Properties

Label 1860.1.df
Level $1860$
Weight $1$
Character orbit 1860.df
Rep. character $\chi_{1860}(179,\cdot)$
Character field $\Q(\zeta_{30})$
Dimension $32$
Newform subspaces $4$
Sturm bound $384$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1860.df (of order \(30\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1860 \)
Character field: \(\Q(\zeta_{30})\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1860, [\chi])\).

Total New Old
Modular forms 96 96 0
Cusp forms 32 32 0
Eisenstein series 64 64 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 32 0 0 0

Trace form

\( 32 q + 4 q^{4} + 6 q^{6} + 4 q^{9} + 2 q^{10} + 4 q^{16} - 16 q^{25} + 6 q^{34} - 2 q^{36} - 4 q^{40} - 10 q^{46} - 4 q^{49} - 10 q^{54} + 10 q^{60} - 8 q^{64} + 12 q^{69} + 4 q^{76} + 4 q^{81} + 2 q^{90}+ \cdots - 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1860, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1860.1.df.a 1860.df 1860.cf $8$ $0.928$ \(\Q(\zeta_{15})\) $D_{30}$ \(\Q(\sqrt{-15}) \) None 1860.1.df.a \(-1\) \(-1\) \(-4\) \(0\) \(q-\zeta_{30}^{8}q^{2}-\zeta_{30}^{14}q^{3}-\zeta_{30}q^{4}+\cdots\)
1860.1.df.b 1860.df 1860.cf $8$ $0.928$ \(\Q(\zeta_{15})\) $D_{30}$ \(\Q(\sqrt{-15}) \) None 1860.1.df.a \(-1\) \(1\) \(-4\) \(0\) \(q-\zeta_{30}^{4}q^{2}+\zeta_{30}^{14}q^{3}+\zeta_{30}^{8}q^{4}+\cdots\)
1860.1.df.c 1860.df 1860.cf $8$ $0.928$ \(\Q(\zeta_{15})\) $D_{30}$ \(\Q(\sqrt{-15}) \) None 1860.1.df.a \(1\) \(-1\) \(4\) \(0\) \(q+\zeta_{30}^{4}q^{2}-\zeta_{30}^{14}q^{3}+\zeta_{30}^{8}q^{4}+\cdots\)
1860.1.df.d 1860.df 1860.cf $8$ $0.928$ \(\Q(\zeta_{15})\) $D_{30}$ \(\Q(\sqrt{-15}) \) None 1860.1.df.a \(1\) \(1\) \(4\) \(0\) \(q+\zeta_{30}^{8}q^{2}+\zeta_{30}^{14}q^{3}-\zeta_{30}q^{4}+\cdots\)