Properties

Label 1850.2.b.d
Level $1850$
Weight $2$
Character orbit 1850.b
Analytic conductor $14.772$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.7723243739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 370)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{2} - q^{4} + i q^{8} + 3 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - i q^{2} - q^{4} + i q^{8} + 3 q^{9} - 4 q^{11} - 2 i q^{13} + q^{16} - 2 i q^{17} - 3 i q^{18} + 4 q^{19} + 4 i q^{22} - 2 q^{26} + 6 q^{29} - 4 q^{31} - i q^{32} - 2 q^{34} - 3 q^{36} - i q^{37} - 4 i q^{38} - 6 q^{41} - 4 i q^{43} + 4 q^{44} - 8 i q^{47} + 7 q^{49} + 2 i q^{52} - 10 i q^{53} - 6 i q^{58} - 4 q^{59} + 10 q^{61} + 4 i q^{62} - q^{64} - 8 i q^{67} + 2 i q^{68} + 3 i q^{72} - 10 i q^{73} - q^{74} - 4 q^{76} + 4 q^{79} + 9 q^{81} + 6 i q^{82} - 4 q^{86} - 4 i q^{88} - 2 q^{89} - 8 q^{94} + 6 i q^{97} - 7 i q^{98} - 12 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 6 q^{9} - 8 q^{11} + 2 q^{16} + 8 q^{19} - 4 q^{26} + 12 q^{29} - 8 q^{31} - 4 q^{34} - 6 q^{36} - 12 q^{41} + 8 q^{44} + 14 q^{49} - 8 q^{59} + 20 q^{61} - 2 q^{64} - 2 q^{74} - 8 q^{76} + 8 q^{79} + 18 q^{81} - 8 q^{86} - 4 q^{89} - 16 q^{94} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1850\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1777\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
1.00000i
1.00000i
1.00000i 0 −1.00000 0 0 0 1.00000i 3.00000 0
149.2 1.00000i 0 −1.00000 0 0 0 1.00000i 3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1850.2.b.d 2
5.b even 2 1 inner 1850.2.b.d 2
5.c odd 4 1 370.2.a.b 1
5.c odd 4 1 1850.2.a.k 1
15.e even 4 1 3330.2.a.w 1
20.e even 4 1 2960.2.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.a.b 1 5.c odd 4 1
1850.2.a.k 1 5.c odd 4 1
1850.2.b.d 2 1.a even 1 1 trivial
1850.2.b.d 2 5.b even 2 1 inner
2960.2.a.g 1 20.e even 4 1
3330.2.a.w 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1850, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 4 \) Copy content Toggle raw display
$19$ \( (T - 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1 \) Copy content Toggle raw display
$41$ \( (T + 6)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 64 \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T - 10)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 64 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 100 \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less