Defining parameters
| Level: | \( N \) | \(=\) | \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1860.df (of order \(30\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 1860 \) |
| Character field: | \(\Q(\zeta_{30})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(384\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1860, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 96 | 96 | 0 |
| Cusp forms | 32 | 32 | 0 |
| Eisenstein series | 64 | 64 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 32 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1860, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 1860.1.df.a | $8$ | $0.928$ | \(\Q(\zeta_{15})\) | $D_{30}$ | \(\Q(\sqrt{-15}) \) | None | \(-1\) | \(-1\) | \(-4\) | \(0\) | \(q-\zeta_{30}^{8}q^{2}-\zeta_{30}^{14}q^{3}-\zeta_{30}q^{4}+\cdots\) |
| 1860.1.df.b | $8$ | $0.928$ | \(\Q(\zeta_{15})\) | $D_{30}$ | \(\Q(\sqrt{-15}) \) | None | \(-1\) | \(1\) | \(-4\) | \(0\) | \(q-\zeta_{30}^{4}q^{2}+\zeta_{30}^{14}q^{3}+\zeta_{30}^{8}q^{4}+\cdots\) |
| 1860.1.df.c | $8$ | $0.928$ | \(\Q(\zeta_{15})\) | $D_{30}$ | \(\Q(\sqrt{-15}) \) | None | \(1\) | \(-1\) | \(4\) | \(0\) | \(q+\zeta_{30}^{4}q^{2}-\zeta_{30}^{14}q^{3}+\zeta_{30}^{8}q^{4}+\cdots\) |
| 1860.1.df.d | $8$ | $0.928$ | \(\Q(\zeta_{15})\) | $D_{30}$ | \(\Q(\sqrt{-15}) \) | None | \(1\) | \(1\) | \(4\) | \(0\) | \(q+\zeta_{30}^{8}q^{2}+\zeta_{30}^{14}q^{3}-\zeta_{30}q^{4}+\cdots\) |