Properties

Label 1850.2.d.f.1701.4
Level $1850$
Weight $2$
Character 1850.1701
Analytic conductor $14.772$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1850,2,Mod(1701,1850)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1850.1701"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1850, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,4,-6,0,0,-10,0,14,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7723243739\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.399424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1701.4
Root \(0.264658 - 1.38923i\) of defining polynomial
Character \(\chi\) \(=\) 1850.1701
Dual form 1850.2.d.f.1701.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -2.24914 q^{3} -1.00000 q^{4} -2.24914i q^{6} -1.52932 q^{7} -1.00000i q^{8} +2.05863 q^{9} +2.71982 q^{11} +2.24914 q^{12} -0.941367i q^{13} -1.52932i q^{14} +1.00000 q^{16} +4.83709i q^{17} +2.05863i q^{18} -0.249141i q^{19} +3.43965 q^{21} +2.71982i q^{22} -0.941367i q^{23} +2.24914i q^{24} +0.941367 q^{26} +2.11727 q^{27} +1.52932 q^{28} +0.719824i q^{29} +4.02760i q^{31} +1.00000i q^{32} -6.11727 q^{33} -4.83709 q^{34} -2.05863 q^{36} +(4.71982 + 3.83709i) q^{37} +0.249141 q^{38} +2.11727i q^{39} -8.27674 q^{41} +3.43965i q^{42} -2.71982i q^{43} -2.71982 q^{44} +0.941367 q^{46} +3.30777 q^{47} -2.24914 q^{48} -4.66119 q^{49} -10.8793i q^{51} +0.941367i q^{52} -8.39400 q^{53} +2.11727i q^{54} +1.52932i q^{56} +0.560352i q^{57} -0.719824 q^{58} -7.30777i q^{59} +6.83709i q^{61} -4.02760 q^{62} -3.14830 q^{63} -1.00000 q^{64} -6.11727i q^{66} +7.68879 q^{67} -4.83709i q^{68} +2.11727i q^{69} -3.05863 q^{71} -2.05863i q^{72} -9.11383 q^{73} +(-3.83709 + 4.71982i) q^{74} +0.249141i q^{76} -4.15947 q^{77} -2.11727 q^{78} -1.75086i q^{79} -10.9379 q^{81} -8.27674i q^{82} -0.131874 q^{83} -3.43965 q^{84} +2.71982 q^{86} -1.61899i q^{87} -2.71982i q^{88} -8.99656i q^{89} +1.43965i q^{91} +0.941367i q^{92} -9.05863i q^{93} +3.30777i q^{94} -2.24914i q^{96} -16.2767i q^{97} -4.66119i q^{98} +5.59912 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 6 q^{4} - 10 q^{7} + 14 q^{9} - 2 q^{11} - 4 q^{12} + 6 q^{16} - 16 q^{21} + 4 q^{26} + 16 q^{27} + 10 q^{28} - 40 q^{33} - 14 q^{34} - 14 q^{36} + 10 q^{37} - 16 q^{38} + 2 q^{41} + 2 q^{44}+ \cdots - 58 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1850\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1777\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −2.24914 −1.29854 −0.649271 0.760557i \(-0.724926\pi\)
−0.649271 + 0.760557i \(0.724926\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 2.24914i 0.918208i
\(7\) −1.52932 −0.578027 −0.289014 0.957325i \(-0.593327\pi\)
−0.289014 + 0.957325i \(0.593327\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.05863 0.686211
\(10\) 0 0
\(11\) 2.71982 0.820058 0.410029 0.912073i \(-0.365519\pi\)
0.410029 + 0.912073i \(0.365519\pi\)
\(12\) 2.24914 0.649271
\(13\) 0.941367i 0.261088i −0.991443 0.130544i \(-0.958328\pi\)
0.991443 0.130544i \(-0.0416724\pi\)
\(14\) 1.52932i 0.408727i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.83709i 1.17317i 0.809889 + 0.586583i \(0.199527\pi\)
−0.809889 + 0.586583i \(0.800473\pi\)
\(18\) 2.05863i 0.485224i
\(19\) 0.249141i 0.0571568i −0.999592 0.0285784i \(-0.990902\pi\)
0.999592 0.0285784i \(-0.00909802\pi\)
\(20\) 0 0
\(21\) 3.43965 0.750593
\(22\) 2.71982i 0.579868i
\(23\) 0.941367i 0.196289i −0.995172 0.0981443i \(-0.968709\pi\)
0.995172 0.0981443i \(-0.0312907\pi\)
\(24\) 2.24914i 0.459104i
\(25\) 0 0
\(26\) 0.941367 0.184617
\(27\) 2.11727 0.407468
\(28\) 1.52932 0.289014
\(29\) 0.719824i 0.133668i 0.997764 + 0.0668340i \(0.0212898\pi\)
−0.997764 + 0.0668340i \(0.978710\pi\)
\(30\) 0 0
\(31\) 4.02760i 0.723378i 0.932299 + 0.361689i \(0.117800\pi\)
−0.932299 + 0.361689i \(0.882200\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −6.11727 −1.06488
\(34\) −4.83709 −0.829554
\(35\) 0 0
\(36\) −2.05863 −0.343106
\(37\) 4.71982 + 3.83709i 0.775934 + 0.630814i
\(38\) 0.249141 0.0404159
\(39\) 2.11727i 0.339034i
\(40\) 0 0
\(41\) −8.27674 −1.29261 −0.646305 0.763079i \(-0.723686\pi\)
−0.646305 + 0.763079i \(0.723686\pi\)
\(42\) 3.43965i 0.530749i
\(43\) 2.71982i 0.414769i −0.978259 0.207385i \(-0.933505\pi\)
0.978259 0.207385i \(-0.0664952\pi\)
\(44\) −2.71982 −0.410029
\(45\) 0 0
\(46\) 0.941367 0.138797
\(47\) 3.30777 0.482488 0.241244 0.970464i \(-0.422445\pi\)
0.241244 + 0.970464i \(0.422445\pi\)
\(48\) −2.24914 −0.324635
\(49\) −4.66119 −0.665884
\(50\) 0 0
\(51\) 10.8793i 1.52341i
\(52\) 0.941367i 0.130544i
\(53\) −8.39400 −1.15301 −0.576503 0.817095i \(-0.695583\pi\)
−0.576503 + 0.817095i \(0.695583\pi\)
\(54\) 2.11727i 0.288123i
\(55\) 0 0
\(56\) 1.52932i 0.204364i
\(57\) 0.560352i 0.0742204i
\(58\) −0.719824 −0.0945175
\(59\) 7.30777i 0.951391i −0.879610 0.475696i \(-0.842196\pi\)
0.879610 0.475696i \(-0.157804\pi\)
\(60\) 0 0
\(61\) 6.83709i 0.875400i 0.899121 + 0.437700i \(0.144207\pi\)
−0.899121 + 0.437700i \(0.855793\pi\)
\(62\) −4.02760 −0.511505
\(63\) −3.14830 −0.396649
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 6.11727i 0.752983i
\(67\) 7.68879 0.939335 0.469668 0.882843i \(-0.344374\pi\)
0.469668 + 0.882843i \(0.344374\pi\)
\(68\) 4.83709i 0.586583i
\(69\) 2.11727i 0.254889i
\(70\) 0 0
\(71\) −3.05863 −0.362993 −0.181496 0.983392i \(-0.558094\pi\)
−0.181496 + 0.983392i \(0.558094\pi\)
\(72\) 2.05863i 0.242612i
\(73\) −9.11383 −1.06669 −0.533346 0.845897i \(-0.679066\pi\)
−0.533346 + 0.845897i \(0.679066\pi\)
\(74\) −3.83709 + 4.71982i −0.446053 + 0.548668i
\(75\) 0 0
\(76\) 0.249141i 0.0285784i
\(77\) −4.15947 −0.474016
\(78\) −2.11727 −0.239733
\(79\) 1.75086i 0.196987i −0.995138 0.0984935i \(-0.968598\pi\)
0.995138 0.0984935i \(-0.0314024\pi\)
\(80\) 0 0
\(81\) −10.9379 −1.21533
\(82\) 8.27674i 0.914013i
\(83\) −0.131874 −0.0144751 −0.00723754 0.999974i \(-0.502304\pi\)
−0.00723754 + 0.999974i \(0.502304\pi\)
\(84\) −3.43965 −0.375296
\(85\) 0 0
\(86\) 2.71982 0.293286
\(87\) 1.61899i 0.173573i
\(88\) 2.71982i 0.289934i
\(89\) 8.99656i 0.953634i −0.879003 0.476817i \(-0.841790\pi\)
0.879003 0.476817i \(-0.158210\pi\)
\(90\) 0 0
\(91\) 1.43965i 0.150916i
\(92\) 0.941367i 0.0981443i
\(93\) 9.05863i 0.939337i
\(94\) 3.30777i 0.341171i
\(95\) 0 0
\(96\) 2.24914i 0.229552i
\(97\) 16.2767i 1.65265i −0.563192 0.826326i \(-0.690427\pi\)
0.563192 0.826326i \(-0.309573\pi\)
\(98\) 4.66119i 0.470851i
\(99\) 5.59912 0.562733
\(100\) 0 0
\(101\) −11.1138 −1.10587 −0.552934 0.833225i \(-0.686492\pi\)
−0.552934 + 0.833225i \(0.686492\pi\)
\(102\) 10.8793 1.07721
\(103\) 14.1725i 1.39645i −0.715876 0.698227i \(-0.753973\pi\)
0.715876 0.698227i \(-0.246027\pi\)
\(104\) −0.941367 −0.0923086
\(105\) 0 0
\(106\) 8.39400i 0.815298i
\(107\) −10.6922 −1.03366 −0.516828 0.856089i \(-0.672887\pi\)
−0.516828 + 0.856089i \(0.672887\pi\)
\(108\) −2.11727 −0.203734
\(109\) 12.2767i 1.17590i 0.808898 + 0.587949i \(0.200064\pi\)
−0.808898 + 0.587949i \(0.799936\pi\)
\(110\) 0 0
\(111\) −10.6155 8.63016i −1.00758 0.819138i
\(112\) −1.52932 −0.144507
\(113\) 2.95436i 0.277922i 0.990298 + 0.138961i \(0.0443763\pi\)
−0.990298 + 0.138961i \(0.955624\pi\)
\(114\) −0.560352 −0.0524818
\(115\) 0 0
\(116\) 0.719824i 0.0668340i
\(117\) 1.93793i 0.179162i
\(118\) 7.30777 0.672735
\(119\) 7.39744i 0.678122i
\(120\) 0 0
\(121\) −3.60256 −0.327505
\(122\) −6.83709 −0.619001
\(123\) 18.6155 1.67851
\(124\) 4.02760i 0.361689i
\(125\) 0 0
\(126\) 3.14830i 0.280473i
\(127\) −8.30434 −0.736891 −0.368445 0.929649i \(-0.620110\pi\)
−0.368445 + 0.929649i \(0.620110\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 6.11727i 0.538595i
\(130\) 0 0
\(131\) 11.0732i 0.967474i −0.875214 0.483737i \(-0.839279\pi\)
0.875214 0.483737i \(-0.160721\pi\)
\(132\) 6.11727 0.532440
\(133\) 0.381015i 0.0330382i
\(134\) 7.68879i 0.664210i
\(135\) 0 0
\(136\) 4.83709 0.414777
\(137\) −0.325819 −0.0278366 −0.0139183 0.999903i \(-0.504430\pi\)
−0.0139183 + 0.999903i \(0.504430\pi\)
\(138\) −2.11727 −0.180234
\(139\) −13.3906 −1.13577 −0.567887 0.823107i \(-0.692239\pi\)
−0.567887 + 0.823107i \(0.692239\pi\)
\(140\) 0 0
\(141\) −7.43965 −0.626531
\(142\) 3.05863i 0.256675i
\(143\) 2.56035i 0.214107i
\(144\) 2.05863 0.171553
\(145\) 0 0
\(146\) 9.11383i 0.754266i
\(147\) 10.4837 0.864679
\(148\) −4.71982 3.83709i −0.387967 0.315407i
\(149\) 8.44309 0.691685 0.345842 0.938293i \(-0.387593\pi\)
0.345842 + 0.938293i \(0.387593\pi\)
\(150\) 0 0
\(151\) −4.94137 −0.402123 −0.201061 0.979579i \(-0.564439\pi\)
−0.201061 + 0.979579i \(0.564439\pi\)
\(152\) −0.249141 −0.0202080
\(153\) 9.95779i 0.805040i
\(154\) 4.15947i 0.335180i
\(155\) 0 0
\(156\) 2.11727i 0.169517i
\(157\) −19.2733 −1.53818 −0.769088 0.639142i \(-0.779289\pi\)
−0.769088 + 0.639142i \(0.779289\pi\)
\(158\) 1.75086 0.139291
\(159\) 18.8793 1.49723
\(160\) 0 0
\(161\) 1.43965i 0.113460i
\(162\) 10.9379i 0.859365i
\(163\) 17.3354i 1.35781i 0.734226 + 0.678906i \(0.237545\pi\)
−0.734226 + 0.678906i \(0.762455\pi\)
\(164\) 8.27674 0.646305
\(165\) 0 0
\(166\) 0.131874i 0.0102354i
\(167\) 17.0518i 1.31950i 0.751483 + 0.659752i \(0.229339\pi\)
−0.751483 + 0.659752i \(0.770661\pi\)
\(168\) 3.43965i 0.265375i
\(169\) 12.1138 0.931833
\(170\) 0 0
\(171\) 0.512889i 0.0392216i
\(172\) 2.71982i 0.207385i
\(173\) −10.7198 −0.815013 −0.407507 0.913202i \(-0.633602\pi\)
−0.407507 + 0.913202i \(0.633602\pi\)
\(174\) 1.61899 0.122735
\(175\) 0 0
\(176\) 2.71982 0.205014
\(177\) 16.4362i 1.23542i
\(178\) 8.99656 0.674321
\(179\) 9.48024i 0.708586i −0.935134 0.354293i \(-0.884722\pi\)
0.935134 0.354293i \(-0.115278\pi\)
\(180\) 0 0
\(181\) 20.9966 1.56066 0.780331 0.625367i \(-0.215051\pi\)
0.780331 + 0.625367i \(0.215051\pi\)
\(182\) −1.43965 −0.106714
\(183\) 15.3776i 1.13674i
\(184\) −0.941367 −0.0693985
\(185\) 0 0
\(186\) 9.05863 0.664211
\(187\) 13.1560i 0.962064i
\(188\) −3.30777 −0.241244
\(189\) −3.23797 −0.235528
\(190\) 0 0
\(191\) 11.0862i 0.802172i −0.916041 0.401086i \(-0.868633\pi\)
0.916041 0.401086i \(-0.131367\pi\)
\(192\) 2.24914 0.162318
\(193\) 2.23453i 0.160845i −0.996761 0.0804226i \(-0.974373\pi\)
0.996761 0.0804226i \(-0.0256270\pi\)
\(194\) 16.2767 1.16860
\(195\) 0 0
\(196\) 4.66119 0.332942
\(197\) −13.4396 −0.957535 −0.478768 0.877942i \(-0.658916\pi\)
−0.478768 + 0.877942i \(0.658916\pi\)
\(198\) 5.59912i 0.397912i
\(199\) 23.4802i 1.66447i −0.554423 0.832235i \(-0.687061\pi\)
0.554423 0.832235i \(-0.312939\pi\)
\(200\) 0 0
\(201\) −17.2932 −1.21977
\(202\) 11.1138i 0.781966i
\(203\) 1.10084i 0.0772637i
\(204\) 10.8793i 0.761703i
\(205\) 0 0
\(206\) 14.1725 0.987442
\(207\) 1.93793i 0.134695i
\(208\) 0.941367i 0.0652720i
\(209\) 0.677618i 0.0468718i
\(210\) 0 0
\(211\) −19.7716 −1.36113 −0.680566 0.732687i \(-0.738266\pi\)
−0.680566 + 0.732687i \(0.738266\pi\)
\(212\) 8.39400 0.576503
\(213\) 6.87930 0.471362
\(214\) 10.6922i 0.730906i
\(215\) 0 0
\(216\) 2.11727i 0.144062i
\(217\) 6.15947i 0.418132i
\(218\) −12.2767 −0.831486
\(219\) 20.4983 1.38515
\(220\) 0 0
\(221\) 4.55348 0.306300
\(222\) 8.63016 10.6155i 0.579218 0.712469i
\(223\) 9.14143 0.612155 0.306078 0.952007i \(-0.400983\pi\)
0.306078 + 0.952007i \(0.400983\pi\)
\(224\) 1.52932i 0.102182i
\(225\) 0 0
\(226\) −2.95436 −0.196521
\(227\) 18.7198i 1.24248i 0.783621 + 0.621239i \(0.213370\pi\)
−0.783621 + 0.621239i \(0.786630\pi\)
\(228\) 0.560352i 0.0371102i
\(229\) −25.1138 −1.65957 −0.829784 0.558084i \(-0.811537\pi\)
−0.829784 + 0.558084i \(0.811537\pi\)
\(230\) 0 0
\(231\) 9.35524 0.615529
\(232\) 0.719824 0.0472588
\(233\) −20.4362 −1.33882 −0.669410 0.742893i \(-0.733453\pi\)
−0.669410 + 0.742893i \(0.733453\pi\)
\(234\) 1.93793 0.126686
\(235\) 0 0
\(236\) 7.30777i 0.475696i
\(237\) 3.93793i 0.255796i
\(238\) 7.39744 0.479505
\(239\) 8.91377i 0.576584i 0.957543 + 0.288292i \(0.0930873\pi\)
−0.957543 + 0.288292i \(0.906913\pi\)
\(240\) 0 0
\(241\) 13.8827i 0.894265i 0.894468 + 0.447133i \(0.147555\pi\)
−0.894468 + 0.447133i \(0.852445\pi\)
\(242\) 3.60256i 0.231581i
\(243\) 18.2491 1.17068
\(244\) 6.83709i 0.437700i
\(245\) 0 0
\(246\) 18.6155i 1.18688i
\(247\) −0.234533 −0.0149230
\(248\) 4.02760 0.255753
\(249\) 0.296604 0.0187965
\(250\) 0 0
\(251\) 3.80605i 0.240236i 0.992760 + 0.120118i \(0.0383273\pi\)
−0.992760 + 0.120118i \(0.961673\pi\)
\(252\) 3.14830 0.198324
\(253\) 2.56035i 0.160968i
\(254\) 8.30434i 0.521060i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.78801i 0.548181i 0.961704 + 0.274090i \(0.0883768\pi\)
−0.961704 + 0.274090i \(0.911623\pi\)
\(258\) −6.11727 −0.380844
\(259\) −7.21811 5.86813i −0.448511 0.364628i
\(260\) 0 0
\(261\) 1.48185i 0.0917244i
\(262\) 11.0732 0.684107
\(263\) 10.4707 0.645650 0.322825 0.946459i \(-0.395367\pi\)
0.322825 + 0.946459i \(0.395367\pi\)
\(264\) 6.11727i 0.376492i
\(265\) 0 0
\(266\) −0.381015 −0.0233615
\(267\) 20.2345i 1.23833i
\(268\) −7.68879 −0.469668
\(269\) −5.88273 −0.358677 −0.179338 0.983787i \(-0.557396\pi\)
−0.179338 + 0.983787i \(0.557396\pi\)
\(270\) 0 0
\(271\) 7.61211 0.462403 0.231201 0.972906i \(-0.425734\pi\)
0.231201 + 0.972906i \(0.425734\pi\)
\(272\) 4.83709i 0.293292i
\(273\) 3.23797i 0.195971i
\(274\) 0.325819i 0.0196835i
\(275\) 0 0
\(276\) 2.11727i 0.127444i
\(277\) 26.4914i 1.59171i −0.605484 0.795857i \(-0.707021\pi\)
0.605484 0.795857i \(-0.292979\pi\)
\(278\) 13.3906i 0.803113i
\(279\) 8.29135i 0.496390i
\(280\) 0 0
\(281\) 26.6707i 1.59104i 0.605925 + 0.795522i \(0.292803\pi\)
−0.605925 + 0.795522i \(0.707197\pi\)
\(282\) 7.43965i 0.443025i
\(283\) 8.73281i 0.519112i −0.965728 0.259556i \(-0.916424\pi\)
0.965728 0.259556i \(-0.0835762\pi\)
\(284\) 3.05863 0.181496
\(285\) 0 0
\(286\) 2.56035 0.151397
\(287\) 12.6578 0.747164
\(288\) 2.05863i 0.121306i
\(289\) −6.39744 −0.376320
\(290\) 0 0
\(291\) 36.6087i 2.14604i
\(292\) 9.11383 0.533346
\(293\) −23.4819 −1.37182 −0.685912 0.727684i \(-0.740597\pi\)
−0.685912 + 0.727684i \(0.740597\pi\)
\(294\) 10.4837i 0.611420i
\(295\) 0 0
\(296\) 3.83709 4.71982i 0.223026 0.274334i
\(297\) 5.75859 0.334147
\(298\) 8.44309i 0.489095i
\(299\) −0.886172 −0.0512486
\(300\) 0 0
\(301\) 4.15947i 0.239748i
\(302\) 4.94137i 0.284344i
\(303\) 24.9966 1.43601
\(304\) 0.249141i 0.0142892i
\(305\) 0 0
\(306\) −9.95779 −0.569249
\(307\) −27.2457 −1.55499 −0.777497 0.628886i \(-0.783511\pi\)
−0.777497 + 0.628886i \(0.783511\pi\)
\(308\) 4.15947 0.237008
\(309\) 31.8759i 1.81335i
\(310\) 0 0
\(311\) 17.7018i 1.00378i 0.864933 + 0.501888i \(0.167361\pi\)
−0.864933 + 0.501888i \(0.832639\pi\)
\(312\) 2.11727 0.119867
\(313\) 23.9931i 1.35617i 0.734983 + 0.678086i \(0.237190\pi\)
−0.734983 + 0.678086i \(0.762810\pi\)
\(314\) 19.2733i 1.08766i
\(315\) 0 0
\(316\) 1.75086i 0.0984935i
\(317\) 3.16291 0.177647 0.0888234 0.996047i \(-0.471689\pi\)
0.0888234 + 0.996047i \(0.471689\pi\)
\(318\) 18.8793i 1.05870i
\(319\) 1.95779i 0.109615i
\(320\) 0 0
\(321\) 24.0483 1.34225
\(322\) −1.43965 −0.0802284
\(323\) 1.20512 0.0670544
\(324\) 10.9379 0.607663
\(325\) 0 0
\(326\) −17.3354 −0.960117
\(327\) 27.6121i 1.52695i
\(328\) 8.27674i 0.457006i
\(329\) −5.05863 −0.278891
\(330\) 0 0
\(331\) 4.48367i 0.246445i 0.992379 + 0.123222i \(0.0393229\pi\)
−0.992379 + 0.123222i \(0.960677\pi\)
\(332\) 0.131874 0.00723754
\(333\) 9.71639 + 7.89916i 0.532455 + 0.432871i
\(334\) −17.0518 −0.933031
\(335\) 0 0
\(336\) 3.43965 0.187648
\(337\) 11.2051 0.610382 0.305191 0.952291i \(-0.401280\pi\)
0.305191 + 0.952291i \(0.401280\pi\)
\(338\) 12.1138i 0.658905i
\(339\) 6.64476i 0.360894i
\(340\) 0 0
\(341\) 10.9544i 0.593212i
\(342\) 0.512889 0.0277339
\(343\) 17.8337 0.962927
\(344\) −2.71982 −0.146643
\(345\) 0 0
\(346\) 10.7198i 0.576301i
\(347\) 13.9931i 0.751190i −0.926784 0.375595i \(-0.877438\pi\)
0.926784 0.375595i \(-0.122562\pi\)
\(348\) 1.61899i 0.0867867i
\(349\) −6.56035 −0.351168 −0.175584 0.984464i \(-0.556181\pi\)
−0.175584 + 0.984464i \(0.556181\pi\)
\(350\) 0 0
\(351\) 1.99312i 0.106385i
\(352\) 2.71982i 0.144967i
\(353\) 36.5957i 1.94779i 0.226995 + 0.973896i \(0.427110\pi\)
−0.226995 + 0.973896i \(0.572890\pi\)
\(354\) −16.4362 −0.873575
\(355\) 0 0
\(356\) 8.99656i 0.476817i
\(357\) 16.6379i 0.880570i
\(358\) 9.48024 0.501046
\(359\) 21.2311 1.12053 0.560267 0.828312i \(-0.310698\pi\)
0.560267 + 0.828312i \(0.310698\pi\)
\(360\) 0 0
\(361\) 18.9379 0.996733
\(362\) 20.9966i 1.10355i
\(363\) 8.10266 0.425279
\(364\) 1.43965i 0.0754581i
\(365\) 0 0
\(366\) 15.3776 0.803799
\(367\) −23.4932 −1.22634 −0.613168 0.789952i \(-0.710105\pi\)
−0.613168 + 0.789952i \(0.710105\pi\)
\(368\) 0.941367i 0.0490721i
\(369\) −17.0388 −0.887003
\(370\) 0 0
\(371\) 12.8371 0.666469
\(372\) 9.05863i 0.469668i
\(373\) 7.55691 0.391282 0.195641 0.980676i \(-0.437321\pi\)
0.195641 + 0.980676i \(0.437321\pi\)
\(374\) −13.1560 −0.680282
\(375\) 0 0
\(376\) 3.30777i 0.170585i
\(377\) 0.677618 0.0348991
\(378\) 3.23797i 0.166543i
\(379\) 12.2637 0.629946 0.314973 0.949101i \(-0.398004\pi\)
0.314973 + 0.949101i \(0.398004\pi\)
\(380\) 0 0
\(381\) 18.6776 0.956883
\(382\) 11.0862 0.567221
\(383\) 33.5208i 1.71283i −0.516285 0.856417i \(-0.672685\pi\)
0.516285 0.856417i \(-0.327315\pi\)
\(384\) 2.24914i 0.114776i
\(385\) 0 0
\(386\) 2.23453 0.113735
\(387\) 5.59912i 0.284619i
\(388\) 16.2767i 0.826326i
\(389\) 9.95092i 0.504532i 0.967658 + 0.252266i \(0.0811757\pi\)
−0.967658 + 0.252266i \(0.918824\pi\)
\(390\) 0 0
\(391\) 4.55348 0.230279
\(392\) 4.66119i 0.235426i
\(393\) 24.9053i 1.25630i
\(394\) 13.4396i 0.677080i
\(395\) 0 0
\(396\) −5.59912 −0.281366
\(397\) −8.67762 −0.435517 −0.217759 0.976003i \(-0.569875\pi\)
−0.217759 + 0.976003i \(0.569875\pi\)
\(398\) 23.4802 1.17696
\(399\) 0.856956i 0.0429014i
\(400\) 0 0
\(401\) 11.5569i 0.577125i −0.957461 0.288562i \(-0.906823\pi\)
0.957461 0.288562i \(-0.0931773\pi\)
\(402\) 17.2932i 0.862505i
\(403\) 3.79145 0.188865
\(404\) 11.1138 0.552934
\(405\) 0 0
\(406\) 1.10084 0.0546337
\(407\) 12.8371 + 10.4362i 0.636311 + 0.517304i
\(408\) −10.8793 −0.538605
\(409\) 3.34836i 0.165566i 0.996568 + 0.0827829i \(0.0263808\pi\)
−0.996568 + 0.0827829i \(0.973619\pi\)
\(410\) 0 0
\(411\) 0.732814 0.0361470
\(412\) 14.1725i 0.698227i
\(413\) 11.1759i 0.549930i
\(414\) 1.93793 0.0952440
\(415\) 0 0
\(416\) 0.941367 0.0461543
\(417\) 30.1173 1.47485
\(418\) 0.677618 0.0331434
\(419\) −11.3776 −0.555831 −0.277916 0.960606i \(-0.589644\pi\)
−0.277916 + 0.960606i \(0.589644\pi\)
\(420\) 0 0
\(421\) 3.23109i 0.157474i −0.996895 0.0787370i \(-0.974911\pi\)
0.996895 0.0787370i \(-0.0250887\pi\)
\(422\) 19.7716i 0.962466i
\(423\) 6.80949 0.331089
\(424\) 8.39400i 0.407649i
\(425\) 0 0
\(426\) 6.87930i 0.333303i
\(427\) 10.4561i 0.506005i
\(428\) 10.6922 0.516828
\(429\) 5.75859i 0.278027i
\(430\) 0 0
\(431\) 29.2327i 1.40809i 0.710155 + 0.704045i \(0.248625\pi\)
−0.710155 + 0.704045i \(0.751375\pi\)
\(432\) 2.11727 0.101867
\(433\) −17.7655 −0.853754 −0.426877 0.904310i \(-0.640386\pi\)
−0.426877 + 0.904310i \(0.640386\pi\)
\(434\) 6.15947 0.295664
\(435\) 0 0
\(436\) 12.2767i 0.587949i
\(437\) −0.234533 −0.0112192
\(438\) 20.4983i 0.979446i
\(439\) 32.7604i 1.56357i −0.623549 0.781785i \(-0.714310\pi\)
0.623549 0.781785i \(-0.285690\pi\)
\(440\) 0 0
\(441\) −9.59568 −0.456937
\(442\) 4.55348i 0.216587i
\(443\) 0.600939 0.0285515 0.0142757 0.999898i \(-0.495456\pi\)
0.0142757 + 0.999898i \(0.495456\pi\)
\(444\) 10.6155 + 8.63016i 0.503792 + 0.409569i
\(445\) 0 0
\(446\) 9.14143i 0.432859i
\(447\) −18.9897 −0.898181
\(448\) 1.52932 0.0722534
\(449\) 34.0191i 1.60546i 0.596342 + 0.802730i \(0.296620\pi\)
−0.596342 + 0.802730i \(0.703380\pi\)
\(450\) 0 0
\(451\) −22.5113 −1.06001
\(452\) 2.95436i 0.138961i
\(453\) 11.1138 0.522173
\(454\) −18.7198 −0.878565
\(455\) 0 0
\(456\) 0.560352 0.0262409
\(457\) 30.9215i 1.44645i −0.690614 0.723223i \(-0.742660\pi\)
0.690614 0.723223i \(-0.257340\pi\)
\(458\) 25.1138i 1.17349i
\(459\) 10.2414i 0.478028i
\(460\) 0 0
\(461\) 1.27330i 0.0593035i −0.999560 0.0296518i \(-0.990560\pi\)
0.999560 0.0296518i \(-0.00943983\pi\)
\(462\) 9.35524i 0.435245i
\(463\) 2.61555i 0.121555i 0.998151 + 0.0607774i \(0.0193580\pi\)
−0.998151 + 0.0607774i \(0.980642\pi\)
\(464\) 0.719824i 0.0334170i
\(465\) 0 0
\(466\) 20.4362i 0.946689i
\(467\) 19.0096i 0.879657i 0.898082 + 0.439829i \(0.144961\pi\)
−0.898082 + 0.439829i \(0.855039\pi\)
\(468\) 1.93793i 0.0895808i
\(469\) −11.7586 −0.542961
\(470\) 0 0
\(471\) 43.3484 1.99739
\(472\) −7.30777 −0.336368
\(473\) 7.39744i 0.340135i
\(474\) −3.93793 −0.180875
\(475\) 0 0
\(476\) 7.39744i 0.339061i
\(477\) −17.2802 −0.791205
\(478\) −8.91377 −0.407706
\(479\) 38.8578i 1.77546i 0.460366 + 0.887729i \(0.347718\pi\)
−0.460366 + 0.887729i \(0.652282\pi\)
\(480\) 0 0
\(481\) 3.61211 4.44309i 0.164698 0.202587i
\(482\) −13.8827 −0.632341
\(483\) 3.23797i 0.147333i
\(484\) 3.60256 0.163753
\(485\) 0 0
\(486\) 18.2491i 0.827798i
\(487\) 38.4914i 1.74421i −0.489317 0.872106i \(-0.662754\pi\)
0.489317 0.872106i \(-0.337246\pi\)
\(488\) 6.83709 0.309501
\(489\) 38.9897i 1.76317i
\(490\) 0 0
\(491\) −11.2672 −0.508481 −0.254240 0.967141i \(-0.581825\pi\)
−0.254240 + 0.967141i \(0.581825\pi\)
\(492\) −18.6155 −0.839254
\(493\) −3.48185 −0.156815
\(494\) 0.234533i 0.0105521i
\(495\) 0 0
\(496\) 4.02760i 0.180844i
\(497\) 4.67762 0.209820
\(498\) 0.296604i 0.0132911i
\(499\) 20.8578i 0.933724i −0.884330 0.466862i \(-0.845384\pi\)
0.884330 0.466862i \(-0.154616\pi\)
\(500\) 0 0
\(501\) 38.3518i 1.71343i
\(502\) −3.80605 −0.169873
\(503\) 6.64476i 0.296275i −0.988967 0.148138i \(-0.952672\pi\)
0.988967 0.148138i \(-0.0473279\pi\)
\(504\) 3.14830i 0.140237i
\(505\) 0 0
\(506\) 2.56035 0.113822
\(507\) −27.2457 −1.21002
\(508\) 8.30434 0.368445
\(509\) −18.5535 −0.822368 −0.411184 0.911552i \(-0.634885\pi\)
−0.411184 + 0.911552i \(0.634885\pi\)
\(510\) 0 0
\(511\) 13.9379 0.616578
\(512\) 1.00000i 0.0441942i
\(513\) 0.527497i 0.0232896i
\(514\) −8.78801 −0.387622
\(515\) 0 0
\(516\) 6.11727i 0.269298i
\(517\) 8.99656 0.395668
\(518\) 5.86813 7.21811i 0.257831 0.317145i
\(519\) 24.1104 1.05833
\(520\) 0 0
\(521\) −42.6509 −1.86857 −0.934284 0.356529i \(-0.883960\pi\)
−0.934284 + 0.356529i \(0.883960\pi\)
\(522\) −1.48185 −0.0648590
\(523\) 12.3879i 0.541685i 0.962624 + 0.270842i \(0.0873022\pi\)
−0.962624 + 0.270842i \(0.912698\pi\)
\(524\) 11.0732i 0.483737i
\(525\) 0 0
\(526\) 10.4707i 0.456543i
\(527\) −19.4819 −0.848643
\(528\) −6.11727 −0.266220
\(529\) 22.1138 0.961471
\(530\) 0 0
\(531\) 15.0440i 0.652855i
\(532\) 0.381015i 0.0165191i
\(533\) 7.79145i 0.337485i
\(534\) −20.2345 −0.875634
\(535\) 0 0
\(536\) 7.68879i 0.332105i
\(537\) 21.3224i 0.920129i
\(538\) 5.88273i 0.253623i
\(539\) −12.6776 −0.546064
\(540\) 0 0
\(541\) 7.64820i 0.328822i 0.986392 + 0.164411i \(0.0525723\pi\)
−0.986392 + 0.164411i \(0.947428\pi\)
\(542\) 7.61211i 0.326968i
\(543\) −47.2242 −2.02659
\(544\) −4.83709 −0.207389
\(545\) 0 0
\(546\) 3.23797 0.138572
\(547\) 12.6837i 0.542317i 0.962535 + 0.271159i \(0.0874068\pi\)
−0.962535 + 0.271159i \(0.912593\pi\)
\(548\) 0.325819 0.0139183
\(549\) 14.0751i 0.600709i
\(550\) 0 0
\(551\) 0.179337 0.00764003
\(552\) 2.11727 0.0901168
\(553\) 2.67762i 0.113864i
\(554\) 26.4914 1.12551
\(555\) 0 0
\(556\) 13.3906 0.567887
\(557\) 2.61555i 0.110824i 0.998464 + 0.0554121i \(0.0176473\pi\)
−0.998464 + 0.0554121i \(0.982353\pi\)
\(558\) −8.29135 −0.351001
\(559\) −2.56035 −0.108291
\(560\) 0 0
\(561\) 29.5898i 1.24928i
\(562\) −26.6707 −1.12504
\(563\) 35.3285i 1.48892i 0.667668 + 0.744459i \(0.267293\pi\)
−0.667668 + 0.744459i \(0.732707\pi\)
\(564\) 7.43965 0.313266
\(565\) 0 0
\(566\) 8.73281 0.367068
\(567\) 16.7276 0.702491
\(568\) 3.05863i 0.128337i
\(569\) 28.8724i 1.21039i −0.796075 0.605197i \(-0.793094\pi\)
0.796075 0.605197i \(-0.206906\pi\)
\(570\) 0 0
\(571\) −8.15947 −0.341463 −0.170732 0.985318i \(-0.554613\pi\)
−0.170732 + 0.985318i \(0.554613\pi\)
\(572\) 2.56035i 0.107054i
\(573\) 24.9345i 1.04165i
\(574\) 12.6578i 0.528324i
\(575\) 0 0
\(576\) −2.05863 −0.0857764
\(577\) 37.5500i 1.56323i −0.623762 0.781614i \(-0.714397\pi\)
0.623762 0.781614i \(-0.285603\pi\)
\(578\) 6.39744i 0.266099i
\(579\) 5.02578i 0.208864i
\(580\) 0 0
\(581\) 0.201677 0.00836699
\(582\) −36.6087 −1.51748
\(583\) −22.8302 −0.945531
\(584\) 9.11383i 0.377133i
\(585\) 0 0
\(586\) 23.4819i 0.970026i
\(587\) 19.5078i 0.805174i −0.915382 0.402587i \(-0.868111\pi\)
0.915382 0.402587i \(-0.131889\pi\)
\(588\) −10.4837 −0.432339
\(589\) 1.00344 0.0413459
\(590\) 0 0
\(591\) 30.2277 1.24340
\(592\) 4.71982 + 3.83709i 0.193984 + 0.157703i
\(593\) −41.5569 −1.70654 −0.853269 0.521471i \(-0.825383\pi\)
−0.853269 + 0.521471i \(0.825383\pi\)
\(594\) 5.75859i 0.236278i
\(595\) 0 0
\(596\) −8.44309 −0.345842
\(597\) 52.8103i 2.16138i
\(598\) 0.886172i 0.0362382i
\(599\) 27.6381 1.12926 0.564631 0.825344i \(-0.309019\pi\)
0.564631 + 0.825344i \(0.309019\pi\)
\(600\) 0 0
\(601\) 14.4301 0.588616 0.294308 0.955711i \(-0.404911\pi\)
0.294308 + 0.955711i \(0.404911\pi\)
\(602\) −4.15947 −0.169527
\(603\) 15.8284 0.644582
\(604\) 4.94137 0.201061
\(605\) 0 0
\(606\) 24.9966i 1.01542i
\(607\) 47.4880i 1.92748i −0.266848 0.963739i \(-0.585982\pi\)
0.266848 0.963739i \(-0.414018\pi\)
\(608\) 0.249141 0.0101040
\(609\) 2.47594i 0.100330i
\(610\) 0 0
\(611\) 3.11383i 0.125972i
\(612\) 9.95779i 0.402520i
\(613\) 18.7198 0.756087 0.378043 0.925788i \(-0.376597\pi\)
0.378043 + 0.925788i \(0.376597\pi\)
\(614\) 27.2457i 1.09955i
\(615\) 0 0
\(616\) 4.15947i 0.167590i
\(617\) 15.0225 0.604785 0.302392 0.953184i \(-0.402215\pi\)
0.302392 + 0.953184i \(0.402215\pi\)
\(618\) −31.8759 −1.28224
\(619\) 16.6318 0.668487 0.334244 0.942487i \(-0.391519\pi\)
0.334244 + 0.942487i \(0.391519\pi\)
\(620\) 0 0
\(621\) 1.99312i 0.0799813i
\(622\) −17.7018 −0.709777
\(623\) 13.7586i 0.551226i
\(624\) 2.11727i 0.0847585i
\(625\) 0 0
\(626\) −23.9931 −0.958958
\(627\) 1.52406i 0.0608651i
\(628\) 19.2733 0.769088
\(629\) −18.5604 + 22.8302i −0.740050 + 0.910300i
\(630\) 0 0
\(631\) 35.9294i 1.43033i −0.698957 0.715164i \(-0.746352\pi\)
0.698957 0.715164i \(-0.253648\pi\)
\(632\) −1.75086 −0.0696454
\(633\) 44.4691 1.76749
\(634\) 3.16291i 0.125615i
\(635\) 0 0
\(636\) −18.8793 −0.748613
\(637\) 4.38789i 0.173855i
\(638\) −1.95779 −0.0775098
\(639\) −6.29660 −0.249090
\(640\) 0 0
\(641\) 29.3354 1.15868 0.579339 0.815087i \(-0.303311\pi\)
0.579339 + 0.815087i \(0.303311\pi\)
\(642\) 24.0483i 0.949111i
\(643\) 0.368025i 0.0145135i 0.999974 + 0.00725674i \(0.00230991\pi\)
−0.999974 + 0.00725674i \(0.997690\pi\)
\(644\) 1.43965i 0.0567301i
\(645\) 0 0
\(646\) 1.20512i 0.0474146i
\(647\) 26.7811i 1.05287i −0.850214 0.526437i \(-0.823527\pi\)
0.850214 0.526437i \(-0.176473\pi\)
\(648\) 10.9379i 0.429682i
\(649\) 19.8759i 0.780196i
\(650\) 0 0
\(651\) 13.8535i 0.542962i
\(652\) 17.3354i 0.678906i
\(653\) 2.00000i 0.0782660i −0.999234 0.0391330i \(-0.987540\pi\)
0.999234 0.0391330i \(-0.0124596\pi\)
\(654\) 27.6121 1.07972
\(655\) 0 0
\(656\) −8.27674 −0.323152
\(657\) −18.7620 −0.731976
\(658\) 5.05863i 0.197206i
\(659\) −12.9966 −0.506274 −0.253137 0.967430i \(-0.581462\pi\)
−0.253137 + 0.967430i \(0.581462\pi\)
\(660\) 0 0
\(661\) 18.6026i 0.723556i −0.932264 0.361778i \(-0.882170\pi\)
0.932264 0.361778i \(-0.117830\pi\)
\(662\) −4.48367 −0.174263
\(663\) −10.2414 −0.397743
\(664\) 0.131874i 0.00511771i
\(665\) 0 0
\(666\) −7.89916 + 9.71639i −0.306086 + 0.376502i
\(667\) 0.677618 0.0262375
\(668\) 17.0518i 0.659752i
\(669\) −20.5604 −0.794909
\(670\) 0 0
\(671\) 18.5957i 0.717878i
\(672\) 3.43965i 0.132687i
\(673\) −20.4622 −0.788759 −0.394380 0.918948i \(-0.629041\pi\)
−0.394380 + 0.918948i \(0.629041\pi\)
\(674\) 11.2051i 0.431605i
\(675\) 0 0
\(676\) −12.1138 −0.465916
\(677\) 39.9018 1.53355 0.766776 0.641915i \(-0.221860\pi\)
0.766776 + 0.641915i \(0.221860\pi\)
\(678\) 6.64476 0.255191
\(679\) 24.8923i 0.955278i
\(680\) 0 0
\(681\) 42.1035i 1.61341i
\(682\) −10.9544 −0.419464
\(683\) 12.3940i 0.474243i −0.971480 0.237122i \(-0.923796\pi\)
0.971480 0.237122i \(-0.0762040\pi\)
\(684\) 0.512889i 0.0196108i
\(685\) 0 0
\(686\) 17.8337i 0.680892i
\(687\) 56.4845 2.15502
\(688\) 2.71982i 0.103692i
\(689\) 7.90184i 0.301036i
\(690\) 0 0
\(691\) −51.5630 −1.96155 −0.980775 0.195142i \(-0.937483\pi\)
−0.980775 + 0.195142i \(0.937483\pi\)
\(692\) 10.7198 0.407507
\(693\) −8.56283 −0.325275
\(694\) 13.9931 0.531172
\(695\) 0 0
\(696\) −1.61899 −0.0613675
\(697\) 40.0353i 1.51645i
\(698\) 6.56035i 0.248313i
\(699\) 45.9639 1.73851
\(700\) 0 0
\(701\) 9.76547i 0.368837i −0.982848 0.184418i \(-0.940960\pi\)
0.982848 0.184418i \(-0.0590401\pi\)
\(702\) 1.99312 0.0752256
\(703\) 0.955975 1.17590i 0.0360553 0.0443499i
\(704\) −2.71982 −0.102507
\(705\) 0 0
\(706\) −36.5957 −1.37730
\(707\) 16.9966 0.639222
\(708\) 16.4362i 0.617711i
\(709\) 49.8268i 1.87128i −0.352951 0.935642i \(-0.614822\pi\)
0.352951 0.935642i \(-0.385178\pi\)
\(710\) 0 0
\(711\) 3.60438i 0.135175i
\(712\) −8.99656 −0.337160
\(713\) 3.79145 0.141991
\(714\) −16.6379 −0.622657
\(715\) 0 0
\(716\) 9.48024i 0.354293i
\(717\) 20.0483i 0.748718i
\(718\) 21.2311i 0.792337i
\(719\) −4.26375 −0.159011 −0.0795055 0.996834i \(-0.525334\pi\)
−0.0795055 + 0.996834i \(0.525334\pi\)
\(720\) 0 0
\(721\) 21.6742i 0.807189i
\(722\) 18.9379i 0.704797i
\(723\) 31.2242i 1.16124i
\(724\) −20.9966 −0.780331
\(725\) 0 0
\(726\) 8.10266i 0.300718i
\(727\) 13.1759i 0.488667i 0.969691 + 0.244334i \(0.0785692\pi\)
−0.969691 + 0.244334i \(0.921431\pi\)
\(728\) 1.43965 0.0533569
\(729\) −8.23109 −0.304855
\(730\) 0 0
\(731\) 13.1560 0.486593
\(732\) 15.3776i 0.568372i
\(733\) −9.39057 −0.346848 −0.173424 0.984847i \(-0.555483\pi\)
−0.173424 + 0.984847i \(0.555483\pi\)
\(734\) 23.4932i 0.867151i
\(735\) 0 0
\(736\) 0.941367 0.0346992
\(737\) 20.9122 0.770309
\(738\) 17.0388i 0.627206i
\(739\) −9.62510 −0.354065 −0.177033 0.984205i \(-0.556650\pi\)
−0.177033 + 0.984205i \(0.556650\pi\)
\(740\) 0 0
\(741\) 0.527497 0.0193781
\(742\) 12.8371i 0.471264i
\(743\) 25.6137 0.939677 0.469838 0.882753i \(-0.344312\pi\)
0.469838 + 0.882753i \(0.344312\pi\)
\(744\) −9.05863 −0.332106
\(745\) 0 0
\(746\) 7.55691i 0.276678i
\(747\) −0.271481 −0.00993296
\(748\) 13.1560i 0.481032i
\(749\) 16.3518 0.597482
\(750\) 0 0
\(751\) 11.9740 0.436938 0.218469 0.975844i \(-0.429894\pi\)
0.218469 + 0.975844i \(0.429894\pi\)
\(752\) 3.30777 0.120622
\(753\) 8.56035i 0.311957i
\(754\) 0.677618i 0.0246774i
\(755\) 0 0
\(756\) 3.23797 0.117764
\(757\) 19.2051i 0.698022i 0.937119 + 0.349011i \(0.113482\pi\)
−0.937119 + 0.349011i \(0.886518\pi\)
\(758\) 12.2637i 0.445439i
\(759\) 5.75859i 0.209024i
\(760\) 0 0
\(761\) −31.8596 −1.15491 −0.577455 0.816422i \(-0.695954\pi\)
−0.577455 + 0.816422i \(0.695954\pi\)
\(762\) 18.6776i 0.676619i
\(763\) 18.7750i 0.679701i
\(764\) 11.0862i 0.401086i
\(765\) 0 0
\(766\) 33.5208 1.21116
\(767\) −6.87930 −0.248397
\(768\) −2.24914 −0.0811589
\(769\) 35.2242i 1.27022i 0.772423 + 0.635109i \(0.219045\pi\)
−0.772423 + 0.635109i \(0.780955\pi\)
\(770\) 0 0
\(771\) 19.7655i 0.711836i
\(772\) 2.23453i 0.0804226i
\(773\) 50.2630 1.80783 0.903917 0.427708i \(-0.140679\pi\)
0.903917 + 0.427708i \(0.140679\pi\)
\(774\) 5.59912 0.201256
\(775\) 0 0
\(776\) −16.2767 −0.584301
\(777\) 16.2345 + 13.1982i 0.582411 + 0.473484i
\(778\) −9.95092 −0.356758
\(779\) 2.06207i 0.0738814i
\(780\) 0 0
\(781\) −8.31894 −0.297675
\(782\) 4.55348i 0.162832i
\(783\) 1.52406i 0.0544654i
\(784\) −4.66119 −0.166471
\(785\) 0 0
\(786\) −24.9053 −0.888342
\(787\) 51.9525 1.85191 0.925954 0.377636i \(-0.123263\pi\)
0.925954 + 0.377636i \(0.123263\pi\)
\(788\) 13.4396 0.478768
\(789\) −23.5500 −0.838404
\(790\) 0 0
\(791\) 4.51815i 0.160647i
\(792\) 5.59912i 0.198956i
\(793\) 6.43621 0.228557
\(794\) 8.67762i 0.307957i
\(795\) 0 0
\(796\) 23.4802i 0.832235i
\(797\) 35.4880i 1.25705i 0.777790 + 0.628524i \(0.216341\pi\)
−0.777790 + 0.628524i \(0.783659\pi\)
\(798\) 0.856956 0.0303359
\(799\) 16.0000i 0.566039i
\(800\) 0 0
\(801\) 18.5206i 0.654394i
\(802\) 11.5569 0.408089
\(803\) −24.7880 −0.874750
\(804\) 17.2932 0.609883
\(805\) 0 0
\(806\) 3.79145i 0.133548i
\(807\) 13.2311 0.465757
\(808\) 11.1138i 0.390983i
\(809\) 13.2051i 0.464267i −0.972684 0.232134i \(-0.925429\pi\)
0.972684 0.232134i \(-0.0745706\pi\)
\(810\) 0 0
\(811\) −10.1173 −0.355265 −0.177633 0.984097i \(-0.556844\pi\)
−0.177633 + 0.984097i \(0.556844\pi\)
\(812\) 1.10084i 0.0386319i
\(813\) −17.1207 −0.600449
\(814\) −10.4362 + 12.8371i −0.365789 + 0.449940i
\(815\) 0 0
\(816\) 10.8793i 0.380852i
\(817\) −0.677618 −0.0237069
\(818\) −3.34836 −0.117073
\(819\) 2.96371i 0.103560i
\(820\) 0 0
\(821\) 5.68106 0.198270 0.0991351 0.995074i \(-0.468392\pi\)
0.0991351 + 0.995074i \(0.468392\pi\)
\(822\) 0.732814i 0.0255598i
\(823\) 22.3404 0.778738 0.389369 0.921082i \(-0.372693\pi\)
0.389369 + 0.921082i \(0.372693\pi\)
\(824\) −14.1725 −0.493721
\(825\) 0 0
\(826\) −11.1759 −0.388859
\(827\) 3.71639i 0.129231i 0.997910 + 0.0646157i \(0.0205822\pi\)
−0.997910 + 0.0646157i \(0.979418\pi\)
\(828\) 1.93793i 0.0673477i
\(829\) 15.8596i 0.550828i −0.961326 0.275414i \(-0.911185\pi\)
0.961326 0.275414i \(-0.0888149\pi\)
\(830\) 0 0
\(831\) 59.5829i 2.06691i
\(832\) 0.941367i 0.0326360i
\(833\) 22.5466i 0.781193i
\(834\) 30.1173i 1.04288i
\(835\) 0 0
\(836\) 0.677618i 0.0234359i
\(837\) 8.52750i 0.294753i
\(838\) 11.3776i 0.393032i
\(839\) −33.8950 −1.17018 −0.585092 0.810967i \(-0.698942\pi\)
−0.585092 + 0.810967i \(0.698942\pi\)
\(840\) 0 0
\(841\) 28.4819 0.982133
\(842\) 3.23109 0.111351
\(843\) 59.9862i 2.06604i
\(844\) 19.7716 0.680566
\(845\) 0 0
\(846\) 6.80949i 0.234115i
\(847\) 5.50945 0.189307
\(848\) −8.39400 −0.288251
\(849\) 19.6413i 0.674089i
\(850\) 0 0
\(851\) 3.61211 4.44309i 0.123822 0.152307i
\(852\) −6.87930 −0.235681
\(853\) 35.7586i 1.22435i −0.790722 0.612175i \(-0.790295\pi\)
0.790722 0.612175i \(-0.209705\pi\)
\(854\) 10.4561 0.357800
\(855\) 0 0
\(856\) 10.6922i 0.365453i
\(857\) 17.3837i 0.593816i −0.954906 0.296908i \(-0.904045\pi\)
0.954906 0.296908i \(-0.0959554\pi\)
\(858\) −5.75859 −0.196595
\(859\) 43.3922i 1.48052i −0.672319 0.740261i \(-0.734702\pi\)
0.672319 0.740261i \(-0.265298\pi\)
\(860\) 0 0
\(861\) −28.4691 −0.970223
\(862\) −29.2327 −0.995670
\(863\) −34.8708 −1.18702 −0.593508 0.804828i \(-0.702257\pi\)
−0.593508 + 0.804828i \(0.702257\pi\)
\(864\) 2.11727i 0.0720309i
\(865\) 0 0
\(866\) 17.7655i 0.603695i
\(867\) 14.3887 0.488667
\(868\) 6.15947i 0.209066i
\(869\) 4.76203i 0.161541i
\(870\) 0 0
\(871\) 7.23797i 0.245249i
\(872\) 12.2767 0.415743
\(873\) 33.5078i 1.13407i
\(874\) 0.234533i 0.00793318i
\(875\) 0 0
\(876\) −20.4983 −0.692573
\(877\) −47.0907 −1.59014 −0.795070 0.606517i \(-0.792566\pi\)
−0.795070 + 0.606517i \(0.792566\pi\)
\(878\) 32.7604 1.10561
\(879\) 52.8140 1.78137
\(880\) 0 0
\(881\) 29.0027 0.977125 0.488562 0.872529i \(-0.337521\pi\)
0.488562 + 0.872529i \(0.337521\pi\)
\(882\) 9.59568i 0.323103i
\(883\) 11.0388i 0.371484i 0.982599 + 0.185742i \(0.0594689\pi\)
−0.982599 + 0.185742i \(0.940531\pi\)
\(884\) −4.55348 −0.153150
\(885\) 0 0
\(886\) 0.600939i 0.0201890i
\(887\) 5.76709 0.193640 0.0968199 0.995302i \(-0.469133\pi\)
0.0968199 + 0.995302i \(0.469133\pi\)
\(888\) −8.63016 + 10.6155i −0.289609 + 0.356234i
\(889\) 12.7000 0.425943
\(890\) 0 0
\(891\) −29.7492 −0.996637
\(892\) −9.14143 −0.306078
\(893\) 0.824101i 0.0275775i
\(894\) 18.9897i 0.635110i
\(895\) 0 0
\(896\) 1.52932i 0.0510909i
\(897\) 1.99312 0.0665485
\(898\) −34.0191 −1.13523
\(899\) −2.89916 −0.0966924
\(900\) 0 0
\(901\) 40.6026i 1.35267i
\(902\) 22.5113i 0.749543i
\(903\) 9.35524i 0.311323i
\(904\) 2.95436 0.0982604
\(905\) 0 0
\(906\) 11.1138i 0.369232i
\(907\) 54.2139i 1.80014i 0.435742 + 0.900072i \(0.356486\pi\)
−0.435742 + 0.900072i \(0.643514\pi\)
\(908\) 18.7198i 0.621239i
\(909\) −22.8793 −0.758858
\(910\) 0 0
\(911\) 37.1284i 1.23012i −0.788480 0.615060i \(-0.789132\pi\)
0.788480 0.615060i \(-0.210868\pi\)
\(912\) 0.560352i 0.0185551i
\(913\) −0.358675 −0.0118704
\(914\) 30.9215 1.02279
\(915\) 0 0
\(916\) 25.1138 0.829784
\(917\) 16.9345i 0.559226i
\(918\) −10.2414 −0.338017
\(919\) 20.0889i 0.662672i −0.943513 0.331336i \(-0.892501\pi\)
0.943513 0.331336i \(-0.107499\pi\)
\(920\) 0 0
\(921\) 61.2794 2.01923
\(922\) 1.27330 0.0419339
\(923\) 2.87930i 0.0947732i
\(924\) −9.35524 −0.307765
\(925\) 0 0
\(926\) −2.61555 −0.0859522
\(927\) 29.1759i 0.958262i
\(928\) −0.719824 −0.0236294
\(929\) 12.9803 0.425871 0.212936 0.977066i \(-0.431698\pi\)
0.212936 + 0.977066i \(0.431698\pi\)
\(930\) 0 0
\(931\) 1.16129i 0.0380598i
\(932\) 20.4362 0.669410
\(933\) 39.8138i 1.30344i
\(934\) −19.0096 −0.622012
\(935\) 0 0
\(936\) −1.93793 −0.0633432
\(937\) 9.32238 0.304549 0.152274 0.988338i \(-0.451340\pi\)
0.152274 + 0.988338i \(0.451340\pi\)
\(938\) 11.7586i 0.383932i
\(939\) 53.9639i 1.76105i
\(940\) 0 0
\(941\) −17.7586 −0.578914 −0.289457 0.957191i \(-0.593475\pi\)
−0.289457 + 0.957191i \(0.593475\pi\)
\(942\) 43.3484i 1.41237i
\(943\) 7.79145i 0.253724i
\(944\) 7.30777i 0.237848i
\(945\) 0 0
\(946\) 7.39744 0.240512
\(947\) 17.3354i 0.563324i 0.959514 + 0.281662i \(0.0908857\pi\)
−0.959514 + 0.281662i \(0.909114\pi\)
\(948\) 3.93793i 0.127898i
\(949\) 8.57946i 0.278501i
\(950\) 0 0
\(951\) −7.11383 −0.230682
\(952\) −7.39744 −0.239752
\(953\) 5.88961 0.190783 0.0953916 0.995440i \(-0.469590\pi\)
0.0953916 + 0.995440i \(0.469590\pi\)
\(954\) 17.2802i 0.559466i
\(955\) 0 0
\(956\) 8.91377i 0.288292i
\(957\) 4.40335i 0.142340i
\(958\) −38.8578 −1.25544
\(959\) 0.498281 0.0160903
\(960\) 0 0
\(961\) 14.7785 0.476724
\(962\) 4.44309 + 3.61211i 0.143251 + 0.116459i
\(963\) −22.0114 −0.709307
\(964\) 13.8827i 0.447133i
\(965\) 0 0
\(966\) 3.23797 0.104180
\(967\) 32.3189i 1.03931i 0.854377 + 0.519654i \(0.173939\pi\)
−0.854377 + 0.519654i \(0.826061\pi\)
\(968\) 3.60256i 0.115791i
\(969\) −2.71047 −0.0870730
\(970\) 0 0
\(971\) 6.11115 0.196116 0.0980581 0.995181i \(-0.468737\pi\)
0.0980581 + 0.995181i \(0.468737\pi\)
\(972\) −18.2491 −0.585341
\(973\) 20.4784 0.656508
\(974\) 38.4914 1.23334
\(975\) 0 0
\(976\) 6.83709i 0.218850i
\(977\) 47.3906i 1.51616i −0.652162 0.758079i \(-0.726138\pi\)
0.652162 0.758079i \(-0.273862\pi\)
\(978\) 38.9897 1.24675
\(979\) 24.4691i 0.782035i
\(980\) 0 0
\(981\) 25.2733i 0.806914i
\(982\) 11.2672i 0.359550i
\(983\) 55.7862 1.77930 0.889652 0.456640i \(-0.150947\pi\)
0.889652 + 0.456640i \(0.150947\pi\)
\(984\) 18.6155i 0.593442i
\(985\) 0 0
\(986\) 3.48185i 0.110885i
\(987\) 11.3776 0.362152
\(988\) 0.234533 0.00746148
\(989\) −2.56035 −0.0814145
\(990\) 0 0
\(991\) 29.9655i 0.951886i 0.879476 + 0.475943i \(0.157893\pi\)
−0.879476 + 0.475943i \(0.842107\pi\)
\(992\) −4.02760 −0.127876
\(993\) 10.0844i 0.320019i
\(994\) 4.67762i 0.148365i
\(995\) 0 0
\(996\) −0.296604 −0.00939825
\(997\) 20.7811i 0.658145i 0.944305 + 0.329073i \(0.106736\pi\)
−0.944305 + 0.329073i \(0.893264\pi\)
\(998\) 20.8578 0.660243
\(999\) 9.99312 + 8.12414i 0.316168 + 0.257036i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1850.2.d.f.1701.4 6
5.2 odd 4 1850.2.c.i.1849.5 6
5.3 odd 4 1850.2.c.j.1849.2 6
5.4 even 2 370.2.d.c.221.3 6
15.14 odd 2 3330.2.h.n.2071.5 6
20.19 odd 2 2960.2.p.g.961.2 6
37.36 even 2 inner 1850.2.d.f.1701.1 6
185.73 odd 4 1850.2.c.i.1849.2 6
185.147 odd 4 1850.2.c.j.1849.5 6
185.184 even 2 370.2.d.c.221.6 yes 6
555.554 odd 2 3330.2.h.n.2071.2 6
740.739 odd 2 2960.2.p.g.961.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.d.c.221.3 6 5.4 even 2
370.2.d.c.221.6 yes 6 185.184 even 2
1850.2.c.i.1849.2 6 185.73 odd 4
1850.2.c.i.1849.5 6 5.2 odd 4
1850.2.c.j.1849.2 6 5.3 odd 4
1850.2.c.j.1849.5 6 185.147 odd 4
1850.2.d.f.1701.1 6 37.36 even 2 inner
1850.2.d.f.1701.4 6 1.1 even 1 trivial
2960.2.p.g.961.1 6 740.739 odd 2
2960.2.p.g.961.2 6 20.19 odd 2
3330.2.h.n.2071.2 6 555.554 odd 2
3330.2.h.n.2071.5 6 15.14 odd 2