Properties

Label 1860.1.bt
Level $1860$
Weight $1$
Character orbit 1860.bt
Rep. character $\chi_{1860}(959,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $16$
Newform subspaces $4$
Sturm bound $384$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1860 = 2^{2} \cdot 3 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1860.bt (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1860 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 4 \)
Sturm bound: \(384\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1860, [\chi])\).

Total New Old
Modular forms 48 48 0
Cusp forms 16 16 0
Eisenstein series 32 32 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 0 0

Trace form

\( 16 q - 4 q^{4} - 4 q^{9} + 4 q^{10} - 4 q^{16} + 16 q^{25} - 4 q^{36} + 4 q^{40} + 10 q^{46} + 4 q^{49} + 10 q^{54} - 10 q^{60} - 4 q^{64} - 12 q^{69} - 10 q^{76} - 4 q^{81} + 4 q^{90} + 20 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1860, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1860.1.bt.a 1860.bt 1860.at $4$ $0.928$ \(\Q(\zeta_{10})\) $D_{10}$ \(\Q(\sqrt{-15}) \) None 1860.1.bt.a \(-1\) \(-1\) \(-4\) \(0\) \(q+\zeta_{10}^{2}q^{2}-\zeta_{10}q^{3}+\zeta_{10}^{4}q^{4}-q^{5}+\cdots\)
1860.1.bt.b 1860.bt 1860.at $4$ $0.928$ \(\Q(\zeta_{10})\) $D_{10}$ \(\Q(\sqrt{-15}) \) None 1860.1.bt.a \(-1\) \(1\) \(-4\) \(0\) \(q-\zeta_{10}q^{2}+\zeta_{10}q^{3}+\zeta_{10}^{2}q^{4}-q^{5}+\cdots\)
1860.1.bt.c 1860.bt 1860.at $4$ $0.928$ \(\Q(\zeta_{10})\) $D_{10}$ \(\Q(\sqrt{-15}) \) None 1860.1.bt.a \(1\) \(-1\) \(4\) \(0\) \(q+\zeta_{10}q^{2}-\zeta_{10}q^{3}+\zeta_{10}^{2}q^{4}+q^{5}+\cdots\)
1860.1.bt.d 1860.bt 1860.at $4$ $0.928$ \(\Q(\zeta_{10})\) $D_{10}$ \(\Q(\sqrt{-15}) \) None 1860.1.bt.a \(1\) \(1\) \(4\) \(0\) \(q-\zeta_{10}^{2}q^{2}+\zeta_{10}q^{3}+\zeta_{10}^{4}q^{4}+q^{5}+\cdots\)