Properties

Label 1850.2.b.d.149.2
Level $1850$
Weight $2$
Character 1850.149
Analytic conductor $14.772$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1850,2,Mod(149,1850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1850.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.7723243739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 149.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1850.149
Dual form 1850.2.b.d.149.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -1.00000i q^{8} +3.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} -1.00000i q^{8} +3.00000 q^{9} -4.00000 q^{11} +2.00000i q^{13} +1.00000 q^{16} +2.00000i q^{17} +3.00000i q^{18} +4.00000 q^{19} -4.00000i q^{22} -2.00000 q^{26} +6.00000 q^{29} -4.00000 q^{31} +1.00000i q^{32} -2.00000 q^{34} -3.00000 q^{36} +1.00000i q^{37} +4.00000i q^{38} -6.00000 q^{41} +4.00000i q^{43} +4.00000 q^{44} +8.00000i q^{47} +7.00000 q^{49} -2.00000i q^{52} +10.0000i q^{53} +6.00000i q^{58} -4.00000 q^{59} +10.0000 q^{61} -4.00000i q^{62} -1.00000 q^{64} +8.00000i q^{67} -2.00000i q^{68} -3.00000i q^{72} +10.0000i q^{73} -1.00000 q^{74} -4.00000 q^{76} +4.00000 q^{79} +9.00000 q^{81} -6.00000i q^{82} -4.00000 q^{86} +4.00000i q^{88} -2.00000 q^{89} -8.00000 q^{94} -6.00000i q^{97} +7.00000i q^{98} -12.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 6 q^{9} - 8 q^{11} + 2 q^{16} + 8 q^{19} - 4 q^{26} + 12 q^{29} - 8 q^{31} - 4 q^{34} - 6 q^{36} - 12 q^{41} + 8 q^{44} + 14 q^{49} - 8 q^{59} + 20 q^{61} - 2 q^{64} - 2 q^{74} - 8 q^{76} + 8 q^{79} + 18 q^{81} - 8 q^{86} - 4 q^{89} - 16 q^{94} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1850\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1777\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 3.00000 1.00000
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 3.00000i 0.707107i
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 4.00000i − 0.852803i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 1.00000i 0.164399i
\(38\) 4.00000i 0.648886i
\(39\) 0 0
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) − 2.00000i − 0.277350i
\(53\) 10.0000i 1.37361i 0.726844 + 0.686803i \(0.240986\pi\)
−0.726844 + 0.686803i \(0.759014\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.00000i 0.787839i
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) − 4.00000i − 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 8.00000i 0.977356i 0.872464 + 0.488678i \(0.162521\pi\)
−0.872464 + 0.488678i \(0.837479\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) − 3.00000i − 0.353553i
\(73\) 10.0000i 1.17041i 0.810885 + 0.585206i \(0.198986\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) − 6.00000i − 0.662589i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 4.00000i 0.426401i
\(89\) −2.00000 −0.212000 −0.106000 0.994366i \(-0.533804\pi\)
−0.106000 + 0.994366i \(0.533804\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −8.00000 −0.825137
\(95\) 0 0
\(96\) 0 0
\(97\) − 6.00000i − 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) 7.00000i 0.707107i
\(99\) −12.0000 −1.20605
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −10.0000 −0.971286
\(107\) 8.00000i 0.773389i 0.922208 + 0.386695i \(0.126383\pi\)
−0.922208 + 0.386695i \(0.873617\pi\)
\(108\) 0 0
\(109\) −18.0000 −1.72409 −0.862044 0.506834i \(-0.830816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.0000i 1.31701i 0.752577 + 0.658505i \(0.228811\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −6.00000 −0.557086
\(117\) 6.00000i 0.554700i
\(118\) − 4.00000i − 0.368230i
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) 10.0000i 0.905357i
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 0 0
\(126\) 0 0
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −8.00000 −0.691095
\(135\) 0 0
\(136\) 2.00000 0.171499
\(137\) 6.00000i 0.512615i 0.966595 + 0.256307i \(0.0825059\pi\)
−0.966595 + 0.256307i \(0.917494\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 8.00000i − 0.668994i
\(144\) 3.00000 0.250000
\(145\) 0 0
\(146\) −10.0000 −0.827606
\(147\) 0 0
\(148\) − 1.00000i − 0.0821995i
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −24.0000 −1.95309 −0.976546 0.215308i \(-0.930924\pi\)
−0.976546 + 0.215308i \(0.930924\pi\)
\(152\) − 4.00000i − 0.324443i
\(153\) 6.00000i 0.485071i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.00000i 0.478852i 0.970915 + 0.239426i \(0.0769593\pi\)
−0.970915 + 0.239426i \(0.923041\pi\)
\(158\) 4.00000i 0.318223i
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 9.00000i 0.707107i
\(163\) − 4.00000i − 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 6.00000 0.468521
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000i 1.23812i 0.785345 + 0.619059i \(0.212486\pi\)
−0.785345 + 0.619059i \(0.787514\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 12.0000 0.917663
\(172\) − 4.00000i − 0.304997i
\(173\) − 14.0000i − 1.06440i −0.846619 0.532200i \(-0.821365\pi\)
0.846619 0.532200i \(-0.178635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 0 0
\(178\) − 2.00000i − 0.149906i
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 8.00000i − 0.585018i
\(188\) − 8.00000i − 0.583460i
\(189\) 0 0
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) −7.00000 −0.500000
\(197\) − 2.00000i − 0.142494i −0.997459 0.0712470i \(-0.977302\pi\)
0.997459 0.0712470i \(-0.0226979\pi\)
\(198\) − 12.0000i − 0.852803i
\(199\) 20.0000 1.41776 0.708881 0.705328i \(-0.249200\pi\)
0.708881 + 0.705328i \(0.249200\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.00000i 0.422159i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 2.00000i 0.138675i
\(209\) −16.0000 −1.10674
\(210\) 0 0
\(211\) 28.0000 1.92760 0.963800 0.266627i \(-0.0859092\pi\)
0.963800 + 0.266627i \(0.0859092\pi\)
\(212\) − 10.0000i − 0.686803i
\(213\) 0 0
\(214\) −8.00000 −0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) − 18.0000i − 1.21911i
\(219\) 0 0
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) − 16.0000i − 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −14.0000 −0.931266
\(227\) − 20.0000i − 1.32745i −0.747978 0.663723i \(-0.768975\pi\)
0.747978 0.663723i \(-0.231025\pi\)
\(228\) 0 0
\(229\) 18.0000 1.18947 0.594737 0.803921i \(-0.297256\pi\)
0.594737 + 0.803921i \(0.297256\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 6.00000i − 0.393919i
\(233\) − 22.0000i − 1.44127i −0.693316 0.720634i \(-0.743851\pi\)
0.693316 0.720634i \(-0.256149\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 0 0
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) 4.00000i 0.254000i
\(249\) 0 0
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 14.0000i − 0.873296i −0.899632 0.436648i \(-0.856166\pi\)
0.899632 0.436648i \(-0.143834\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 18.0000 1.11417
\(262\) − 12.0000i − 0.741362i
\(263\) − 32.0000i − 1.97320i −0.163144 0.986602i \(-0.552164\pi\)
0.163144 0.986602i \(-0.447836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) − 8.00000i − 0.488678i
\(269\) −14.0000 −0.853595 −0.426798 0.904347i \(-0.640358\pi\)
−0.426798 + 0.904347i \(0.640358\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 2.00000i 0.121268i
\(273\) 0 0
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) 4.00000i 0.239904i
\(279\) −12.0000 −0.718421
\(280\) 0 0
\(281\) 2.00000 0.119310 0.0596550 0.998219i \(-0.481000\pi\)
0.0596550 + 0.998219i \(0.481000\pi\)
\(282\) 0 0
\(283\) 4.00000i 0.237775i 0.992908 + 0.118888i \(0.0379328\pi\)
−0.992908 + 0.118888i \(0.962067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) 0 0
\(288\) 3.00000i 0.176777i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) − 10.0000i − 0.585206i
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00000 0.0581238
\(297\) 0 0
\(298\) 10.0000i 0.579284i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) − 24.0000i − 1.38104i
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) 32.0000i 1.82634i 0.407583 + 0.913168i \(0.366372\pi\)
−0.407583 + 0.913168i \(0.633628\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) − 10.0000i − 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) −6.00000 −0.338600
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) − 2.00000i − 0.112331i −0.998421 0.0561656i \(-0.982113\pi\)
0.998421 0.0561656i \(-0.0178875\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) −9.00000 −0.500000
\(325\) 0 0
\(326\) 4.00000 0.221540
\(327\) 0 0
\(328\) 6.00000i 0.331295i
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 3.00000i 0.164399i
\(334\) −16.0000 −0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) − 34.0000i − 1.85210i −0.377403 0.926049i \(-0.623183\pi\)
0.377403 0.926049i \(-0.376817\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 0 0
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 12.0000i 0.648886i
\(343\) 0 0
\(344\) 4.00000 0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) − 4.00000i − 0.214731i −0.994220 0.107366i \(-0.965758\pi\)
0.994220 0.107366i \(-0.0342415\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 4.00000i − 0.213201i
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.00000 0.106000
\(357\) 0 0
\(358\) − 4.00000i − 0.211407i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) − 2.00000i − 0.105118i
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 8.00000i − 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) 0 0
\(369\) −18.0000 −0.937043
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) − 14.0000i − 0.724893i −0.932005 0.362446i \(-0.881942\pi\)
0.932005 0.362446i \(-0.118058\pi\)
\(374\) 8.00000 0.413670
\(375\) 0 0
\(376\) 8.00000 0.412568
\(377\) 12.0000i 0.618031i
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 12.0000i − 0.613973i
\(383\) − 24.0000i − 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 12.0000i 0.609994i
\(388\) 6.00000i 0.304604i
\(389\) 14.0000 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 7.00000i − 0.353553i
\(393\) 0 0
\(394\) 2.00000 0.100759
\(395\) 0 0
\(396\) 12.0000 0.603023
\(397\) − 34.0000i − 1.70641i −0.521575 0.853206i \(-0.674655\pi\)
0.521575 0.853206i \(-0.325345\pi\)
\(398\) 20.0000i 1.00251i
\(399\) 0 0
\(400\) 0 0
\(401\) −22.0000 −1.09863 −0.549314 0.835616i \(-0.685111\pi\)
−0.549314 + 0.835616i \(0.685111\pi\)
\(402\) 0 0
\(403\) − 8.00000i − 0.398508i
\(404\) −6.00000 −0.298511
\(405\) 0 0
\(406\) 0 0
\(407\) − 4.00000i − 0.198273i
\(408\) 0 0
\(409\) −2.00000 −0.0988936 −0.0494468 0.998777i \(-0.515746\pi\)
−0.0494468 + 0.998777i \(0.515746\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 0 0
\(418\) − 16.0000i − 0.782586i
\(419\) −28.0000 −1.36789 −0.683945 0.729534i \(-0.739737\pi\)
−0.683945 + 0.729534i \(0.739737\pi\)
\(420\) 0 0
\(421\) −6.00000 −0.292422 −0.146211 0.989253i \(-0.546708\pi\)
−0.146211 + 0.989253i \(0.546708\pi\)
\(422\) 28.0000i 1.36302i
\(423\) 24.0000i 1.16692i
\(424\) 10.0000 0.485643
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 8.00000i − 0.386695i
\(429\) 0 0
\(430\) 0 0
\(431\) −20.0000 −0.963366 −0.481683 0.876346i \(-0.659974\pi\)
−0.481683 + 0.876346i \(0.659974\pi\)
\(432\) 0 0
\(433\) − 14.0000i − 0.672797i −0.941720 0.336399i \(-0.890791\pi\)
0.941720 0.336399i \(-0.109209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 18.0000 0.862044
\(437\) 0 0
\(438\) 0 0
\(439\) 20.0000 0.954548 0.477274 0.878755i \(-0.341625\pi\)
0.477274 + 0.878755i \(0.341625\pi\)
\(440\) 0 0
\(441\) 21.0000 1.00000
\(442\) − 4.00000i − 0.190261i
\(443\) − 24.0000i − 1.14027i −0.821549 0.570137i \(-0.806890\pi\)
0.821549 0.570137i \(-0.193110\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.0000 0.757622
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 24.0000 1.13012
\(452\) − 14.0000i − 0.658505i
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000i 0.842004i 0.907060 + 0.421002i \(0.138322\pi\)
−0.907060 + 0.421002i \(0.861678\pi\)
\(458\) 18.0000i 0.841085i
\(459\) 0 0
\(460\) 0 0
\(461\) 10.0000 0.465746 0.232873 0.972507i \(-0.425187\pi\)
0.232873 + 0.972507i \(0.425187\pi\)
\(462\) 0 0
\(463\) − 40.0000i − 1.85896i −0.368875 0.929479i \(-0.620257\pi\)
0.368875 0.929479i \(-0.379743\pi\)
\(464\) 6.00000 0.278543
\(465\) 0 0
\(466\) 22.0000 1.01913
\(467\) − 28.0000i − 1.29569i −0.761774 0.647843i \(-0.775671\pi\)
0.761774 0.647843i \(-0.224329\pi\)
\(468\) − 6.00000i − 0.277350i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 4.00000i 0.184115i
\(473\) − 16.0000i − 0.735681i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 30.0000i 1.37361i
\(478\) − 12.0000i − 0.548867i
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 2.00000i 0.0910975i
\(483\) 0 0
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) − 10.0000i − 0.452679i
\(489\) 0 0
\(490\) 0 0
\(491\) 20.0000 0.902587 0.451294 0.892375i \(-0.350963\pi\)
0.451294 + 0.892375i \(0.350963\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 20.0000i 0.892644i
\(503\) 24.0000i 1.07011i 0.844818 + 0.535054i \(0.179709\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 8.00000i 0.354943i
\(509\) 18.0000 0.797836 0.398918 0.916987i \(-0.369386\pi\)
0.398918 + 0.916987i \(0.369386\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 14.0000 0.617514
\(515\) 0 0
\(516\) 0 0
\(517\) − 32.0000i − 1.40736i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −38.0000 −1.66481 −0.832405 0.554168i \(-0.813037\pi\)
−0.832405 + 0.554168i \(0.813037\pi\)
\(522\) 18.0000i 0.787839i
\(523\) 12.0000i 0.524723i 0.964970 + 0.262362i \(0.0845013\pi\)
−0.964970 + 0.262362i \(0.915499\pi\)
\(524\) 12.0000 0.524222
\(525\) 0 0
\(526\) 32.0000 1.39527
\(527\) − 8.00000i − 0.348485i
\(528\) 0 0
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) − 12.0000i − 0.519778i
\(534\) 0 0
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) − 14.0000i − 0.603583i
\(539\) −28.0000 −1.20605
\(540\) 0 0
\(541\) −6.00000 −0.257960 −0.128980 0.991647i \(-0.541170\pi\)
−0.128980 + 0.991647i \(0.541170\pi\)
\(542\) − 8.00000i − 0.343629i
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 0 0
\(546\) 0 0
\(547\) − 4.00000i − 0.171028i −0.996337 0.0855138i \(-0.972747\pi\)
0.996337 0.0855138i \(-0.0272532\pi\)
\(548\) − 6.00000i − 0.256307i
\(549\) 30.0000 1.28037
\(550\) 0 0
\(551\) 24.0000 1.02243
\(552\) 0 0
\(553\) 0 0
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) −4.00000 −0.169638
\(557\) − 2.00000i − 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) − 12.0000i − 0.508001i
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) 2.00000i 0.0843649i
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −4.00000 −0.168133
\(567\) 0 0
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) 8.00000i 0.334497i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) − 46.0000i − 1.91501i −0.288425 0.957503i \(-0.593132\pi\)
0.288425 0.957503i \(-0.406868\pi\)
\(578\) 13.0000i 0.540729i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) − 40.0000i − 1.65663i
\(584\) 10.0000 0.413803
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 12.0000i 0.495293i 0.968850 + 0.247647i \(0.0796572\pi\)
−0.968850 + 0.247647i \(0.920343\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.659269
\(590\) 0 0
\(591\) 0 0
\(592\) 1.00000i 0.0410997i
\(593\) 34.0000i 1.39621i 0.715994 + 0.698106i \(0.245974\pi\)
−0.715994 + 0.698106i \(0.754026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.0000 −0.409616
\(597\) 0 0
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 10.0000 0.407909 0.203954 0.978980i \(-0.434621\pi\)
0.203954 + 0.978980i \(0.434621\pi\)
\(602\) 0 0
\(603\) 24.0000i 0.977356i
\(604\) 24.0000 0.976546
\(605\) 0 0
\(606\) 0 0
\(607\) − 24.0000i − 0.974130i −0.873366 0.487065i \(-0.838067\pi\)
0.873366 0.487065i \(-0.161933\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 0 0
\(610\) 0 0
\(611\) −16.0000 −0.647291
\(612\) − 6.00000i − 0.242536i
\(613\) − 6.00000i − 0.242338i −0.992632 0.121169i \(-0.961336\pi\)
0.992632 0.121169i \(-0.0386643\pi\)
\(614\) −32.0000 −1.29141
\(615\) 0 0
\(616\) 0 0
\(617\) 30.0000i 1.20775i 0.797077 + 0.603877i \(0.206378\pi\)
−0.797077 + 0.603877i \(0.793622\pi\)
\(618\) 0 0
\(619\) −4.00000 −0.160774 −0.0803868 0.996764i \(-0.525616\pi\)
−0.0803868 + 0.996764i \(0.525616\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 12.0000i 0.481156i
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) 0 0
\(628\) − 6.00000i − 0.239426i
\(629\) −2.00000 −0.0797452
\(630\) 0 0
\(631\) −36.0000 −1.43314 −0.716569 0.697517i \(-0.754288\pi\)
−0.716569 + 0.697517i \(0.754288\pi\)
\(632\) − 4.00000i − 0.159111i
\(633\) 0 0
\(634\) 2.00000 0.0794301
\(635\) 0 0
\(636\) 0 0
\(637\) 14.0000i 0.554700i
\(638\) − 24.0000i − 0.950169i
\(639\) 0 0
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 0 0
\(643\) − 44.0000i − 1.73519i −0.497271 0.867595i \(-0.665665\pi\)
0.497271 0.867595i \(-0.334335\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) − 8.00000i − 0.314512i −0.987558 0.157256i \(-0.949735\pi\)
0.987558 0.157256i \(-0.0502649\pi\)
\(648\) − 9.00000i − 0.353553i
\(649\) 16.0000 0.628055
\(650\) 0 0
\(651\) 0 0
\(652\) 4.00000i 0.156652i
\(653\) 34.0000i 1.33052i 0.746611 + 0.665261i \(0.231680\pi\)
−0.746611 + 0.665261i \(0.768320\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −6.00000 −0.234261
\(657\) 30.0000i 1.17041i
\(658\) 0 0
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 20.0000i 0.777322i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −3.00000 −0.116248
\(667\) 0 0
\(668\) − 16.0000i − 0.619059i
\(669\) 0 0
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 10.0000i 0.385472i 0.981251 + 0.192736i \(0.0617360\pi\)
−0.981251 + 0.192736i \(0.938264\pi\)
\(674\) 34.0000 1.30963
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) − 2.00000i − 0.0768662i −0.999261 0.0384331i \(-0.987763\pi\)
0.999261 0.0384331i \(-0.0122367\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 16.0000i 0.612672i
\(683\) 36.0000i 1.37750i 0.724998 + 0.688751i \(0.241841\pi\)
−0.724998 + 0.688751i \(0.758159\pi\)
\(684\) −12.0000 −0.458831
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 4.00000i 0.152499i
\(689\) −20.0000 −0.761939
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 14.0000i 0.532200i
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) − 12.0000i − 0.454532i
\(698\) 18.0000i 0.681310i
\(699\) 0 0
\(700\) 0 0
\(701\) 50.0000 1.88847 0.944237 0.329267i \(-0.106802\pi\)
0.944237 + 0.329267i \(0.106802\pi\)
\(702\) 0 0
\(703\) 4.00000i 0.150863i
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) 0 0
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) 12.0000 0.450035
\(712\) 2.00000i 0.0749532i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 0 0
\(718\) 0 0
\(719\) −32.0000 −1.19340 −0.596699 0.802465i \(-0.703521\pi\)
−0.596699 + 0.802465i \(0.703521\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) − 3.00000i − 0.111648i
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) − 16.0000i − 0.593407i −0.954970 0.296704i \(-0.904113\pi\)
0.954970 0.296704i \(-0.0958873\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 0 0
\(733\) 34.0000i 1.25582i 0.778287 + 0.627909i \(0.216089\pi\)
−0.778287 + 0.627909i \(0.783911\pi\)
\(734\) 8.00000 0.295285
\(735\) 0 0
\(736\) 0 0
\(737\) − 32.0000i − 1.17874i
\(738\) − 18.0000i − 0.662589i
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 24.0000i − 0.880475i −0.897881 0.440237i \(-0.854894\pi\)
0.897881 0.440237i \(-0.145106\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 14.0000 0.512576
\(747\) 0 0
\(748\) 8.00000i 0.292509i
\(749\) 0 0
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 0 0
\(754\) −12.0000 −0.437014
\(755\) 0 0
\(756\) 0 0
\(757\) − 10.0000i − 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 28.0000i 1.01701i
\(759\) 0 0
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 12.0000 0.434145
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) − 8.00000i − 0.288863i
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 14.0000i − 0.503871i
\(773\) − 22.0000i − 0.791285i −0.918405 0.395643i \(-0.870522\pi\)
0.918405 0.395643i \(-0.129478\pi\)
\(774\) −12.0000 −0.431331
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) 0 0
\(778\) 14.0000i 0.501924i
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 7.00000 0.250000
\(785\) 0 0
\(786\) 0 0
\(787\) − 48.0000i − 1.71102i −0.517790 0.855508i \(-0.673245\pi\)
0.517790 0.855508i \(-0.326755\pi\)
\(788\) 2.00000i 0.0712470i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 12.0000i 0.426401i
\(793\) 20.0000i 0.710221i
\(794\) 34.0000 1.20661
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) − 22.0000i − 0.776847i
\(803\) − 40.0000i − 1.41157i
\(804\) 0 0
\(805\) 0 0
\(806\) 8.00000 0.281788
\(807\) 0 0
\(808\) − 6.00000i − 0.211079i
\(809\) −26.0000 −0.914111 −0.457056 0.889438i \(-0.651096\pi\)
−0.457056 + 0.889438i \(0.651096\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 4.00000 0.140200
\(815\) 0 0
\(816\) 0 0
\(817\) 16.0000i 0.559769i
\(818\) − 2.00000i − 0.0699284i
\(819\) 0 0
\(820\) 0 0
\(821\) 6.00000 0.209401 0.104701 0.994504i \(-0.466612\pi\)
0.104701 + 0.994504i \(0.466612\pi\)
\(822\) 0 0
\(823\) 8.00000i 0.278862i 0.990232 + 0.139431i \(0.0445274\pi\)
−0.990232 + 0.139431i \(0.955473\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 12.0000i − 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 2.00000i − 0.0693375i
\(833\) 14.0000i 0.485071i
\(834\) 0 0
\(835\) 0 0
\(836\) 16.0000 0.553372
\(837\) 0 0
\(838\) − 28.0000i − 0.967244i
\(839\) −24.0000 −0.828572 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) − 6.00000i − 0.206774i
\(843\) 0 0
\(844\) −28.0000 −0.963800
\(845\) 0 0
\(846\) −24.0000 −0.825137
\(847\) 0 0
\(848\) 10.0000i 0.343401i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 10.0000i 0.342393i 0.985237 + 0.171197i \(0.0547634\pi\)
−0.985237 + 0.171197i \(0.945237\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 18.0000i 0.614868i 0.951569 + 0.307434i \(0.0994704\pi\)
−0.951569 + 0.307434i \(0.900530\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 20.0000i − 0.681203i
\(863\) 24.0000i 0.816970i 0.912765 + 0.408485i \(0.133943\pi\)
−0.912765 + 0.408485i \(0.866057\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.0000 0.475739
\(867\) 0 0
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) −16.0000 −0.542139
\(872\) 18.0000i 0.609557i
\(873\) − 18.0000i − 0.609208i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 42.0000i − 1.41824i −0.705088 0.709120i \(-0.749093\pi\)
0.705088 0.709120i \(-0.250907\pi\)
\(878\) 20.0000i 0.674967i
\(879\) 0 0
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 21.0000i 0.707107i
\(883\) 20.0000i 0.673054i 0.941674 + 0.336527i \(0.109252\pi\)
−0.941674 + 0.336527i \(0.890748\pi\)
\(884\) 4.00000 0.134535
\(885\) 0 0
\(886\) 24.0000 0.806296
\(887\) − 56.0000i − 1.88030i −0.340766 0.940148i \(-0.610687\pi\)
0.340766 0.940148i \(-0.389313\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −36.0000 −1.20605
\(892\) 16.0000i 0.535720i
\(893\) 32.0000i 1.07084i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 6.00000i 0.200223i
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) −20.0000 −0.666297
\(902\) 24.0000i 0.799113i
\(903\) 0 0
\(904\) 14.0000 0.465633
\(905\) 0 0
\(906\) 0 0
\(907\) 20.0000i 0.664089i 0.943264 + 0.332045i \(0.107738\pi\)
−0.943264 + 0.332045i \(0.892262\pi\)
\(908\) 20.0000i 0.663723i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) −36.0000 −1.19273 −0.596367 0.802712i \(-0.703390\pi\)
−0.596367 + 0.802712i \(0.703390\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −18.0000 −0.595387
\(915\) 0 0
\(916\) −18.0000 −0.594737
\(917\) 0 0
\(918\) 0 0
\(919\) −20.0000 −0.659739 −0.329870 0.944027i \(-0.607005\pi\)
−0.329870 + 0.944027i \(0.607005\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 10.0000i 0.329332i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 40.0000 1.31448
\(927\) 0 0
\(928\) 6.00000i 0.196960i
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 28.0000 0.917663
\(932\) 22.0000i 0.720634i
\(933\) 0 0
\(934\) 28.0000 0.916188
\(935\) 0 0
\(936\) 6.00000 0.196116
\(937\) 14.0000i 0.457360i 0.973502 + 0.228680i \(0.0734410\pi\)
−0.973502 + 0.228680i \(0.926559\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −42.0000 −1.36916 −0.684580 0.728937i \(-0.740015\pi\)
−0.684580 + 0.728937i \(0.740015\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 16.0000 0.520205
\(947\) 4.00000i 0.129983i 0.997886 + 0.0649913i \(0.0207020\pi\)
−0.997886 + 0.0649913i \(0.979298\pi\)
\(948\) 0 0
\(949\) −20.0000 −0.649227
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 6.00000i − 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) −30.0000 −0.971286
\(955\) 0 0
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) − 28.0000i − 0.904639i
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 2.00000i − 0.0644826i
\(963\) 24.0000i 0.773389i
\(964\) −2.00000 −0.0644157
\(965\) 0 0
\(966\) 0 0
\(967\) 8.00000i 0.257263i 0.991692 + 0.128631i \(0.0410584\pi\)
−0.991692 + 0.128631i \(0.958942\pi\)
\(968\) − 5.00000i − 0.160706i
\(969\) 0 0
\(970\) 0 0
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −16.0000 −0.512673
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) 50.0000i 1.59964i 0.600239 + 0.799821i \(0.295072\pi\)
−0.600239 + 0.799821i \(0.704928\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) −54.0000 −1.72409
\(982\) 20.0000i 0.638226i
\(983\) 24.0000i 0.765481i 0.923856 + 0.382741i \(0.125020\pi\)
−0.923856 + 0.382741i \(0.874980\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) − 8.00000i − 0.254514i
\(989\) 0 0
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) − 4.00000i − 0.127000i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 10.0000i − 0.316703i −0.987383 0.158352i \(-0.949382\pi\)
0.987383 0.158352i \(-0.0506179\pi\)
\(998\) 20.0000i 0.633089i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1850.2.b.d.149.2 2
5.2 odd 4 370.2.a.b.1.1 1
5.3 odd 4 1850.2.a.k.1.1 1
5.4 even 2 inner 1850.2.b.d.149.1 2
15.2 even 4 3330.2.a.w.1.1 1
20.7 even 4 2960.2.a.g.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.a.b.1.1 1 5.2 odd 4
1850.2.a.k.1.1 1 5.3 odd 4
1850.2.b.d.149.1 2 5.4 even 2 inner
1850.2.b.d.149.2 2 1.1 even 1 trivial
2960.2.a.g.1.1 1 20.7 even 4
3330.2.a.w.1.1 1 15.2 even 4