Properties

Label 1850.2.a.w.1.2
Level $1850$
Weight $2$
Character 1850.1
Self dual yes
Analytic conductor $14.772$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1850,2,Mod(1,1850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.7723243739\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 1850.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +3.44949 q^{3} +1.00000 q^{4} +3.44949 q^{6} -2.44949 q^{7} +1.00000 q^{8} +8.89898 q^{9} -1.44949 q^{11} +3.44949 q^{12} +4.44949 q^{13} -2.44949 q^{14} +1.00000 q^{16} -1.44949 q^{17} +8.89898 q^{18} -5.00000 q^{19} -8.44949 q^{21} -1.44949 q^{22} +2.00000 q^{23} +3.44949 q^{24} +4.44949 q^{26} +20.3485 q^{27} -2.44949 q^{28} +8.89898 q^{29} -0.449490 q^{31} +1.00000 q^{32} -5.00000 q^{33} -1.44949 q^{34} +8.89898 q^{36} -1.00000 q^{37} -5.00000 q^{38} +15.3485 q^{39} +1.00000 q^{41} -8.44949 q^{42} -10.8990 q^{43} -1.44949 q^{44} +2.00000 q^{46} -9.79796 q^{47} +3.44949 q^{48} -1.00000 q^{49} -5.00000 q^{51} +4.44949 q^{52} +6.00000 q^{53} +20.3485 q^{54} -2.44949 q^{56} -17.2474 q^{57} +8.89898 q^{58} -2.00000 q^{59} -1.55051 q^{61} -0.449490 q^{62} -21.7980 q^{63} +1.00000 q^{64} -5.00000 q^{66} +9.44949 q^{67} -1.44949 q^{68} +6.89898 q^{69} -12.4495 q^{71} +8.89898 q^{72} -6.79796 q^{73} -1.00000 q^{74} -5.00000 q^{76} +3.55051 q^{77} +15.3485 q^{78} -11.7980 q^{79} +43.4949 q^{81} +1.00000 q^{82} -1.44949 q^{83} -8.44949 q^{84} -10.8990 q^{86} +30.6969 q^{87} -1.44949 q^{88} -0.348469 q^{89} -10.8990 q^{91} +2.00000 q^{92} -1.55051 q^{93} -9.79796 q^{94} +3.44949 q^{96} +14.0000 q^{97} -1.00000 q^{98} -12.8990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{3} + 2 q^{4} + 2 q^{6} + 2 q^{8} + 8 q^{9} + 2 q^{11} + 2 q^{12} + 4 q^{13} + 2 q^{16} + 2 q^{17} + 8 q^{18} - 10 q^{19} - 12 q^{21} + 2 q^{22} + 4 q^{23} + 2 q^{24} + 4 q^{26} + 26 q^{27}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 3.44949 1.99156 0.995782 0.0917517i \(-0.0292466\pi\)
0.995782 + 0.0917517i \(0.0292466\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 3.44949 1.40825
\(7\) −2.44949 −0.925820 −0.462910 0.886405i \(-0.653195\pi\)
−0.462910 + 0.886405i \(0.653195\pi\)
\(8\) 1.00000 0.353553
\(9\) 8.89898 2.96633
\(10\) 0 0
\(11\) −1.44949 −0.437038 −0.218519 0.975833i \(-0.570122\pi\)
−0.218519 + 0.975833i \(0.570122\pi\)
\(12\) 3.44949 0.995782
\(13\) 4.44949 1.23407 0.617033 0.786937i \(-0.288334\pi\)
0.617033 + 0.786937i \(0.288334\pi\)
\(14\) −2.44949 −0.654654
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.44949 −0.351553 −0.175776 0.984430i \(-0.556244\pi\)
−0.175776 + 0.984430i \(0.556244\pi\)
\(18\) 8.89898 2.09751
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) −8.44949 −1.84383
\(22\) −1.44949 −0.309032
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 3.44949 0.704124
\(25\) 0 0
\(26\) 4.44949 0.872617
\(27\) 20.3485 3.91606
\(28\) −2.44949 −0.462910
\(29\) 8.89898 1.65250 0.826250 0.563304i \(-0.190470\pi\)
0.826250 + 0.563304i \(0.190470\pi\)
\(30\) 0 0
\(31\) −0.449490 −0.0807307 −0.0403654 0.999185i \(-0.512852\pi\)
−0.0403654 + 0.999185i \(0.512852\pi\)
\(32\) 1.00000 0.176777
\(33\) −5.00000 −0.870388
\(34\) −1.44949 −0.248585
\(35\) 0 0
\(36\) 8.89898 1.48316
\(37\) −1.00000 −0.164399
\(38\) −5.00000 −0.811107
\(39\) 15.3485 2.45772
\(40\) 0 0
\(41\) 1.00000 0.156174 0.0780869 0.996947i \(-0.475119\pi\)
0.0780869 + 0.996947i \(0.475119\pi\)
\(42\) −8.44949 −1.30378
\(43\) −10.8990 −1.66208 −0.831039 0.556214i \(-0.812254\pi\)
−0.831039 + 0.556214i \(0.812254\pi\)
\(44\) −1.44949 −0.218519
\(45\) 0 0
\(46\) 2.00000 0.294884
\(47\) −9.79796 −1.42918 −0.714590 0.699544i \(-0.753387\pi\)
−0.714590 + 0.699544i \(0.753387\pi\)
\(48\) 3.44949 0.497891
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −5.00000 −0.700140
\(52\) 4.44949 0.617033
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 20.3485 2.76908
\(55\) 0 0
\(56\) −2.44949 −0.327327
\(57\) −17.2474 −2.28448
\(58\) 8.89898 1.16849
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −1.55051 −0.198522 −0.0992612 0.995061i \(-0.531648\pi\)
−0.0992612 + 0.995061i \(0.531648\pi\)
\(62\) −0.449490 −0.0570853
\(63\) −21.7980 −2.74628
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −5.00000 −0.615457
\(67\) 9.44949 1.15444 0.577219 0.816589i \(-0.304138\pi\)
0.577219 + 0.816589i \(0.304138\pi\)
\(68\) −1.44949 −0.175776
\(69\) 6.89898 0.830540
\(70\) 0 0
\(71\) −12.4495 −1.47748 −0.738741 0.673989i \(-0.764579\pi\)
−0.738741 + 0.673989i \(0.764579\pi\)
\(72\) 8.89898 1.04875
\(73\) −6.79796 −0.795641 −0.397820 0.917463i \(-0.630233\pi\)
−0.397820 + 0.917463i \(0.630233\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −5.00000 −0.573539
\(77\) 3.55051 0.404618
\(78\) 15.3485 1.73787
\(79\) −11.7980 −1.32737 −0.663687 0.748010i \(-0.731009\pi\)
−0.663687 + 0.748010i \(0.731009\pi\)
\(80\) 0 0
\(81\) 43.4949 4.83277
\(82\) 1.00000 0.110432
\(83\) −1.44949 −0.159102 −0.0795511 0.996831i \(-0.525349\pi\)
−0.0795511 + 0.996831i \(0.525349\pi\)
\(84\) −8.44949 −0.921915
\(85\) 0 0
\(86\) −10.8990 −1.17527
\(87\) 30.6969 3.29106
\(88\) −1.44949 −0.154516
\(89\) −0.348469 −0.0369377 −0.0184688 0.999829i \(-0.505879\pi\)
−0.0184688 + 0.999829i \(0.505879\pi\)
\(90\) 0 0
\(91\) −10.8990 −1.14252
\(92\) 2.00000 0.208514
\(93\) −1.55051 −0.160780
\(94\) −9.79796 −1.01058
\(95\) 0 0
\(96\) 3.44949 0.352062
\(97\) 14.0000 1.42148 0.710742 0.703452i \(-0.248359\pi\)
0.710742 + 0.703452i \(0.248359\pi\)
\(98\) −1.00000 −0.101015
\(99\) −12.8990 −1.29640
\(100\) 0 0
\(101\) 10.8990 1.08449 0.542244 0.840221i \(-0.317575\pi\)
0.542244 + 0.840221i \(0.317575\pi\)
\(102\) −5.00000 −0.495074
\(103\) 1.55051 0.152776 0.0763882 0.997078i \(-0.475661\pi\)
0.0763882 + 0.997078i \(0.475661\pi\)
\(104\) 4.44949 0.436308
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) −13.4495 −1.30021 −0.650106 0.759844i \(-0.725275\pi\)
−0.650106 + 0.759844i \(0.725275\pi\)
\(108\) 20.3485 1.95803
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) −3.44949 −0.327411
\(112\) −2.44949 −0.231455
\(113\) −9.44949 −0.888933 −0.444467 0.895795i \(-0.646607\pi\)
−0.444467 + 0.895795i \(0.646607\pi\)
\(114\) −17.2474 −1.61537
\(115\) 0 0
\(116\) 8.89898 0.826250
\(117\) 39.5959 3.66064
\(118\) −2.00000 −0.184115
\(119\) 3.55051 0.325475
\(120\) 0 0
\(121\) −8.89898 −0.808998
\(122\) −1.55051 −0.140377
\(123\) 3.44949 0.311030
\(124\) −0.449490 −0.0403654
\(125\) 0 0
\(126\) −21.7980 −1.94192
\(127\) 8.24745 0.731843 0.365921 0.930646i \(-0.380754\pi\)
0.365921 + 0.930646i \(0.380754\pi\)
\(128\) 1.00000 0.0883883
\(129\) −37.5959 −3.31014
\(130\) 0 0
\(131\) −20.6969 −1.80830 −0.904150 0.427215i \(-0.859495\pi\)
−0.904150 + 0.427215i \(0.859495\pi\)
\(132\) −5.00000 −0.435194
\(133\) 12.2474 1.06199
\(134\) 9.44949 0.816312
\(135\) 0 0
\(136\) −1.44949 −0.124293
\(137\) −19.6969 −1.68282 −0.841412 0.540395i \(-0.818275\pi\)
−0.841412 + 0.540395i \(0.818275\pi\)
\(138\) 6.89898 0.587280
\(139\) −17.4495 −1.48005 −0.740023 0.672581i \(-0.765186\pi\)
−0.740023 + 0.672581i \(0.765186\pi\)
\(140\) 0 0
\(141\) −33.7980 −2.84630
\(142\) −12.4495 −1.04474
\(143\) −6.44949 −0.539333
\(144\) 8.89898 0.741582
\(145\) 0 0
\(146\) −6.79796 −0.562603
\(147\) −3.44949 −0.284509
\(148\) −1.00000 −0.0821995
\(149\) −19.3485 −1.58509 −0.792544 0.609814i \(-0.791244\pi\)
−0.792544 + 0.609814i \(0.791244\pi\)
\(150\) 0 0
\(151\) −14.0000 −1.13930 −0.569652 0.821886i \(-0.692922\pi\)
−0.569652 + 0.821886i \(0.692922\pi\)
\(152\) −5.00000 −0.405554
\(153\) −12.8990 −1.04282
\(154\) 3.55051 0.286108
\(155\) 0 0
\(156\) 15.3485 1.22886
\(157\) 11.5505 0.921831 0.460916 0.887444i \(-0.347521\pi\)
0.460916 + 0.887444i \(0.347521\pi\)
\(158\) −11.7980 −0.938595
\(159\) 20.6969 1.64137
\(160\) 0 0
\(161\) −4.89898 −0.386094
\(162\) 43.4949 3.41728
\(163\) 19.8990 1.55861 0.779304 0.626646i \(-0.215573\pi\)
0.779304 + 0.626646i \(0.215573\pi\)
\(164\) 1.00000 0.0780869
\(165\) 0 0
\(166\) −1.44949 −0.112502
\(167\) −5.55051 −0.429511 −0.214756 0.976668i \(-0.568896\pi\)
−0.214756 + 0.976668i \(0.568896\pi\)
\(168\) −8.44949 −0.651892
\(169\) 6.79796 0.522920
\(170\) 0 0
\(171\) −44.4949 −3.40261
\(172\) −10.8990 −0.831039
\(173\) 22.6969 1.72562 0.862808 0.505532i \(-0.168704\pi\)
0.862808 + 0.505532i \(0.168704\pi\)
\(174\) 30.6969 2.32713
\(175\) 0 0
\(176\) −1.44949 −0.109259
\(177\) −6.89898 −0.518559
\(178\) −0.348469 −0.0261189
\(179\) 18.7980 1.40503 0.702513 0.711671i \(-0.252061\pi\)
0.702513 + 0.711671i \(0.252061\pi\)
\(180\) 0 0
\(181\) −2.89898 −0.215479 −0.107740 0.994179i \(-0.534361\pi\)
−0.107740 + 0.994179i \(0.534361\pi\)
\(182\) −10.8990 −0.807886
\(183\) −5.34847 −0.395370
\(184\) 2.00000 0.147442
\(185\) 0 0
\(186\) −1.55051 −0.113689
\(187\) 2.10102 0.153642
\(188\) −9.79796 −0.714590
\(189\) −49.8434 −3.62557
\(190\) 0 0
\(191\) 11.7980 0.853670 0.426835 0.904329i \(-0.359628\pi\)
0.426835 + 0.904329i \(0.359628\pi\)
\(192\) 3.44949 0.248945
\(193\) −7.44949 −0.536226 −0.268113 0.963387i \(-0.586400\pi\)
−0.268113 + 0.963387i \(0.586400\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) −2.65153 −0.188914 −0.0944569 0.995529i \(-0.530111\pi\)
−0.0944569 + 0.995529i \(0.530111\pi\)
\(198\) −12.8990 −0.916691
\(199\) 23.5959 1.67267 0.836335 0.548219i \(-0.184694\pi\)
0.836335 + 0.548219i \(0.184694\pi\)
\(200\) 0 0
\(201\) 32.5959 2.29914
\(202\) 10.8990 0.766850
\(203\) −21.7980 −1.52992
\(204\) −5.00000 −0.350070
\(205\) 0 0
\(206\) 1.55051 0.108029
\(207\) 17.7980 1.23704
\(208\) 4.44949 0.308517
\(209\) 7.24745 0.501317
\(210\) 0 0
\(211\) −9.44949 −0.650530 −0.325265 0.945623i \(-0.605453\pi\)
−0.325265 + 0.945623i \(0.605453\pi\)
\(212\) 6.00000 0.412082
\(213\) −42.9444 −2.94250
\(214\) −13.4495 −0.919388
\(215\) 0 0
\(216\) 20.3485 1.38454
\(217\) 1.10102 0.0747421
\(218\) 14.0000 0.948200
\(219\) −23.4495 −1.58457
\(220\) 0 0
\(221\) −6.44949 −0.433840
\(222\) −3.44949 −0.231515
\(223\) 2.20204 0.147460 0.0737298 0.997278i \(-0.476510\pi\)
0.0737298 + 0.997278i \(0.476510\pi\)
\(224\) −2.44949 −0.163663
\(225\) 0 0
\(226\) −9.44949 −0.628571
\(227\) 12.6969 0.842725 0.421363 0.906892i \(-0.361552\pi\)
0.421363 + 0.906892i \(0.361552\pi\)
\(228\) −17.2474 −1.14224
\(229\) −13.7980 −0.911795 −0.455897 0.890032i \(-0.650682\pi\)
−0.455897 + 0.890032i \(0.650682\pi\)
\(230\) 0 0
\(231\) 12.2474 0.805823
\(232\) 8.89898 0.584247
\(233\) 20.4949 1.34267 0.671333 0.741156i \(-0.265722\pi\)
0.671333 + 0.741156i \(0.265722\pi\)
\(234\) 39.5959 2.58847
\(235\) 0 0
\(236\) −2.00000 −0.130189
\(237\) −40.6969 −2.64355
\(238\) 3.55051 0.230145
\(239\) −8.89898 −0.575627 −0.287814 0.957686i \(-0.592928\pi\)
−0.287814 + 0.957686i \(0.592928\pi\)
\(240\) 0 0
\(241\) −7.44949 −0.479864 −0.239932 0.970790i \(-0.577125\pi\)
−0.239932 + 0.970790i \(0.577125\pi\)
\(242\) −8.89898 −0.572048
\(243\) 88.9898 5.70870
\(244\) −1.55051 −0.0992612
\(245\) 0 0
\(246\) 3.44949 0.219931
\(247\) −22.2474 −1.41557
\(248\) −0.449490 −0.0285426
\(249\) −5.00000 −0.316862
\(250\) 0 0
\(251\) −11.2020 −0.707067 −0.353533 0.935422i \(-0.615020\pi\)
−0.353533 + 0.935422i \(0.615020\pi\)
\(252\) −21.7980 −1.37314
\(253\) −2.89898 −0.182257
\(254\) 8.24745 0.517491
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 2.89898 0.180833 0.0904167 0.995904i \(-0.471180\pi\)
0.0904167 + 0.995904i \(0.471180\pi\)
\(258\) −37.5959 −2.34062
\(259\) 2.44949 0.152204
\(260\) 0 0
\(261\) 79.1918 4.90185
\(262\) −20.6969 −1.27866
\(263\) 19.7980 1.22079 0.610397 0.792095i \(-0.291010\pi\)
0.610397 + 0.792095i \(0.291010\pi\)
\(264\) −5.00000 −0.307729
\(265\) 0 0
\(266\) 12.2474 0.750939
\(267\) −1.20204 −0.0735637
\(268\) 9.44949 0.577219
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −14.0454 −0.853198 −0.426599 0.904441i \(-0.640288\pi\)
−0.426599 + 0.904441i \(0.640288\pi\)
\(272\) −1.44949 −0.0878882
\(273\) −37.5959 −2.27541
\(274\) −19.6969 −1.18994
\(275\) 0 0
\(276\) 6.89898 0.415270
\(277\) −13.7980 −0.829039 −0.414520 0.910040i \(-0.636050\pi\)
−0.414520 + 0.910040i \(0.636050\pi\)
\(278\) −17.4495 −1.04655
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −0.898979 −0.0536286 −0.0268143 0.999640i \(-0.508536\pi\)
−0.0268143 + 0.999640i \(0.508536\pi\)
\(282\) −33.7980 −2.01264
\(283\) 17.6969 1.05197 0.525987 0.850493i \(-0.323696\pi\)
0.525987 + 0.850493i \(0.323696\pi\)
\(284\) −12.4495 −0.738741
\(285\) 0 0
\(286\) −6.44949 −0.381366
\(287\) −2.44949 −0.144589
\(288\) 8.89898 0.524377
\(289\) −14.8990 −0.876411
\(290\) 0 0
\(291\) 48.2929 2.83098
\(292\) −6.79796 −0.397820
\(293\) 16.0454 0.937383 0.468691 0.883362i \(-0.344726\pi\)
0.468691 + 0.883362i \(0.344726\pi\)
\(294\) −3.44949 −0.201178
\(295\) 0 0
\(296\) −1.00000 −0.0581238
\(297\) −29.4949 −1.71147
\(298\) −19.3485 −1.12083
\(299\) 8.89898 0.514641
\(300\) 0 0
\(301\) 26.6969 1.53879
\(302\) −14.0000 −0.805609
\(303\) 37.5959 2.15983
\(304\) −5.00000 −0.286770
\(305\) 0 0
\(306\) −12.8990 −0.737386
\(307\) 22.3485 1.27549 0.637747 0.770246i \(-0.279866\pi\)
0.637747 + 0.770246i \(0.279866\pi\)
\(308\) 3.55051 0.202309
\(309\) 5.34847 0.304264
\(310\) 0 0
\(311\) −3.55051 −0.201331 −0.100665 0.994920i \(-0.532097\pi\)
−0.100665 + 0.994920i \(0.532097\pi\)
\(312\) 15.3485 0.868936
\(313\) −0.898979 −0.0508133 −0.0254067 0.999677i \(-0.508088\pi\)
−0.0254067 + 0.999677i \(0.508088\pi\)
\(314\) 11.5505 0.651833
\(315\) 0 0
\(316\) −11.7980 −0.663687
\(317\) −14.4495 −0.811564 −0.405782 0.913970i \(-0.633001\pi\)
−0.405782 + 0.913970i \(0.633001\pi\)
\(318\) 20.6969 1.16063
\(319\) −12.8990 −0.722204
\(320\) 0 0
\(321\) −46.3939 −2.58945
\(322\) −4.89898 −0.273009
\(323\) 7.24745 0.403259
\(324\) 43.4949 2.41638
\(325\) 0 0
\(326\) 19.8990 1.10210
\(327\) 48.2929 2.67060
\(328\) 1.00000 0.0552158
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 10.1010 0.555202 0.277601 0.960696i \(-0.410461\pi\)
0.277601 + 0.960696i \(0.410461\pi\)
\(332\) −1.44949 −0.0795511
\(333\) −8.89898 −0.487661
\(334\) −5.55051 −0.303710
\(335\) 0 0
\(336\) −8.44949 −0.460957
\(337\) −13.6969 −0.746120 −0.373060 0.927807i \(-0.621691\pi\)
−0.373060 + 0.927807i \(0.621691\pi\)
\(338\) 6.79796 0.369760
\(339\) −32.5959 −1.77037
\(340\) 0 0
\(341\) 0.651531 0.0352824
\(342\) −44.4949 −2.40601
\(343\) 19.5959 1.05808
\(344\) −10.8990 −0.587634
\(345\) 0 0
\(346\) 22.6969 1.22019
\(347\) 0.797959 0.0428367 0.0214183 0.999771i \(-0.493182\pi\)
0.0214183 + 0.999771i \(0.493182\pi\)
\(348\) 30.6969 1.64553
\(349\) −7.55051 −0.404170 −0.202085 0.979368i \(-0.564772\pi\)
−0.202085 + 0.979368i \(0.564772\pi\)
\(350\) 0 0
\(351\) 90.5403 4.83268
\(352\) −1.44949 −0.0772581
\(353\) 5.10102 0.271500 0.135750 0.990743i \(-0.456656\pi\)
0.135750 + 0.990743i \(0.456656\pi\)
\(354\) −6.89898 −0.366677
\(355\) 0 0
\(356\) −0.348469 −0.0184688
\(357\) 12.2474 0.648204
\(358\) 18.7980 0.993503
\(359\) 27.3939 1.44579 0.722897 0.690956i \(-0.242810\pi\)
0.722897 + 0.690956i \(0.242810\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) −2.89898 −0.152367
\(363\) −30.6969 −1.61117
\(364\) −10.8990 −0.571262
\(365\) 0 0
\(366\) −5.34847 −0.279569
\(367\) 10.2474 0.534912 0.267456 0.963570i \(-0.413817\pi\)
0.267456 + 0.963570i \(0.413817\pi\)
\(368\) 2.00000 0.104257
\(369\) 8.89898 0.463262
\(370\) 0 0
\(371\) −14.6969 −0.763027
\(372\) −1.55051 −0.0803902
\(373\) 24.0454 1.24502 0.622512 0.782610i \(-0.286112\pi\)
0.622512 + 0.782610i \(0.286112\pi\)
\(374\) 2.10102 0.108641
\(375\) 0 0
\(376\) −9.79796 −0.505291
\(377\) 39.5959 2.03929
\(378\) −49.8434 −2.56367
\(379\) 23.0454 1.18376 0.591882 0.806025i \(-0.298385\pi\)
0.591882 + 0.806025i \(0.298385\pi\)
\(380\) 0 0
\(381\) 28.4495 1.45751
\(382\) 11.7980 0.603636
\(383\) 9.34847 0.477684 0.238842 0.971058i \(-0.423232\pi\)
0.238842 + 0.971058i \(0.423232\pi\)
\(384\) 3.44949 0.176031
\(385\) 0 0
\(386\) −7.44949 −0.379169
\(387\) −96.9898 −4.93027
\(388\) 14.0000 0.710742
\(389\) −21.1464 −1.07217 −0.536083 0.844165i \(-0.680097\pi\)
−0.536083 + 0.844165i \(0.680097\pi\)
\(390\) 0 0
\(391\) −2.89898 −0.146608
\(392\) −1.00000 −0.0505076
\(393\) −71.3939 −3.60134
\(394\) −2.65153 −0.133582
\(395\) 0 0
\(396\) −12.8990 −0.648198
\(397\) −0.651531 −0.0326994 −0.0163497 0.999866i \(-0.505205\pi\)
−0.0163497 + 0.999866i \(0.505205\pi\)
\(398\) 23.5959 1.18276
\(399\) 42.2474 2.11502
\(400\) 0 0
\(401\) −37.9444 −1.89485 −0.947426 0.319975i \(-0.896326\pi\)
−0.947426 + 0.319975i \(0.896326\pi\)
\(402\) 32.5959 1.62574
\(403\) −2.00000 −0.0996271
\(404\) 10.8990 0.542244
\(405\) 0 0
\(406\) −21.7980 −1.08181
\(407\) 1.44949 0.0718485
\(408\) −5.00000 −0.247537
\(409\) 0.146428 0.00724041 0.00362020 0.999993i \(-0.498848\pi\)
0.00362020 + 0.999993i \(0.498848\pi\)
\(410\) 0 0
\(411\) −67.9444 −3.35145
\(412\) 1.55051 0.0763882
\(413\) 4.89898 0.241063
\(414\) 17.7980 0.874722
\(415\) 0 0
\(416\) 4.44949 0.218154
\(417\) −60.1918 −2.94761
\(418\) 7.24745 0.354484
\(419\) −16.5505 −0.808545 −0.404273 0.914639i \(-0.632475\pi\)
−0.404273 + 0.914639i \(0.632475\pi\)
\(420\) 0 0
\(421\) 23.1010 1.12587 0.562937 0.826500i \(-0.309671\pi\)
0.562937 + 0.826500i \(0.309671\pi\)
\(422\) −9.44949 −0.459994
\(423\) −87.1918 −4.23941
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) −42.9444 −2.08066
\(427\) 3.79796 0.183796
\(428\) −13.4495 −0.650106
\(429\) −22.2474 −1.07412
\(430\) 0 0
\(431\) 8.69694 0.418917 0.209458 0.977818i \(-0.432830\pi\)
0.209458 + 0.977818i \(0.432830\pi\)
\(432\) 20.3485 0.979016
\(433\) 19.0000 0.913082 0.456541 0.889702i \(-0.349088\pi\)
0.456541 + 0.889702i \(0.349088\pi\)
\(434\) 1.10102 0.0528507
\(435\) 0 0
\(436\) 14.0000 0.670478
\(437\) −10.0000 −0.478365
\(438\) −23.4495 −1.12046
\(439\) 19.5959 0.935262 0.467631 0.883924i \(-0.345108\pi\)
0.467631 + 0.883924i \(0.345108\pi\)
\(440\) 0 0
\(441\) −8.89898 −0.423761
\(442\) −6.44949 −0.306771
\(443\) −12.5505 −0.596293 −0.298146 0.954520i \(-0.596368\pi\)
−0.298146 + 0.954520i \(0.596368\pi\)
\(444\) −3.44949 −0.163706
\(445\) 0 0
\(446\) 2.20204 0.104270
\(447\) −66.7423 −3.15680
\(448\) −2.44949 −0.115728
\(449\) 8.75255 0.413058 0.206529 0.978440i \(-0.433783\pi\)
0.206529 + 0.978440i \(0.433783\pi\)
\(450\) 0 0
\(451\) −1.44949 −0.0682538
\(452\) −9.44949 −0.444467
\(453\) −48.2929 −2.26900
\(454\) 12.6969 0.595897
\(455\) 0 0
\(456\) −17.2474 −0.807686
\(457\) −9.24745 −0.432577 −0.216289 0.976329i \(-0.569395\pi\)
−0.216289 + 0.976329i \(0.569395\pi\)
\(458\) −13.7980 −0.644736
\(459\) −29.4949 −1.37670
\(460\) 0 0
\(461\) 38.6969 1.80230 0.901148 0.433511i \(-0.142726\pi\)
0.901148 + 0.433511i \(0.142726\pi\)
\(462\) 12.2474 0.569803
\(463\) 14.4495 0.671525 0.335762 0.941947i \(-0.391006\pi\)
0.335762 + 0.941947i \(0.391006\pi\)
\(464\) 8.89898 0.413125
\(465\) 0 0
\(466\) 20.4949 0.949408
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 39.5959 1.83032
\(469\) −23.1464 −1.06880
\(470\) 0 0
\(471\) 39.8434 1.83589
\(472\) −2.00000 −0.0920575
\(473\) 15.7980 0.726391
\(474\) −40.6969 −1.86927
\(475\) 0 0
\(476\) 3.55051 0.162737
\(477\) 53.3939 2.44474
\(478\) −8.89898 −0.407030
\(479\) −18.2474 −0.833747 −0.416874 0.908964i \(-0.636874\pi\)
−0.416874 + 0.908964i \(0.636874\pi\)
\(480\) 0 0
\(481\) −4.44949 −0.202879
\(482\) −7.44949 −0.339315
\(483\) −16.8990 −0.768930
\(484\) −8.89898 −0.404499
\(485\) 0 0
\(486\) 88.9898 4.03666
\(487\) 42.7423 1.93684 0.968420 0.249323i \(-0.0802082\pi\)
0.968420 + 0.249323i \(0.0802082\pi\)
\(488\) −1.55051 −0.0701883
\(489\) 68.6413 3.10407
\(490\) 0 0
\(491\) −22.2020 −1.00196 −0.500982 0.865458i \(-0.667028\pi\)
−0.500982 + 0.865458i \(0.667028\pi\)
\(492\) 3.44949 0.155515
\(493\) −12.8990 −0.580941
\(494\) −22.2474 −1.00096
\(495\) 0 0
\(496\) −0.449490 −0.0201827
\(497\) 30.4949 1.36788
\(498\) −5.00000 −0.224055
\(499\) 22.0000 0.984855 0.492428 0.870353i \(-0.336110\pi\)
0.492428 + 0.870353i \(0.336110\pi\)
\(500\) 0 0
\(501\) −19.1464 −0.855399
\(502\) −11.2020 −0.499972
\(503\) −9.79796 −0.436869 −0.218435 0.975852i \(-0.570095\pi\)
−0.218435 + 0.975852i \(0.570095\pi\)
\(504\) −21.7980 −0.970958
\(505\) 0 0
\(506\) −2.89898 −0.128875
\(507\) 23.4495 1.04143
\(508\) 8.24745 0.365921
\(509\) 14.6515 0.649418 0.324709 0.945814i \(-0.394734\pi\)
0.324709 + 0.945814i \(0.394734\pi\)
\(510\) 0 0
\(511\) 16.6515 0.736620
\(512\) 1.00000 0.0441942
\(513\) −101.742 −4.49203
\(514\) 2.89898 0.127869
\(515\) 0 0
\(516\) −37.5959 −1.65507
\(517\) 14.2020 0.624605
\(518\) 2.44949 0.107624
\(519\) 78.2929 3.43667
\(520\) 0 0
\(521\) 19.8990 0.871790 0.435895 0.899997i \(-0.356432\pi\)
0.435895 + 0.899997i \(0.356432\pi\)
\(522\) 79.1918 3.46613
\(523\) 40.3939 1.76630 0.883150 0.469090i \(-0.155418\pi\)
0.883150 + 0.469090i \(0.155418\pi\)
\(524\) −20.6969 −0.904150
\(525\) 0 0
\(526\) 19.7980 0.863232
\(527\) 0.651531 0.0283811
\(528\) −5.00000 −0.217597
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) −17.7980 −0.772366
\(532\) 12.2474 0.530994
\(533\) 4.44949 0.192729
\(534\) −1.20204 −0.0520174
\(535\) 0 0
\(536\) 9.44949 0.408156
\(537\) 64.8434 2.79820
\(538\) 4.00000 0.172452
\(539\) 1.44949 0.0624339
\(540\) 0 0
\(541\) 10.6515 0.457945 0.228973 0.973433i \(-0.426463\pi\)
0.228973 + 0.973433i \(0.426463\pi\)
\(542\) −14.0454 −0.603302
\(543\) −10.0000 −0.429141
\(544\) −1.44949 −0.0621464
\(545\) 0 0
\(546\) −37.5959 −1.60896
\(547\) −25.6969 −1.09872 −0.549361 0.835585i \(-0.685129\pi\)
−0.549361 + 0.835585i \(0.685129\pi\)
\(548\) −19.6969 −0.841412
\(549\) −13.7980 −0.588883
\(550\) 0 0
\(551\) −44.4949 −1.89555
\(552\) 6.89898 0.293640
\(553\) 28.8990 1.22891
\(554\) −13.7980 −0.586219
\(555\) 0 0
\(556\) −17.4495 −0.740023
\(557\) −2.20204 −0.0933035 −0.0466517 0.998911i \(-0.514855\pi\)
−0.0466517 + 0.998911i \(0.514855\pi\)
\(558\) −4.00000 −0.169334
\(559\) −48.4949 −2.05112
\(560\) 0 0
\(561\) 7.24745 0.305988
\(562\) −0.898979 −0.0379212
\(563\) −1.59592 −0.0672599 −0.0336300 0.999434i \(-0.510707\pi\)
−0.0336300 + 0.999434i \(0.510707\pi\)
\(564\) −33.7980 −1.42315
\(565\) 0 0
\(566\) 17.6969 0.743858
\(567\) −106.540 −4.47427
\(568\) −12.4495 −0.522369
\(569\) −17.0454 −0.714581 −0.357290 0.933993i \(-0.616299\pi\)
−0.357290 + 0.933993i \(0.616299\pi\)
\(570\) 0 0
\(571\) 12.0000 0.502184 0.251092 0.967963i \(-0.419210\pi\)
0.251092 + 0.967963i \(0.419210\pi\)
\(572\) −6.44949 −0.269667
\(573\) 40.6969 1.70014
\(574\) −2.44949 −0.102240
\(575\) 0 0
\(576\) 8.89898 0.370791
\(577\) −23.0454 −0.959393 −0.479696 0.877435i \(-0.659253\pi\)
−0.479696 + 0.877435i \(0.659253\pi\)
\(578\) −14.8990 −0.619716
\(579\) −25.6969 −1.06793
\(580\) 0 0
\(581\) 3.55051 0.147300
\(582\) 48.2929 2.00180
\(583\) −8.69694 −0.360190
\(584\) −6.79796 −0.281302
\(585\) 0 0
\(586\) 16.0454 0.662830
\(587\) −35.6969 −1.47337 −0.736685 0.676236i \(-0.763610\pi\)
−0.736685 + 0.676236i \(0.763610\pi\)
\(588\) −3.44949 −0.142255
\(589\) 2.24745 0.0926045
\(590\) 0 0
\(591\) −9.14643 −0.376234
\(592\) −1.00000 −0.0410997
\(593\) −12.3939 −0.508956 −0.254478 0.967079i \(-0.581904\pi\)
−0.254478 + 0.967079i \(0.581904\pi\)
\(594\) −29.4949 −1.21019
\(595\) 0 0
\(596\) −19.3485 −0.792544
\(597\) 81.3939 3.33123
\(598\) 8.89898 0.363906
\(599\) −14.9444 −0.610611 −0.305306 0.952254i \(-0.598759\pi\)
−0.305306 + 0.952254i \(0.598759\pi\)
\(600\) 0 0
\(601\) −7.00000 −0.285536 −0.142768 0.989756i \(-0.545600\pi\)
−0.142768 + 0.989756i \(0.545600\pi\)
\(602\) 26.6969 1.08809
\(603\) 84.0908 3.42444
\(604\) −14.0000 −0.569652
\(605\) 0 0
\(606\) 37.5959 1.52723
\(607\) 44.7423 1.81604 0.908018 0.418931i \(-0.137595\pi\)
0.908018 + 0.418931i \(0.137595\pi\)
\(608\) −5.00000 −0.202777
\(609\) −75.1918 −3.04693
\(610\) 0 0
\(611\) −43.5959 −1.76370
\(612\) −12.8990 −0.521410
\(613\) 14.4949 0.585443 0.292722 0.956198i \(-0.405439\pi\)
0.292722 + 0.956198i \(0.405439\pi\)
\(614\) 22.3485 0.901911
\(615\) 0 0
\(616\) 3.55051 0.143054
\(617\) 4.89898 0.197225 0.0986127 0.995126i \(-0.468559\pi\)
0.0986127 + 0.995126i \(0.468559\pi\)
\(618\) 5.34847 0.215147
\(619\) −23.1010 −0.928508 −0.464254 0.885702i \(-0.653678\pi\)
−0.464254 + 0.885702i \(0.653678\pi\)
\(620\) 0 0
\(621\) 40.6969 1.63311
\(622\) −3.55051 −0.142362
\(623\) 0.853572 0.0341976
\(624\) 15.3485 0.614431
\(625\) 0 0
\(626\) −0.898979 −0.0359304
\(627\) 25.0000 0.998404
\(628\) 11.5505 0.460916
\(629\) 1.44949 0.0577949
\(630\) 0 0
\(631\) 2.00000 0.0796187 0.0398094 0.999207i \(-0.487325\pi\)
0.0398094 + 0.999207i \(0.487325\pi\)
\(632\) −11.7980 −0.469298
\(633\) −32.5959 −1.29557
\(634\) −14.4495 −0.573863
\(635\) 0 0
\(636\) 20.6969 0.820687
\(637\) −4.44949 −0.176295
\(638\) −12.8990 −0.510675
\(639\) −110.788 −4.38270
\(640\) 0 0
\(641\) −17.5959 −0.694997 −0.347498 0.937681i \(-0.612969\pi\)
−0.347498 + 0.937681i \(0.612969\pi\)
\(642\) −46.3939 −1.83102
\(643\) −36.2929 −1.43125 −0.715625 0.698484i \(-0.753858\pi\)
−0.715625 + 0.698484i \(0.753858\pi\)
\(644\) −4.89898 −0.193047
\(645\) 0 0
\(646\) 7.24745 0.285147
\(647\) −15.7526 −0.619297 −0.309648 0.950851i \(-0.600211\pi\)
−0.309648 + 0.950851i \(0.600211\pi\)
\(648\) 43.4949 1.70864
\(649\) 2.89898 0.113795
\(650\) 0 0
\(651\) 3.79796 0.148854
\(652\) 19.8990 0.779304
\(653\) 34.0454 1.33230 0.666150 0.745818i \(-0.267941\pi\)
0.666150 + 0.745818i \(0.267941\pi\)
\(654\) 48.2929 1.88840
\(655\) 0 0
\(656\) 1.00000 0.0390434
\(657\) −60.4949 −2.36013
\(658\) 24.0000 0.935617
\(659\) 11.4495 0.446009 0.223004 0.974817i \(-0.428414\pi\)
0.223004 + 0.974817i \(0.428414\pi\)
\(660\) 0 0
\(661\) 6.20204 0.241231 0.120616 0.992699i \(-0.461513\pi\)
0.120616 + 0.992699i \(0.461513\pi\)
\(662\) 10.1010 0.392587
\(663\) −22.2474 −0.864019
\(664\) −1.44949 −0.0562511
\(665\) 0 0
\(666\) −8.89898 −0.344828
\(667\) 17.7980 0.689140
\(668\) −5.55051 −0.214756
\(669\) 7.59592 0.293675
\(670\) 0 0
\(671\) 2.24745 0.0867618
\(672\) −8.44949 −0.325946
\(673\) −13.7980 −0.531872 −0.265936 0.963991i \(-0.585681\pi\)
−0.265936 + 0.963991i \(0.585681\pi\)
\(674\) −13.6969 −0.527586
\(675\) 0 0
\(676\) 6.79796 0.261460
\(677\) −4.40408 −0.169263 −0.0846313 0.996412i \(-0.526971\pi\)
−0.0846313 + 0.996412i \(0.526971\pi\)
\(678\) −32.5959 −1.25184
\(679\) −34.2929 −1.31604
\(680\) 0 0
\(681\) 43.7980 1.67834
\(682\) 0.651531 0.0249484
\(683\) −7.00000 −0.267848 −0.133924 0.990992i \(-0.542758\pi\)
−0.133924 + 0.990992i \(0.542758\pi\)
\(684\) −44.4949 −1.70130
\(685\) 0 0
\(686\) 19.5959 0.748176
\(687\) −47.5959 −1.81590
\(688\) −10.8990 −0.415520
\(689\) 26.6969 1.01707
\(690\) 0 0
\(691\) 44.3485 1.68710 0.843548 0.537054i \(-0.180463\pi\)
0.843548 + 0.537054i \(0.180463\pi\)
\(692\) 22.6969 0.862808
\(693\) 31.5959 1.20023
\(694\) 0.797959 0.0302901
\(695\) 0 0
\(696\) 30.6969 1.16356
\(697\) −1.44949 −0.0549033
\(698\) −7.55051 −0.285791
\(699\) 70.6969 2.67400
\(700\) 0 0
\(701\) −9.75255 −0.368349 −0.184174 0.982894i \(-0.558961\pi\)
−0.184174 + 0.982894i \(0.558961\pi\)
\(702\) 90.5403 3.41722
\(703\) 5.00000 0.188579
\(704\) −1.44949 −0.0546297
\(705\) 0 0
\(706\) 5.10102 0.191979
\(707\) −26.6969 −1.00404
\(708\) −6.89898 −0.259280
\(709\) 7.10102 0.266684 0.133342 0.991070i \(-0.457429\pi\)
0.133342 + 0.991070i \(0.457429\pi\)
\(710\) 0 0
\(711\) −104.990 −3.93742
\(712\) −0.348469 −0.0130594
\(713\) −0.898979 −0.0336670
\(714\) 12.2474 0.458349
\(715\) 0 0
\(716\) 18.7980 0.702513
\(717\) −30.6969 −1.14640
\(718\) 27.3939 1.02233
\(719\) −15.3485 −0.572401 −0.286201 0.958170i \(-0.592392\pi\)
−0.286201 + 0.958170i \(0.592392\pi\)
\(720\) 0 0
\(721\) −3.79796 −0.141443
\(722\) 6.00000 0.223297
\(723\) −25.6969 −0.955679
\(724\) −2.89898 −0.107740
\(725\) 0 0
\(726\) −30.6969 −1.13927
\(727\) 36.0000 1.33517 0.667583 0.744535i \(-0.267329\pi\)
0.667583 + 0.744535i \(0.267329\pi\)
\(728\) −10.8990 −0.403943
\(729\) 176.485 6.53647
\(730\) 0 0
\(731\) 15.7980 0.584309
\(732\) −5.34847 −0.197685
\(733\) 23.5959 0.871535 0.435768 0.900059i \(-0.356477\pi\)
0.435768 + 0.900059i \(0.356477\pi\)
\(734\) 10.2474 0.378240
\(735\) 0 0
\(736\) 2.00000 0.0737210
\(737\) −13.6969 −0.504533
\(738\) 8.89898 0.327576
\(739\) 7.59592 0.279420 0.139710 0.990192i \(-0.455383\pi\)
0.139710 + 0.990192i \(0.455383\pi\)
\(740\) 0 0
\(741\) −76.7423 −2.81920
\(742\) −14.6969 −0.539542
\(743\) −45.5959 −1.67275 −0.836376 0.548156i \(-0.815330\pi\)
−0.836376 + 0.548156i \(0.815330\pi\)
\(744\) −1.55051 −0.0568445
\(745\) 0 0
\(746\) 24.0454 0.880365
\(747\) −12.8990 −0.471949
\(748\) 2.10102 0.0768209
\(749\) 32.9444 1.20376
\(750\) 0 0
\(751\) −1.30306 −0.0475494 −0.0237747 0.999717i \(-0.507568\pi\)
−0.0237747 + 0.999717i \(0.507568\pi\)
\(752\) −9.79796 −0.357295
\(753\) −38.6413 −1.40817
\(754\) 39.5959 1.44200
\(755\) 0 0
\(756\) −49.8434 −1.81279
\(757\) 5.79796 0.210730 0.105365 0.994434i \(-0.466399\pi\)
0.105365 + 0.994434i \(0.466399\pi\)
\(758\) 23.0454 0.837047
\(759\) −10.0000 −0.362977
\(760\) 0 0
\(761\) −43.6969 −1.58401 −0.792006 0.610513i \(-0.790963\pi\)
−0.792006 + 0.610513i \(0.790963\pi\)
\(762\) 28.4495 1.03062
\(763\) −34.2929 −1.24148
\(764\) 11.7980 0.426835
\(765\) 0 0
\(766\) 9.34847 0.337774
\(767\) −8.89898 −0.321324
\(768\) 3.44949 0.124473
\(769\) 28.7526 1.03684 0.518422 0.855125i \(-0.326520\pi\)
0.518422 + 0.855125i \(0.326520\pi\)
\(770\) 0 0
\(771\) 10.0000 0.360141
\(772\) −7.44949 −0.268113
\(773\) −22.0454 −0.792918 −0.396459 0.918052i \(-0.629761\pi\)
−0.396459 + 0.918052i \(0.629761\pi\)
\(774\) −96.9898 −3.48623
\(775\) 0 0
\(776\) 14.0000 0.502571
\(777\) 8.44949 0.303124
\(778\) −21.1464 −0.758136
\(779\) −5.00000 −0.179144
\(780\) 0 0
\(781\) 18.0454 0.645715
\(782\) −2.89898 −0.103667
\(783\) 181.081 6.47129
\(784\) −1.00000 −0.0357143
\(785\) 0 0
\(786\) −71.3939 −2.54654
\(787\) 1.30306 0.0464491 0.0232246 0.999730i \(-0.492607\pi\)
0.0232246 + 0.999730i \(0.492607\pi\)
\(788\) −2.65153 −0.0944569
\(789\) 68.2929 2.43129
\(790\) 0 0
\(791\) 23.1464 0.822992
\(792\) −12.8990 −0.458345
\(793\) −6.89898 −0.244990
\(794\) −0.651531 −0.0231220
\(795\) 0 0
\(796\) 23.5959 0.836335
\(797\) −20.2474 −0.717201 −0.358601 0.933491i \(-0.616746\pi\)
−0.358601 + 0.933491i \(0.616746\pi\)
\(798\) 42.2474 1.49554
\(799\) 14.2020 0.502432
\(800\) 0 0
\(801\) −3.10102 −0.109569
\(802\) −37.9444 −1.33986
\(803\) 9.85357 0.347725
\(804\) 32.5959 1.14957
\(805\) 0 0
\(806\) −2.00000 −0.0704470
\(807\) 13.7980 0.485711
\(808\) 10.8990 0.383425
\(809\) 19.3939 0.681852 0.340926 0.940090i \(-0.389259\pi\)
0.340926 + 0.940090i \(0.389259\pi\)
\(810\) 0 0
\(811\) −13.7980 −0.484512 −0.242256 0.970212i \(-0.577887\pi\)
−0.242256 + 0.970212i \(0.577887\pi\)
\(812\) −21.7980 −0.764958
\(813\) −48.4495 −1.69920
\(814\) 1.44949 0.0508046
\(815\) 0 0
\(816\) −5.00000 −0.175035
\(817\) 54.4949 1.90654
\(818\) 0.146428 0.00511974
\(819\) −96.9898 −3.38910
\(820\) 0 0
\(821\) −40.0454 −1.39759 −0.698797 0.715320i \(-0.746281\pi\)
−0.698797 + 0.715320i \(0.746281\pi\)
\(822\) −67.9444 −2.36983
\(823\) −29.8434 −1.04027 −0.520137 0.854083i \(-0.674119\pi\)
−0.520137 + 0.854083i \(0.674119\pi\)
\(824\) 1.55051 0.0540146
\(825\) 0 0
\(826\) 4.89898 0.170457
\(827\) 27.0000 0.938882 0.469441 0.882964i \(-0.344455\pi\)
0.469441 + 0.882964i \(0.344455\pi\)
\(828\) 17.7980 0.618522
\(829\) 6.65153 0.231017 0.115509 0.993306i \(-0.463150\pi\)
0.115509 + 0.993306i \(0.463150\pi\)
\(830\) 0 0
\(831\) −47.5959 −1.65108
\(832\) 4.44949 0.154258
\(833\) 1.44949 0.0502218
\(834\) −60.1918 −2.08427
\(835\) 0 0
\(836\) 7.24745 0.250658
\(837\) −9.14643 −0.316147
\(838\) −16.5505 −0.571728
\(839\) 13.3485 0.460840 0.230420 0.973091i \(-0.425990\pi\)
0.230420 + 0.973091i \(0.425990\pi\)
\(840\) 0 0
\(841\) 50.1918 1.73075
\(842\) 23.1010 0.796114
\(843\) −3.10102 −0.106805
\(844\) −9.44949 −0.325265
\(845\) 0 0
\(846\) −87.1918 −2.99772
\(847\) 21.7980 0.748987
\(848\) 6.00000 0.206041
\(849\) 61.0454 2.09507
\(850\) 0 0
\(851\) −2.00000 −0.0685591
\(852\) −42.9444 −1.47125
\(853\) −4.65153 −0.159265 −0.0796327 0.996824i \(-0.525375\pi\)
−0.0796327 + 0.996824i \(0.525375\pi\)
\(854\) 3.79796 0.129963
\(855\) 0 0
\(856\) −13.4495 −0.459694
\(857\) 2.14643 0.0733206 0.0366603 0.999328i \(-0.488328\pi\)
0.0366603 + 0.999328i \(0.488328\pi\)
\(858\) −22.2474 −0.759515
\(859\) 39.4949 1.34755 0.673774 0.738937i \(-0.264672\pi\)
0.673774 + 0.738937i \(0.264672\pi\)
\(860\) 0 0
\(861\) −8.44949 −0.287958
\(862\) 8.69694 0.296219
\(863\) −6.24745 −0.212666 −0.106333 0.994331i \(-0.533911\pi\)
−0.106333 + 0.994331i \(0.533911\pi\)
\(864\) 20.3485 0.692269
\(865\) 0 0
\(866\) 19.0000 0.645646
\(867\) −51.3939 −1.74543
\(868\) 1.10102 0.0373711
\(869\) 17.1010 0.580112
\(870\) 0 0
\(871\) 42.0454 1.42465
\(872\) 14.0000 0.474100
\(873\) 124.586 4.21659
\(874\) −10.0000 −0.338255
\(875\) 0 0
\(876\) −23.4495 −0.792285
\(877\) 19.3485 0.653351 0.326676 0.945136i \(-0.394072\pi\)
0.326676 + 0.945136i \(0.394072\pi\)
\(878\) 19.5959 0.661330
\(879\) 55.3485 1.86686
\(880\) 0 0
\(881\) −34.2929 −1.15536 −0.577678 0.816265i \(-0.696041\pi\)
−0.577678 + 0.816265i \(0.696041\pi\)
\(882\) −8.89898 −0.299644
\(883\) 35.8990 1.20810 0.604048 0.796948i \(-0.293553\pi\)
0.604048 + 0.796948i \(0.293553\pi\)
\(884\) −6.44949 −0.216920
\(885\) 0 0
\(886\) −12.5505 −0.421643
\(887\) 21.3031 0.715287 0.357643 0.933858i \(-0.383580\pi\)
0.357643 + 0.933858i \(0.383580\pi\)
\(888\) −3.44949 −0.115757
\(889\) −20.2020 −0.677555
\(890\) 0 0
\(891\) −63.0454 −2.11210
\(892\) 2.20204 0.0737298
\(893\) 48.9898 1.63938
\(894\) −66.7423 −2.23220
\(895\) 0 0
\(896\) −2.44949 −0.0818317
\(897\) 30.6969 1.02494
\(898\) 8.75255 0.292076
\(899\) −4.00000 −0.133407
\(900\) 0 0
\(901\) −8.69694 −0.289737
\(902\) −1.44949 −0.0482627
\(903\) 92.0908 3.06459
\(904\) −9.44949 −0.314285
\(905\) 0 0
\(906\) −48.2929 −1.60442
\(907\) −25.1010 −0.833466 −0.416733 0.909029i \(-0.636825\pi\)
−0.416733 + 0.909029i \(0.636825\pi\)
\(908\) 12.6969 0.421363
\(909\) 96.9898 3.21695
\(910\) 0 0
\(911\) 8.24745 0.273250 0.136625 0.990623i \(-0.456374\pi\)
0.136625 + 0.990623i \(0.456374\pi\)
\(912\) −17.2474 −0.571120
\(913\) 2.10102 0.0695336
\(914\) −9.24745 −0.305878
\(915\) 0 0
\(916\) −13.7980 −0.455897
\(917\) 50.6969 1.67416
\(918\) −29.4949 −0.973477
\(919\) −32.2020 −1.06225 −0.531124 0.847294i \(-0.678230\pi\)
−0.531124 + 0.847294i \(0.678230\pi\)
\(920\) 0 0
\(921\) 77.0908 2.54023
\(922\) 38.6969 1.27442
\(923\) −55.3939 −1.82331
\(924\) 12.2474 0.402911
\(925\) 0 0
\(926\) 14.4495 0.474840
\(927\) 13.7980 0.453184
\(928\) 8.89898 0.292123
\(929\) 13.7980 0.452696 0.226348 0.974046i \(-0.427321\pi\)
0.226348 + 0.974046i \(0.427321\pi\)
\(930\) 0 0
\(931\) 5.00000 0.163868
\(932\) 20.4949 0.671333
\(933\) −12.2474 −0.400963
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) 39.5959 1.29423
\(937\) −24.5959 −0.803514 −0.401757 0.915746i \(-0.631600\pi\)
−0.401757 + 0.915746i \(0.631600\pi\)
\(938\) −23.1464 −0.755758
\(939\) −3.10102 −0.101198
\(940\) 0 0
\(941\) 17.3939 0.567024 0.283512 0.958969i \(-0.408500\pi\)
0.283512 + 0.958969i \(0.408500\pi\)
\(942\) 39.8434 1.29817
\(943\) 2.00000 0.0651290
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) 15.7980 0.513636
\(947\) 32.0000 1.03986 0.519930 0.854209i \(-0.325958\pi\)
0.519930 + 0.854209i \(0.325958\pi\)
\(948\) −40.6969 −1.32178
\(949\) −30.2474 −0.981874
\(950\) 0 0
\(951\) −49.8434 −1.61628
\(952\) 3.55051 0.115073
\(953\) −23.4949 −0.761074 −0.380537 0.924766i \(-0.624261\pi\)
−0.380537 + 0.924766i \(0.624261\pi\)
\(954\) 53.3939 1.72869
\(955\) 0 0
\(956\) −8.89898 −0.287814
\(957\) −44.4949 −1.43832
\(958\) −18.2474 −0.589548
\(959\) 48.2474 1.55799
\(960\) 0 0
\(961\) −30.7980 −0.993483
\(962\) −4.44949 −0.143457
\(963\) −119.687 −3.85685
\(964\) −7.44949 −0.239932
\(965\) 0 0
\(966\) −16.8990 −0.543716
\(967\) −44.0000 −1.41494 −0.707472 0.706741i \(-0.750165\pi\)
−0.707472 + 0.706741i \(0.750165\pi\)
\(968\) −8.89898 −0.286024
\(969\) 25.0000 0.803116
\(970\) 0 0
\(971\) 39.5403 1.26891 0.634454 0.772960i \(-0.281225\pi\)
0.634454 + 0.772960i \(0.281225\pi\)
\(972\) 88.9898 2.85435
\(973\) 42.7423 1.37026
\(974\) 42.7423 1.36955
\(975\) 0 0
\(976\) −1.55051 −0.0496306
\(977\) 49.7423 1.59140 0.795699 0.605692i \(-0.207104\pi\)
0.795699 + 0.605692i \(0.207104\pi\)
\(978\) 68.6413 2.19491
\(979\) 0.505103 0.0161431
\(980\) 0 0
\(981\) 124.586 3.97772
\(982\) −22.2020 −0.708496
\(983\) −30.4949 −0.972636 −0.486318 0.873782i \(-0.661660\pi\)
−0.486318 + 0.873782i \(0.661660\pi\)
\(984\) 3.44949 0.109966
\(985\) 0 0
\(986\) −12.8990 −0.410787
\(987\) 82.7878 2.63516
\(988\) −22.2474 −0.707786
\(989\) −21.7980 −0.693135
\(990\) 0 0
\(991\) −11.5505 −0.366914 −0.183457 0.983028i \(-0.558729\pi\)
−0.183457 + 0.983028i \(0.558729\pi\)
\(992\) −0.449490 −0.0142713
\(993\) 34.8434 1.10572
\(994\) 30.4949 0.967239
\(995\) 0 0
\(996\) −5.00000 −0.158431
\(997\) 44.4495 1.40773 0.703865 0.710334i \(-0.251456\pi\)
0.703865 + 0.710334i \(0.251456\pi\)
\(998\) 22.0000 0.696398
\(999\) −20.3485 −0.643797
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1850.2.a.w.1.2 yes 2
5.2 odd 4 1850.2.b.k.149.3 4
5.3 odd 4 1850.2.b.k.149.2 4
5.4 even 2 1850.2.a.r.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1850.2.a.r.1.1 2 5.4 even 2
1850.2.a.w.1.2 yes 2 1.1 even 1 trivial
1850.2.b.k.149.2 4 5.3 odd 4
1850.2.b.k.149.3 4 5.2 odd 4