.406737i 0.104528 0.994522i \(-0.466667\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(422\) −0.395472 + 1.86055i −0.395472 + 1.86055i
\(423\) −1.10453 + 0.994522i −1.10453 + 0.994522i
\(424\) 0.873619 0.786610i 0.873619 0.786610i
\(425\) −0.360114 + 1.69420i −0.360114 + 1.69420i
\(426\) 0 0
\(427\) 0 0
\(428\) −1.11803 + 1.53884i −1.11803 + 1.53884i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(432\) 0.104528 0.994522i 0.104528 0.994522i
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −0.809017 + 1.40126i −0.809017 + 1.40126i
\(437\) 1.22256 + 0.128496i 1.22256 + 0.128496i
\(438\) 0 0
\(439\) 1.64728 + 0.951057i 1.64728 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(440\) 0 0
\(441\) 0.978148 0.207912i 0.978148 0.207912i
\(442\) 0 0
\(443\) −0.169131 + 0.795697i −0.169131 + 0.795697i 0.809017 + 0.587785i \(0.200000\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(450\) −0.913545 0.406737i −0.913545 0.406737i
\(451\) 0 0
\(452\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(453\) 1.47815 + 0.658114i 1.47815 + 0.658114i
\(454\) −1.01807 + 1.40126i −1.01807 + 1.40126i
\(455\) 0 0
\(456\) −0.809017 1.81708i −0.809017 1.81708i
\(457\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(458\) −0.478148 1.07394i −0.478148 1.07394i
\(459\) 1.50000 0.866025i 1.50000 0.866025i
\(460\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(461\) 0 0 −0.951057 0.309017i \(-0.900000\pi\)
0.951057 + 0.309017i \(0.100000\pi\)
\(462\) 0 0
\(463\) 0 0 0.809017 0.587785i \(-0.200000\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(464\) 0 0
\(465\) 1.00000 1.00000
\(466\) −1.78716 + 0.379874i −1.78716 + 0.379874i
\(467\) −0.690983 0.951057i −0.690983 0.951057i 0.309017 0.951057i \(-0.400000\pi\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −1.41355 0.459289i −1.41355 0.459289i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) −0.209057 −0.209057
\(475\) −1.97815 + 0.207912i −1.97815 + 0.207912i
\(476\) 0 0
\(477\) −0.478148 + 1.07394i −0.478148 + 1.07394i
\(478\) 0 0
\(479\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(480\) 0.913545 0.406737i 0.913545 0.406737i
\(481\) 0 0
\(482\) −1.72256 0.994522i −1.72256 0.994522i
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(487\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(488\) 0.478148 0.658114i 0.478148 0.658114i
\(489\) 0 0
\(490\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(497\) 0 0
\(498\) 0.895472 0.994522i 0.895472 0.994522i
\(499\) −0.169131 + 1.60917i −0.169131 + 1.60917i 0.500000 + 0.866025i \(0.333333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(500\) −0.104528 0.994522i −0.104528 0.994522i
\(501\) 0.978148 1.69420i 0.978148 1.69420i
\(502\) 0 0
\(503\) −0.244415 1.14988i −0.244415 1.14988i −0.913545 0.406737i \(-0.866667\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(508\) 0 0
\(509\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(510\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(511\) 0 0
\(512\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(513\) 1.47815 + 1.33093i 1.47815 + 1.33093i
\(514\) 0.169131 0.122881i 0.169131 0.122881i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −0.190983 0.587785i −0.190983 0.587785i
\(520\) 0 0
\(521\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(522\) 0 0
\(523\) 0 0 0.309017 0.951057i \(-0.400000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0.204489 0.0434654i 0.204489 0.0434654i
\(527\) −1.72256 0.181049i −1.72256 0.181049i
\(528\) 0 0
\(529\) 0.500000 0.363271i 0.500000 0.363271i
\(530\) −1.16913 + 0.122881i −1.16913 + 0.122881i
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.80902 0.587785i 1.80902 0.587785i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(541\) 1.30902 1.45381i 1.30902 1.45381i 0.500000 0.866025i \(-0.333333\pi\)
0.809017 0.587785i \(-0.200000\pi\)
\(542\) 1.66913 + 0.743145i 1.66913 + 0.743145i
\(543\) 1.11803 1.53884i 1.11803 1.53884i
\(544\) −1.64728 + 0.535233i −1.64728 + 0.535233i
\(545\) 1.47815 0.658114i 1.47815 0.658114i
\(546\) 0 0
\(547\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(548\) 0.360114 0.207912i 0.360114 0.207912i
\(549\) −0.169131 + 0.795697i −0.169131 + 0.795697i
\(550\) 0 0
\(551\) 0 0
\(552\) 0.564602 + 0.251377i 0.564602 + 0.251377i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.669131 1.15897i 0.669131 1.15897i
\(557\) 0.813473i 0.813473i 0.913545 + 0.406737i \(0.133333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(558\) 0.309017 0.951057i 0.309017 0.951057i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0.704489 + 0.406737i 0.704489 + 0.406737i 0.809017 0.587785i \(-0.200000\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(564\) −0.873619 + 1.20243i −0.873619 + 1.20243i
\(565\) 0.978148 0.207912i 0.978148 0.207912i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(570\) −0.413545 + 1.94558i −0.413545 + 1.94558i
\(571\) 1.47815 0.658114i 1.47815 0.658114i 0.500000 0.866025i \(-0.333333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.413545 0.459289i 0.413545 0.459289i
\(576\) −0.104528 0.994522i −0.104528 0.994522i
\(577\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(578\) −1.61803 1.17557i −1.61803 1.17557i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −0.190983 1.81708i −0.190983 1.81708i
\(587\) −0.169131 + 0.122881i −0.169131 + 0.122881i −0.669131 0.743145i \(-0.733333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(588\) 0.913545 0.406737i 0.913545 0.406737i
\(589\) −0.413545 1.94558i −0.413545 1.94558i
\(590\) 0 0
\(591\) 0.873619 + 1.20243i 0.873619 + 1.20243i
\(592\) 0 0
\(593\) 0.413545 1.27276i 0.413545 1.27276i −0.500000 0.866025i \(-0.666667\pi\)
0.913545 0.406737i \(-0.133333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(598\) 0 0
\(599\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(600\) −0.978148 0.207912i −0.978148 0.207912i
\(601\) −0.169131 + 0.379874i −0.169131 + 0.379874i −0.978148 0.207912i \(-0.933333\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.58268 + 0.336408i 1.58268 + 0.336408i
\(605\) −0.809017 0.587785i −0.809017 0.587785i
\(606\) 0 0
\(607\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(608\) −1.16913 1.60917i −1.16913 1.60917i
\(609\) 0 0
\(610\) −0.773659 + 0.251377i −0.773659 + 0.251377i
\(611\) 0 0
\(612\) 1.28716 1.15897i 1.28716 1.15897i
\(613\) 0 0 −0.207912 0.978148i \(-0.566667\pi\)
0.207912 + 0.978148i \(0.433333\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.169131 1.60917i 0.169131 1.60917i −0.500000 0.866025i \(-0.666667\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(618\) 0 0
\(619\) −1.95630 −1.95630 −0.978148 0.207912i \(-0.933333\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(620\) 0.978148 0.207912i 0.978148 0.207912i
\(621\) −0.618034 −0.618034
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.30902 + 1.45381i 1.30902 + 1.45381i 0.809017 + 0.587785i \(0.200000\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(632\) −0.204489 + 0.0434654i −0.204489 + 0.0434654i
\(633\) −0.773659 1.73767i −0.773659 1.73767i
\(634\) −0.669131 + 1.15897i −0.669131 + 1.15897i
\(635\) 0 0
\(636\) −0.244415 + 1.14988i −0.244415 + 1.14988i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0.809017 0.587785i 0.809017 0.587785i
\(641\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(642\) 1.90211i 1.90211i
\(643\) 0 0 −0.309017 0.951057i \(-0.600000\pi\)
0.309017 + 0.951057i \(0.400000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.06460 3.27651i 1.06460 3.27651i
\(647\) −0.564602 + 1.73767i −0.564602 + 1.73767i 0.104528 + 0.994522i \(0.466667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(648\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −0.809017 + 0.587785i −0.809017 + 0.587785i −0.913545 0.406737i \(-0.866667\pi\)
0.104528 + 0.994522i \(0.466667\pi\)
\(654\) −0.169131 1.60917i −0.169131 1.60917i
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(660\) 0 0
\(661\) −0.139886 1.33093i −0.139886 1.33093i −0.809017 0.587785i \(-0.800000\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(662\) 1.47815 + 1.07394i 1.47815 + 1.07394i
\(663\) 0 0
\(664\) 0.669131 1.15897i 0.669131 1.15897i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0.604528 1.86055i 0.604528 1.86055i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 0.207912 0.978148i \(-0.433333\pi\)
−0.207912 + 0.978148i \(0.566667\pi\)
\(674\) 0 0
\(675\) 0.978148 0.207912i 0.978148 0.207912i
\(676\) 0.809017 + 0.587785i 0.809017 + 0.587785i
\(677\) 1.64728 + 0.951057i 1.64728 + 0.951057i 0.978148 + 0.207912i \(0.0666667\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(678\) 0.104528 0.994522i 0.104528 0.994522i
\(679\) 0 0
\(680\) 1.64728 + 0.535233i 1.64728 + 0.535233i
\(681\) 1.73205i 1.73205i
\(682\) 0 0
\(683\) 1.98904i 1.98904i 0.104528 + 0.994522i \(0.466667\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(684\) 1.72256 + 0.994522i 1.72256 + 0.994522i
\(685\) −0.413545 0.0434654i −0.413545 0.0434654i
\(686\) 0 0
\(687\) 1.01807 + 0.587785i 1.01807 + 0.587785i
\(688\) 0 0
\(689\) 0 0
\(690\) −0.309017 0.535233i −0.309017 0.535233i
\(691\) −0.0864545 + 0.406737i −0.0864545 + 0.406737i 0.913545 + 0.406737i \(0.133333\pi\)
−1.00000 \(\pi\)
\(692\) −0.309017 0.535233i −0.309017 0.535233i
\(693\) 0 0
\(694\) 1.91355 + 0.406737i 1.91355 + 0.406737i
\(695\) −1.22256 + 0.544320i −1.22256 + 0.544320i
\(696\) 0 0
\(697\) 0 0
\(698\) 1.22256 + 0.544320i 1.22256 + 0.544320i
\(699\) 1.22256 1.35779i 1.22256 1.35779i
\(700\) 0 0
\(701\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 1.41355 0.459289i 1.41355 0.459289i
\(706\) −0.604528 1.35779i −0.604528 1.35779i
\(707\) 0 0
\(708\) 0 0
\(709\) −0.395472 0.128496i −0.395472 0.128496i 0.104528 0.994522i \(-0.466667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0.169131 0.122881i 0.169131 0.122881i
\(712\) 0 0
\(713\) 0.500000 + 0.363271i 0.500000 + 0.363271i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(721\) 0 0
\(722\) 2.95630 2.95630
\(723\) 1.97815 0.207912i 1.97815 0.207912i
\(724\) 0.773659 1.73767i 0.773659 1.73767i
\(725\) 0 0
\(726\) −0.809017 + 0.587785i −0.809017 + 0.587785i
\(727\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(728\) 0 0
\(729\) −0.809017 0.587785i −0.809017 0.587785i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.813473i 0.813473i
\(733\) 0 0 −0.669131 0.743145i \(-0.733333\pi\)
0.669131 + 0.743145i \(0.266667\pi\)
\(734\) 0 0
\(735\) −0.978148 0.207912i −0.978148 0.207912i
\(736\) 0.604528 + 0.128496i 0.604528 + 0.128496i
\(737\) 0 0
\(738\) 0 0
\(739\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1.61803 1.61803 0.809017 0.587785i \(-0.200000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(744\) 0.104528 0.994522i 0.104528 0.994522i
\(745\) 0 0
\(746\) 0 0
\(747\) −0.139886 + 1.33093i −0.139886 + 1.33093i
\(748\) 0 0
\(749\) 0 0
\(750\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(751\) 0.0864545 + 0.406737i 0.0864545 + 0.406737i 1.00000 \(0\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(752\) −0.604528 + 1.35779i −0.604528 + 1.35779i
\(753\) 0 0
\(754\) 0 0
\(755\) −1.08268 1.20243i −1.08268 1.20243i
\(756\) 0 0
\(757\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(758\) 1.01807 + 0.587785i 1.01807 + 0.587785i
\(759\) 0 0
\(760\) 1.98904i 1.98904i
\(761\) 0 0 −0.743145 0.669131i \(-0.766667\pi\)
0.743145 + 0.669131i \(0.233333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.72256 + 0.181049i −1.72256 + 0.181049i
\(766\) −1.82709 −1.82709
\(767\) 0 0
\(768\) −0.309017 0.951057i −0.309017 0.951057i
\(769\) −0.104528 0.181049i −0.104528 0.181049i 0.809017 0.587785i \(-0.200000\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(770\) 0 0
\(771\) −0.0646021 + 0.198825i −0.0646021 + 0.198825i
\(772\) 0 0
\(773\) −1.11803 1.53884i −1.11803 1.53884i −0.809017 0.587785i \(-0.800000\pi\)
−0.309017 0.951057i \(-0.600000\pi\)
\(774\) 0 0
\(775\) −0.913545 0.406737i −0.913545 0.406737i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0.435398 + 0.977920i 0.435398 + 0.977920i
\(783\) 0 0
\(784\) 0.809017 0.587785i 0.809017 0.587785i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(788\) 1.10453 + 0.994522i 1.10453 + 0.994522i
\(789\) −0.139886 + 0.155360i −0.139886 + 0.155360i
\(790\) 0.190983 + 0.0850311i 0.190983 + 0.0850311i
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.873619 0.786610i 0.873619 0.786610i
\(796\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(797\) −0.0864545 + 0.406737i −0.0864545 + 0.406737i 0.913545 + 0.406737i \(0.133333\pi\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) −2.51807 + 0.535233i −2.51807 + 0.535233i
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.994522 0.104528i \(-0.966667\pi\)
0.994522 + 0.104528i \(0.0333333\pi\)
\(810\) 0.104528 0.994522i 0.104528 0.994522i
\(811\) −1.01807 0.587785i −1.01807 0.587785i −0.104528 0.994522i \(-0.533333\pi\)
−0.913545 + 0.406737i \(0.866667\pi\)
\(812\) 0 0
\(813\) −1.78716 + 0.379874i −1.78716 + 0.379874i
\(814\) 0 0
\(815\) 0 0
\(816\) 1.01807 1.40126i 1.01807 1.40126i
\(817\) 0 0
\(818\) 0.309017 1.45381i 0.309017 1.45381i
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.587785 0.809017i \(-0.300000\pi\)
−0.587785 + 0.809017i \(0.700000\pi\)
\(822\) −0.169131 + 0.379874i −0.169131 + 0.379874i
\(823\) 0 0 0.669131 0.743145i \(-0.266667\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.190983 1.81708i −0.190983 1.81708i −0.500000 0.866025i \(-0.666667\pi\)
0.309017 0.951057i \(-0.400000\pi\)
\(828\) −0.604528 + 0.128496i −0.604528 + 0.128496i
\(829\) 1.89169 0.614648i 1.89169 0.614648i 0.913545 0.406737i \(-0.133333\pi\)
0.978148 0.207912i \(-0.0666667\pi\)
\(830\) −1.22256 + 0.544320i −1.22256 + 0.544320i
\(831\) 0 0
\(832\) 0 0
\(833\) 1.64728 + 0.535233i 1.64728 + 0.535233i
\(834\) 0.139886 + 1.33093i 0.139886 + 1.33093i
\(835\) −1.58268 + 1.14988i −1.58268 + 1.14988i
\(836\) 0 0
\(837\) 0.309017 + 0.951057i 0.309017 + 0.951057i
\(838\) 0 0
\(839\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(840\) 0 0
\(841\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(842\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(843\) 0 0
\(844\) −1.11803 1.53884i −1.11803 1.53884i
\(845\) −0.309017 0.951057i −0.309017 0.951057i
\(846\) 1.48629i 1.48629i
\(847\) 0 0
\(848\) 1.17557i 1.17557i
\(849\) 0 0
\(850\) −1.01807 1.40126i −1.01807 1.40126i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(854\) 0 0
\(855\) −0.809017 1.81708i −0.809017 1.81708i
\(856\) −0.395472 1.86055i −0.395472 1.86055i
\(857\) 0.413545 + 0.459289i 0.413545 + 0.459289i 0.913545 0.406737i \(-0.133333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) −0.204489 0.0434654i −0.204489 0.0434654i 0.104528 0.994522i \(-0.466667\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(864\) 0.669131 + 0.743145i 0.669131 + 0.743145i
\(865\) −0.0646021 + 0.614648i −0.0646021 + 0.614648i
\(866\) 0 0
\(867\) 2.00000 2.00000
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −0.500000 1.53884i −0.500000 1.53884i
\(873\) 0 0
\(874\) −0.913545 + 0.822560i −0.913545 + 0.822560i
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.978148 0.207912i \(-0.933333\pi\)
0.978148 + 0.207912i \(0.0666667\pi\)
\(878\) −1.80902 + 0.587785i −1.80902 + 0.587785i
\(879\) 1.22256 + 1.35779i 1.22256 + 1.35779i
\(880\) 0 0
\(881\) 0 0 −0.406737 0.913545i \(-0.633333\pi\)
0.406737 + 0.913545i \(0.366667\pi\)
\(882\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(883\) 0 0 −0.809017 0.587785i \(-0.800000\pi\)
0.809017 + 0.587785i \(0.200000\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −0.478148 0.658114i −0.478148 0.658114i
\(887\) 0.773659 1.73767i 0.773659 1.73767i 0.104528 0.994522i \(-0.466667\pi\)
0.669131 0.743145i \(-0.266667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.47815 2.56023i −1.47815 2.56023i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.913545 0.406737i 0.913545 0.406737i
\(901\) −1.64728 + 1.19682i −1.64728 + 1.19682i
\(902\) 0 0
\(903\) 0 0
\(904\) −0.104528 0.994522i −0.104528 0.994522i
\(905\) −1.64728 + 0.951057i −1.64728 + 0.951057i
\(906\) −1.47815 + 0.658114i −1.47815 + 0.658114i
\(907\) 0 0 0.951057 0.309017i \(-0.100000\pi\)
−0.951057 + 0.309017i \(0.900000\pi\)
\(908\) −0.360114 1.69420i −0.360114 1.69420i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.913545 0.406737i \(-0.866667\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(912\) 1.89169 + 0.614648i 1.89169 + 0.614648i
\(913\) 0 0
\(914\) 0 0
\(915\) 0.478148 0.658114i 0.478148 0.658114i
\(916\) 1.11803 + 0.363271i 1.11803 + 0.363271i
\(917\) 0 0
\(918\) −0.360114 + 1.69420i −0.360114 + 1.69420i
\(919\) 0.604528 0.544320i 0.604528 0.544320i −0.309017 0.951057i \(-0.600000\pi\)
0.913545 + 0.406737i \(0.133333\pi\)
\(920\) −0.413545 0.459289i −0.413545 0.459289i
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(931\) 1.98904i 1.98904i
\(932\) 0.913545 1.58231i 0.913545 1.58231i
\(933\) 0 0
\(934\) 1.16913 + 0.122881i 1.16913 + 0.122881i
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 0.978148 0.207912i \(-0.0666667\pi\)
−0.978148 + 0.207912i \(0.933333\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.28716 0.743145i 1.28716 0.743145i
\(941\) 0 0 0.743145 0.669131i \(-0.233333\pi\)
−0.743145 + 0.669131i \(0.766667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.30902 + 1.45381i −1.30902 + 1.45381i −0.500000 + 0.866025i \(0.666667\pi\)
−0.809017 + 0.587785i \(0.800000\pi\)
\(948\) 0.139886 0.155360i 0.139886 0.155360i
\(949\) 0 0
\(950\) 1.16913 1.60917i 1.16913 1.60917i
\(951\) −0.139886 1.33093i −0.139886 1.33093i
\(952\) 0 0
\(953\) −0.773659 + 0.251377i −0.773659 + 0.251377i −0.669131 0.743145i \(-0.733333\pi\)
−0.104528 + 0.994522i \(0.533333\pi\)
\(954\) −0.478148 1.07394i −0.478148 1.07394i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) −0.309017 + 0.951057i −0.309017 + 0.951057i
\(961\) 0.309017 0.951057i 0.309017 0.951057i
\(962\) 0 0
\(963\) 1.11803 + 1.53884i 1.11803 + 1.53884i
\(964\) 1.89169 0.614648i 1.89169 0.614648i
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) −0.669131 + 0.743145i −0.669131 + 0.743145i
\(969\) 1.06460 + 3.27651i 1.06460 + 3.27651i
\(970\) 0 0
\(971\) 0 0 0.994522 0.104528i \(-0.0333333\pi\)
−0.994522 + 0.104528i \(0.966667\pi\)
\(972\) −0.913545 0.406737i −0.913545 0.406737i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0.169131 + 0.795697i 0.169131 + 0.795697i
\(977\) 0.169131 + 0.122881i 0.169131 + 0.122881i 0.669131 0.743145i \(-0.266667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −1.00000 −1.00000
\(981\) 1.08268 + 1.20243i 1.08268 + 1.20243i
\(982\) 0 0
\(983\) −0.204489 0.0434654i −0.204489 0.0434654i 0.104528 0.994522i \(-0.466667\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(984\) 0 0
\(985\) −0.309017 1.45381i −0.309017 1.45381i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −1.33826 −1.33826 −0.669131 0.743145i \(-0.733333\pi\)
−0.669131 + 0.743145i \(0.733333\pi\)
\(992\) −0.104528 0.994522i −0.104528 0.994522i
\(993\) −1.82709 −1.82709
\(994\) 0 0
\(995\) 0.104528 0.994522i 0.104528 0.994522i
\(996\) 0.139886 + 1.33093i 0.139886 + 1.33093i
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) −1.08268 1.20243i −1.08268 1.20243i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1860.1.df.a.1739.1 yes 8
3.2 odd 2 1860.1.df.d.1739.1 yes 8
4.3 odd 2 1860.1.df.b.1739.1 yes 8
5.4 even 2 1860.1.df.d.1739.1 yes 8
12.11 even 2 1860.1.df.c.1739.1 yes 8
15.14 odd 2 CM 1860.1.df.a.1739.1 yes 8
20.19 odd 2 1860.1.df.c.1739.1 yes 8
31.21 odd 30 1860.1.df.b.1199.1 yes 8
60.59 even 2 1860.1.df.b.1739.1 yes 8
93.83 even 30 1860.1.df.c.1199.1 yes 8
124.83 even 30 inner 1860.1.df.a.1199.1 8
155.114 odd 30 1860.1.df.c.1199.1 yes 8
372.83 odd 30 1860.1.df.d.1199.1 yes 8
465.269 even 30 1860.1.df.b.1199.1 yes 8
620.579 even 30 1860.1.df.d.1199.1 yes 8
1860.1199 odd 30 inner 1860.1.df.a.1199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1860.1.df.a.1199.1 8 124.83 even 30 inner
1860.1.df.a.1199.1 8 1860.1199 odd 30 inner
1860.1.df.a.1739.1 yes 8 1.1 even 1 trivial
1860.1.df.a.1739.1 yes 8 15.14 odd 2 CM
1860.1.df.b.1199.1 yes 8 31.21 odd 30
1860.1.df.b.1199.1 yes 8 465.269 even 30
1860.1.df.b.1739.1 yes 8 4.3 odd 2
1860.1.df.b.1739.1 yes 8 60.59 even 2
1860.1.df.c.1199.1 yes 8 93.83 even 30
1860.1.df.c.1199.1 yes 8 155.114 odd 30
1860.1.df.c.1739.1 yes 8 12.11 even 2
1860.1.df.c.1739.1 yes 8 20.19 odd 2
1860.1.df.d.1199.1 yes 8 372.83 odd 30
1860.1.df.d.1199.1 yes 8 620.579 even 30
1860.1.df.d.1739.1 yes 8 3.2 odd 2
1860.1.df.d.1739.1 yes 8 5.4 even 2