Properties

Label 186.2.e.b
Level $186$
Weight $2$
Character orbit 186.e
Analytic conductor $1.485$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [186,2,Mod(25,186)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(186, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("186.25"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 186 = 2 \cdot 3 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 186.e (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.48521747760\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\zeta_{6} - 1) q^{3} + q^{4} + 2 \zeta_{6} q^{5} + (\zeta_{6} - 1) q^{6} + (\zeta_{6} - 1) q^{7} + q^{8} - \zeta_{6} q^{9} + 2 \zeta_{6} q^{10} - 3 \zeta_{6} q^{11} + (\zeta_{6} - 1) q^{12} + \cdots + (3 \zeta_{6} - 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - q^{3} + 2 q^{4} + 2 q^{5} - q^{6} - q^{7} + 2 q^{8} - q^{9} + 2 q^{10} - 3 q^{11} - q^{12} + 4 q^{13} - q^{14} - 4 q^{15} + 2 q^{16} - q^{18} + 8 q^{19} + 2 q^{20} - q^{21} - 3 q^{22}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/186\mathbb{Z}\right)^\times\).

\(n\) \(125\) \(127\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 −0.500000 0.866025i 1.00000 1.00000 1.73205i −0.500000 0.866025i −0.500000 0.866025i 1.00000 −0.500000 + 0.866025i 1.00000 1.73205i
67.1 1.00000 −0.500000 + 0.866025i 1.00000 1.00000 + 1.73205i −0.500000 + 0.866025i −0.500000 + 0.866025i 1.00000 −0.500000 0.866025i 1.00000 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 186.2.e.b 2
3.b odd 2 1 558.2.e.a 2
4.b odd 2 1 1488.2.q.e 2
31.c even 3 1 inner 186.2.e.b 2
31.c even 3 1 5766.2.a.i 1
31.e odd 6 1 5766.2.a.g 1
93.h odd 6 1 558.2.e.a 2
124.i odd 6 1 1488.2.q.e 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
186.2.e.b 2 1.a even 1 1 trivial
186.2.e.b 2 31.c even 3 1 inner
558.2.e.a 2 3.b odd 2 1
558.2.e.a 2 93.h odd 6 1
1488.2.q.e 2 4.b odd 2 1
1488.2.q.e 2 124.i odd 6 1
5766.2.a.g 1 31.e odd 6 1
5766.2.a.i 1 31.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} - 2T_{5} + 4 \) acting on \(S_{2}^{\mathrm{new}}(186, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$23$ \( (T + 2)^{2} \) Copy content Toggle raw display
$29$ \( (T + 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 7T + 31 \) Copy content Toggle raw display
$37$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$41$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$59$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$71$ \( T^{2} - 12T + 144 \) Copy content Toggle raw display
$73$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$79$ \( T^{2} + 12T + 144 \) Copy content Toggle raw display
$83$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( (T - 7)^{2} \) Copy content Toggle raw display
show more
show less