Properties

Label 1850.2.b.a
Level $1850$
Weight $2$
Character orbit 1850.b
Analytic conductor $14.772$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.7723243739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} + 3 i q^{3} - q^{4} - 3 q^{6} - i q^{8} - 6 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} + 3 i q^{3} - q^{4} - 3 q^{6} - i q^{8} - 6 q^{9} - q^{11} - 3 i q^{12} + 2 i q^{13} + q^{16} - 7 i q^{17} - 6 i q^{18} - 5 q^{19} - i q^{22} - 6 i q^{23} + 3 q^{24} - 2 q^{26} - 9 i q^{27} - 4 q^{31} + i q^{32} - 3 i q^{33} + 7 q^{34} + 6 q^{36} + i q^{37} - 5 i q^{38} - 6 q^{39} - 3 q^{41} + 4 i q^{43} + q^{44} + 6 q^{46} - 4 i q^{47} + 3 i q^{48} + 7 q^{49} + 21 q^{51} - 2 i q^{52} - 2 i q^{53} + 9 q^{54} - 15 i q^{57} - 4 q^{59} - 8 q^{61} - 4 i q^{62} - q^{64} + 3 q^{66} - 13 i q^{67} + 7 i q^{68} + 18 q^{69} - 6 q^{71} + 6 i q^{72} + 7 i q^{73} - q^{74} + 5 q^{76} - 6 i q^{78} - 14 q^{79} + 9 q^{81} - 3 i q^{82} - 3 i q^{83} - 4 q^{86} + i q^{88} + 7 q^{89} + 6 i q^{92} - 12 i q^{93} + 4 q^{94} - 3 q^{96} - 18 i q^{97} + 7 i q^{98} + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 6 q^{6} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 6 q^{6} - 12 q^{9} - 2 q^{11} + 2 q^{16} - 10 q^{19} + 6 q^{24} - 4 q^{26} - 8 q^{31} + 14 q^{34} + 12 q^{36} - 12 q^{39} - 6 q^{41} + 2 q^{44} + 12 q^{46} + 14 q^{49} + 42 q^{51} + 18 q^{54} - 8 q^{59} - 16 q^{61} - 2 q^{64} + 6 q^{66} + 36 q^{69} - 12 q^{71} - 2 q^{74} + 10 q^{76} - 28 q^{79} + 18 q^{81} - 8 q^{86} + 14 q^{89} + 8 q^{94} - 6 q^{96} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1850\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1777\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
149.1
1.00000i
1.00000i
1.00000i 3.00000i −1.00000 0 −3.00000 0 1.00000i −6.00000 0
149.2 1.00000i 3.00000i −1.00000 0 −3.00000 0 1.00000i −6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1850.2.b.a 2
5.b even 2 1 inner 1850.2.b.a 2
5.c odd 4 1 1850.2.a.g 1
5.c odd 4 1 1850.2.a.h yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1850.2.a.g 1 5.c odd 4 1
1850.2.a.h yes 1 5.c odd 4 1
1850.2.b.a 2 1.a even 1 1 trivial
1850.2.b.a 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1850, [\chi])\):

\( T_{3}^{2} + 9 \) Copy content Toggle raw display
\( T_{7} \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( (T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( T^{2} + 49 \) Copy content Toggle raw display
$19$ \( (T + 5)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1 \) Copy content Toggle raw display
$41$ \( (T + 3)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{2} + 4 \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T + 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 169 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 49 \) Copy content Toggle raw display
$79$ \( (T + 14)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 9 \) Copy content Toggle raw display
$89$ \( (T - 7)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 324 \) Copy content Toggle raw display
show more
show less