Properties

Label 1850.2.c.h
Level $1850$
Weight $2$
Character orbit 1850.c
Analytic conductor $14.772$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.7723243739\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{21})\)
Defining polynomial: \( x^{4} + 11x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + \beta_1 q^{3} + q^{4} + \beta_1 q^{6} + 2 \beta_{2} q^{7} + q^{8} + (\beta_{3} - 3) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} + \beta_1 q^{3} + q^{4} + \beta_1 q^{6} + 2 \beta_{2} q^{7} + q^{8} + (\beta_{3} - 3) q^{9} + ( - \beta_{3} + 2) q^{11} + \beta_1 q^{12} + ( - \beta_{3} - 1) q^{13} + 2 \beta_{2} q^{14} + q^{16} + ( - 2 \beta_{3} - 2) q^{17} + (\beta_{3} - 3) q^{18} + ( - 2 \beta_{2} + 2 \beta_1) q^{19} + ( - 2 \beta_{3} + 2) q^{21} + ( - \beta_{3} + 2) q^{22} + ( - \beta_{3} - 1) q^{23} + \beta_1 q^{24} + ( - \beta_{3} - 1) q^{26} + 5 \beta_{2} q^{27} + 2 \beta_{2} q^{28} + (2 \beta_{2} + \beta_1) q^{29} + (3 \beta_{2} + 3 \beta_1) q^{31} + q^{32} + ( - 5 \beta_{2} + 2 \beta_1) q^{33} + ( - 2 \beta_{3} - 2) q^{34} + (\beta_{3} - 3) q^{36} + (2 \beta_{3} - 4 \beta_{2} - 1) q^{37} + ( - 2 \beta_{2} + 2 \beta_1) q^{38} + ( - 5 \beta_{2} - \beta_1) q^{39} + (\beta_{3} + 7) q^{41} + ( - 2 \beta_{3} + 2) q^{42} - 6 q^{43} + ( - \beta_{3} + 2) q^{44} + ( - \beta_{3} - 1) q^{46} + (4 \beta_{2} + 2 \beta_1) q^{47} + \beta_1 q^{48} + 3 q^{49} + ( - 10 \beta_{2} - 2 \beta_1) q^{51} + ( - \beta_{3} - 1) q^{52} + (2 \beta_{2} - 2 \beta_1) q^{53} + 5 \beta_{2} q^{54} + 2 \beta_{2} q^{56} + (4 \beta_{3} - 14) q^{57} + (2 \beta_{2} + \beta_1) q^{58} + ( - 2 \beta_{2} + 2 \beta_1) q^{59} + ( - 11 \beta_{2} - \beta_1) q^{61} + (3 \beta_{2} + 3 \beta_1) q^{62} + ( - 4 \beta_{2} + 2 \beta_1) q^{63} + q^{64} + ( - 5 \beta_{2} + 2 \beta_1) q^{66} + ( - \beta_{2} - 3 \beta_1) q^{67} + ( - 2 \beta_{3} - 2) q^{68} + ( - 5 \beta_{2} - \beta_1) q^{69} + ( - 4 \beta_{3} + 2) q^{71} + (\beta_{3} - 3) q^{72} + (\beta_{2} - 3 \beta_1) q^{73} + (2 \beta_{3} - 4 \beta_{2} - 1) q^{74} + ( - 2 \beta_{2} + 2 \beta_1) q^{76} + (2 \beta_{2} - 2 \beta_1) q^{77} + ( - 5 \beta_{2} - \beta_1) q^{78} + (10 \beta_{2} - \beta_1) q^{79} + ( - 2 \beta_{3} - 4) q^{81} + (\beta_{3} + 7) q^{82} + (8 \beta_{2} + 4 \beta_1) q^{83} + ( - 2 \beta_{3} + 2) q^{84} - 6 q^{86} + ( - \beta_{3} - 4) q^{87} + ( - \beta_{3} + 2) q^{88} + 6 \beta_{2} q^{89} + ( - 4 \beta_{2} - 2 \beta_1) q^{91} + ( - \beta_{3} - 1) q^{92} - 15 q^{93} + (4 \beta_{2} + 2 \beta_1) q^{94} + \beta_1 q^{96} + (2 \beta_{3} + 8) q^{97} + 3 q^{98} + (4 \beta_{3} - 11) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 10 q^{9} + 6 q^{11} - 6 q^{13} + 4 q^{16} - 12 q^{17} - 10 q^{18} + 4 q^{21} + 6 q^{22} - 6 q^{23} - 6 q^{26} + 4 q^{32} - 12 q^{34} - 10 q^{36} + 30 q^{41} + 4 q^{42} - 24 q^{43} + 6 q^{44} - 6 q^{46} + 12 q^{49} - 6 q^{52} - 48 q^{57} + 4 q^{64} - 12 q^{68} - 10 q^{72} - 20 q^{81} + 30 q^{82} + 4 q^{84} - 24 q^{86} - 18 q^{87} + 6 q^{88} - 6 q^{92} - 60 q^{93} + 36 q^{97} + 12 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 11x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 6\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{2} - 6\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1850\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1777\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1849.1
2.79129i
1.79129i
1.79129i
2.79129i
1.00000 2.79129i 1.00000 0 2.79129i 2.00000i 1.00000 −4.79129 0
1849.2 1.00000 1.79129i 1.00000 0 1.79129i 2.00000i 1.00000 −0.208712 0
1849.3 1.00000 1.79129i 1.00000 0 1.79129i 2.00000i 1.00000 −0.208712 0
1849.4 1.00000 2.79129i 1.00000 0 2.79129i 2.00000i 1.00000 −4.79129 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1850.2.c.h 4
5.b even 2 1 1850.2.c.g 4
5.c odd 4 1 74.2.b.a 4
5.c odd 4 1 1850.2.d.e 4
15.e even 4 1 666.2.c.b 4
20.e even 4 1 592.2.g.c 4
37.b even 2 1 1850.2.c.g 4
40.i odd 4 1 2368.2.g.j 4
40.k even 4 1 2368.2.g.h 4
60.l odd 4 1 5328.2.h.m 4
185.d even 2 1 inner 1850.2.c.h 4
185.f even 4 1 2738.2.a.h 2
185.h odd 4 1 74.2.b.a 4
185.h odd 4 1 1850.2.d.e 4
185.k even 4 1 2738.2.a.k 2
555.n even 4 1 666.2.c.b 4
740.m even 4 1 592.2.g.c 4
1480.x odd 4 1 2368.2.g.j 4
1480.bh even 4 1 2368.2.g.h 4
2220.bf odd 4 1 5328.2.h.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
74.2.b.a 4 5.c odd 4 1
74.2.b.a 4 185.h odd 4 1
592.2.g.c 4 20.e even 4 1
592.2.g.c 4 740.m even 4 1
666.2.c.b 4 15.e even 4 1
666.2.c.b 4 555.n even 4 1
1850.2.c.g 4 5.b even 2 1
1850.2.c.g 4 37.b even 2 1
1850.2.c.h 4 1.a even 1 1 trivial
1850.2.c.h 4 185.d even 2 1 inner
1850.2.d.e 4 5.c odd 4 1
1850.2.d.e 4 185.h odd 4 1
2368.2.g.h 4 40.k even 4 1
2368.2.g.h 4 1480.bh even 4 1
2368.2.g.j 4 40.i odd 4 1
2368.2.g.j 4 1480.x odd 4 1
2738.2.a.h 2 185.f even 4 1
2738.2.a.k 2 185.k even 4 1
5328.2.h.m 4 60.l odd 4 1
5328.2.h.m 4 2220.bf odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1850, [\chi])\):

\( T_{3}^{4} + 11T_{3}^{2} + 25 \) Copy content Toggle raw display
\( T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} - 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 3T_{13} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 11T^{2} + 25 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 3 T - 3)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 3 T - 3)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T - 12)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$23$ \( (T^{2} + 3 T - 3)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 15T^{2} + 9 \) Copy content Toggle raw display
$31$ \( T^{4} + 99T^{2} + 2025 \) Copy content Toggle raw display
$37$ \( T^{4} - 10T^{2} + 1369 \) Copy content Toggle raw display
$41$ \( (T^{2} - 15 T + 51)^{2} \) Copy content Toggle raw display
$43$ \( (T + 6)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$53$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$59$ \( T^{4} + 60T^{2} + 144 \) Copy content Toggle raw display
$61$ \( T^{4} + 231 T^{2} + 11025 \) Copy content Toggle raw display
$67$ \( T^{4} + 95T^{2} + 2209 \) Copy content Toggle raw display
$71$ \( (T^{2} - 84)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 107T^{2} + 1681 \) Copy content Toggle raw display
$79$ \( T^{4} + 231 T^{2} + 11025 \) Copy content Toggle raw display
$83$ \( T^{4} + 240T^{2} + 2304 \) Copy content Toggle raw display
$89$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 18 T + 60)^{2} \) Copy content Toggle raw display
show more
show less