Properties

Label 1850.2.a.e.1.1
Level $1850$
Weight $2$
Character 1850.1
Self dual yes
Analytic conductor $14.772$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1850,2,Mod(1,1850)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1850, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1850.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1850 = 2 \cdot 5^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1850.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.7723243739\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 370)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1850.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +2.00000 q^{7} -1.00000 q^{8} -3.00000 q^{9} -2.00000 q^{13} -2.00000 q^{14} +1.00000 q^{16} +6.00000 q^{17} +3.00000 q^{18} -6.00000 q^{19} -4.00000 q^{23} +2.00000 q^{26} +2.00000 q^{28} -4.00000 q^{31} -1.00000 q^{32} -6.00000 q^{34} -3.00000 q^{36} +1.00000 q^{37} +6.00000 q^{38} -10.0000 q^{41} +4.00000 q^{43} +4.00000 q^{46} +2.00000 q^{47} -3.00000 q^{49} -2.00000 q^{52} -2.00000 q^{53} -2.00000 q^{56} -6.00000 q^{59} +4.00000 q^{62} -6.00000 q^{63} +1.00000 q^{64} -8.00000 q^{67} +6.00000 q^{68} +3.00000 q^{72} -8.00000 q^{73} -1.00000 q^{74} -6.00000 q^{76} +4.00000 q^{79} +9.00000 q^{81} +10.0000 q^{82} +12.0000 q^{83} -4.00000 q^{86} +6.00000 q^{89} -4.00000 q^{91} -4.00000 q^{92} -2.00000 q^{94} +10.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) −1.00000 −0.353553
\(9\) −3.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 3.00000 0.707107
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 1.00000 0.164399
\(38\) 6.00000 0.973329
\(39\) 0 0
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 4.00000 0.589768
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 0 0
\(52\) −2.00000 −0.277350
\(53\) −2.00000 −0.274721 −0.137361 0.990521i \(-0.543862\pi\)
−0.137361 + 0.990521i \(0.543862\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.00000 −0.267261
\(57\) 0 0
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 4.00000 0.508001
\(63\) −6.00000 −0.755929
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 6.00000 0.727607
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 3.00000 0.353553
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −1.00000 −0.116248
\(75\) 0 0
\(76\) −6.00000 −0.688247
\(77\) 0 0
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 10.0000 1.10432
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.00000 −0.431331
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) −2.00000 −0.206284
\(95\) 0 0
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 2.00000 0.194257
\(107\) −8.00000 −0.773389 −0.386695 0.922208i \(-0.626383\pi\)
−0.386695 + 0.922208i \(0.626383\pi\)
\(108\) 0 0
\(109\) −20.0000 −1.91565 −0.957826 0.287348i \(-0.907226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2.00000 0.188982
\(113\) −2.00000 −0.188144 −0.0940721 0.995565i \(-0.529988\pi\)
−0.0940721 + 0.995565i \(0.529988\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 6.00000 0.554700
\(118\) 6.00000 0.552345
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) 0 0
\(126\) 6.00000 0.534522
\(127\) −22.0000 −1.95218 −0.976092 0.217357i \(-0.930256\pi\)
−0.976092 + 0.217357i \(0.930256\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0000 1.22319 0.611593 0.791173i \(-0.290529\pi\)
0.611593 + 0.791173i \(0.290529\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) 8.00000 0.691095
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −3.00000 −0.250000
\(145\) 0 0
\(146\) 8.00000 0.662085
\(147\) 0 0
\(148\) 1.00000 0.0821995
\(149\) 14.0000 1.14692 0.573462 0.819232i \(-0.305600\pi\)
0.573462 + 0.819232i \(0.305600\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) 6.00000 0.486664
\(153\) −18.0000 −1.45521
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) −4.00000 −0.318223
\(159\) 0 0
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) −9.00000 −0.707107
\(163\) 12.0000 0.939913 0.469956 0.882690i \(-0.344270\pi\)
0.469956 + 0.882690i \(0.344270\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −12.0000 −0.931381
\(167\) −16.0000 −1.23812 −0.619059 0.785345i \(-0.712486\pi\)
−0.619059 + 0.785345i \(0.712486\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 18.0000 1.37649
\(172\) 4.00000 0.304997
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −6.00000 −0.449719
\(179\) −14.0000 −1.04641 −0.523205 0.852207i \(-0.675264\pi\)
−0.523205 + 0.852207i \(0.675264\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 4.00000 0.296500
\(183\) 0 0
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 2.00000 0.145865
\(189\) 0 0
\(190\) 0 0
\(191\) 4.00000 0.289430 0.144715 0.989473i \(-0.453773\pi\)
0.144715 + 0.989473i \(0.453773\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) −10.0000 −0.717958
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 10.0000 0.712470 0.356235 0.934396i \(-0.384060\pi\)
0.356235 + 0.934396i \(0.384060\pi\)
\(198\) 0 0
\(199\) −20.0000 −1.41776 −0.708881 0.705328i \(-0.750800\pi\)
−0.708881 + 0.705328i \(0.750800\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.0000 0.703598
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 12.0000 0.834058
\(208\) −2.00000 −0.138675
\(209\) 0 0
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) −2.00000 −0.137361
\(213\) 0 0
\(214\) 8.00000 0.546869
\(215\) 0 0
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 20.0000 1.35457
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −14.0000 −0.937509 −0.468755 0.883328i \(-0.655297\pi\)
−0.468755 + 0.883328i \(0.655297\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) 2.00000 0.133038
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) −6.00000 −0.390567
\(237\) 0 0
\(238\) −12.0000 −0.777844
\(239\) 28.0000 1.81117 0.905585 0.424165i \(-0.139432\pi\)
0.905585 + 0.424165i \(0.139432\pi\)
\(240\) 0 0
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) 11.0000 0.707107
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) −6.00000 −0.377964
\(253\) 0 0
\(254\) 22.0000 1.38040
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 30.0000 1.87135 0.935674 0.352865i \(-0.114792\pi\)
0.935674 + 0.352865i \(0.114792\pi\)
\(258\) 0 0
\(259\) 2.00000 0.124274
\(260\) 0 0
\(261\) 0 0
\(262\) −14.0000 −0.864923
\(263\) 2.00000 0.123325 0.0616626 0.998097i \(-0.480360\pi\)
0.0616626 + 0.998097i \(0.480360\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 12.0000 0.735767
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 18.0000 1.08152 0.540758 0.841178i \(-0.318138\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 20.0000 1.19952
\(279\) 12.0000 0.718421
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −28.0000 −1.66443 −0.832214 0.554455i \(-0.812927\pi\)
−0.832214 + 0.554455i \(0.812927\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −20.0000 −1.18056
\(288\) 3.00000 0.176777
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) −8.00000 −0.468165
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −1.00000 −0.0581238
\(297\) 0 0
\(298\) −14.0000 −0.810998
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) −16.0000 −0.920697
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) 0 0
\(306\) 18.0000 1.02899
\(307\) −4.00000 −0.228292 −0.114146 0.993464i \(-0.536413\pi\)
−0.114146 + 0.993464i \(0.536413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 4.00000 0.225018
\(317\) 6.00000 0.336994 0.168497 0.985702i \(-0.446109\pi\)
0.168497 + 0.985702i \(0.446109\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 8.00000 0.445823
\(323\) −36.0000 −2.00309
\(324\) 9.00000 0.500000
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 0 0
\(328\) 10.0000 0.552158
\(329\) 4.00000 0.220527
\(330\) 0 0
\(331\) −34.0000 −1.86881 −0.934405 0.356214i \(-0.884068\pi\)
−0.934405 + 0.356214i \(0.884068\pi\)
\(332\) 12.0000 0.658586
\(333\) −3.00000 −0.164399
\(334\) 16.0000 0.875481
\(335\) 0 0
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) 9.00000 0.489535
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −18.0000 −0.973329
\(343\) −20.0000 −1.07990
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 2.00000 0.107521
\(347\) −36.0000 −1.93258 −0.966291 0.257454i \(-0.917117\pi\)
−0.966291 + 0.257454i \(0.917117\pi\)
\(348\) 0 0
\(349\) 30.0000 1.60586 0.802932 0.596071i \(-0.203272\pi\)
0.802932 + 0.596071i \(0.203272\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 0.317999
\(357\) 0 0
\(358\) 14.0000 0.739923
\(359\) −8.00000 −0.422224 −0.211112 0.977462i \(-0.567708\pi\)
−0.211112 + 0.977462i \(0.567708\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −2.00000 −0.105118
\(363\) 0 0
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) 0 0
\(367\) 26.0000 1.35719 0.678594 0.734513i \(-0.262589\pi\)
0.678594 + 0.734513i \(0.262589\pi\)
\(368\) −4.00000 −0.208514
\(369\) 30.0000 1.56174
\(370\) 0 0
\(371\) −4.00000 −0.207670
\(372\) 0 0
\(373\) 34.0000 1.76045 0.880227 0.474554i \(-0.157390\pi\)
0.880227 + 0.474554i \(0.157390\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.00000 −0.103142
\(377\) 0 0
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.00000 −0.204658
\(383\) 28.0000 1.43073 0.715367 0.698749i \(-0.246260\pi\)
0.715367 + 0.698749i \(0.246260\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) −12.0000 −0.609994
\(388\) 10.0000 0.507673
\(389\) −16.0000 −0.811232 −0.405616 0.914044i \(-0.632943\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) 0 0
\(391\) −24.0000 −1.21373
\(392\) 3.00000 0.151523
\(393\) 0 0
\(394\) −10.0000 −0.503793
\(395\) 0 0
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) 0 0
\(401\) −2.00000 −0.0998752 −0.0499376 0.998752i \(-0.515902\pi\)
−0.0499376 + 0.998752i \(0.515902\pi\)
\(402\) 0 0
\(403\) 8.00000 0.398508
\(404\) −10.0000 −0.497519
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −12.0000 −0.590481
\(414\) −12.0000 −0.589768
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) 0 0
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) 0 0
\(421\) 36.0000 1.75453 0.877266 0.480004i \(-0.159365\pi\)
0.877266 + 0.480004i \(0.159365\pi\)
\(422\) 16.0000 0.778868
\(423\) −6.00000 −0.291730
\(424\) 2.00000 0.0971286
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 0 0
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 0 0
\(433\) 16.0000 0.768911 0.384455 0.923144i \(-0.374389\pi\)
0.384455 + 0.923144i \(0.374389\pi\)
\(434\) 8.00000 0.384012
\(435\) 0 0
\(436\) −20.0000 −0.957826
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 4.00000 0.190910 0.0954548 0.995434i \(-0.469569\pi\)
0.0954548 + 0.995434i \(0.469569\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 12.0000 0.570782
\(443\) −16.0000 −0.760183 −0.380091 0.924949i \(-0.624107\pi\)
−0.380091 + 0.924949i \(0.624107\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 14.0000 0.662919
\(447\) 0 0
\(448\) 2.00000 0.0944911
\(449\) 30.0000 1.41579 0.707894 0.706319i \(-0.249646\pi\)
0.707894 + 0.706319i \(0.249646\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −2.00000 −0.0940721
\(453\) 0 0
\(454\) 20.0000 0.938647
\(455\) 0 0
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) −2.00000 −0.0934539
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −24.0000 −1.11178
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) 6.00000 0.277350
\(469\) −16.0000 −0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 6.00000 0.276172
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 12.0000 0.550019
\(477\) 6.00000 0.274721
\(478\) −28.0000 −1.28069
\(479\) 12.0000 0.548294 0.274147 0.961688i \(-0.411605\pi\)
0.274147 + 0.961688i \(0.411605\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) −10.0000 −0.455488
\(483\) 0 0
\(484\) −11.0000 −0.500000
\(485\) 0 0
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.0000 1.08310 0.541552 0.840667i \(-0.317837\pi\)
0.541552 + 0.840667i \(0.317837\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −12.0000 −0.539906
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 30.0000 1.34298 0.671492 0.741012i \(-0.265654\pi\)
0.671492 + 0.741012i \(0.265654\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −2.00000 −0.0892644
\(503\) −40.0000 −1.78351 −0.891756 0.452517i \(-0.850526\pi\)
−0.891756 + 0.452517i \(0.850526\pi\)
\(504\) 6.00000 0.267261
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −22.0000 −0.976092
\(509\) −18.0000 −0.797836 −0.398918 0.916987i \(-0.630614\pi\)
−0.398918 + 0.916987i \(0.630614\pi\)
\(510\) 0 0
\(511\) −16.0000 −0.707798
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −30.0000 −1.32324
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) −2.00000 −0.0878750
\(519\) 0 0
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 14.0000 0.611593
\(525\) 0 0
\(526\) −2.00000 −0.0872041
\(527\) −24.0000 −1.04546
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 18.0000 0.781133
\(532\) −12.0000 −0.520266
\(533\) 20.0000 0.866296
\(534\) 0 0
\(535\) 0 0
\(536\) 8.00000 0.345547
\(537\) 0 0
\(538\) 10.0000 0.431131
\(539\) 0 0
\(540\) 0 0
\(541\) −16.0000 −0.687894 −0.343947 0.938989i \(-0.611764\pi\)
−0.343947 + 0.938989i \(0.611764\pi\)
\(542\) 8.00000 0.343629
\(543\) 0 0
\(544\) −6.00000 −0.257248
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 8.00000 0.340195
\(554\) −18.0000 −0.764747
\(555\) 0 0
\(556\) −20.0000 −0.848189
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) −12.0000 −0.508001
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 0 0
\(562\) −6.00000 −0.253095
\(563\) 4.00000 0.168580 0.0842900 0.996441i \(-0.473138\pi\)
0.0842900 + 0.996441i \(0.473138\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 28.0000 1.17693
\(567\) 18.0000 0.755929
\(568\) 0 0
\(569\) −34.0000 −1.42535 −0.712677 0.701492i \(-0.752517\pi\)
−0.712677 + 0.701492i \(0.752517\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 20.0000 0.834784
\(575\) 0 0
\(576\) −3.00000 −0.125000
\(577\) 38.0000 1.58196 0.790980 0.611842i \(-0.209571\pi\)
0.790980 + 0.611842i \(0.209571\pi\)
\(578\) −19.0000 −0.790296
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 0 0
\(584\) 8.00000 0.331042
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) 24.0000 0.988903
\(590\) 0 0
\(591\) 0 0
\(592\) 1.00000 0.0410997
\(593\) −24.0000 −0.985562 −0.492781 0.870153i \(-0.664020\pi\)
−0.492781 + 0.870153i \(0.664020\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 14.0000 0.573462
\(597\) 0 0
\(598\) −8.00000 −0.327144
\(599\) −8.00000 −0.326871 −0.163436 0.986554i \(-0.552258\pi\)
−0.163436 + 0.986554i \(0.552258\pi\)
\(600\) 0 0
\(601\) −26.0000 −1.06056 −0.530281 0.847822i \(-0.677914\pi\)
−0.530281 + 0.847822i \(0.677914\pi\)
\(602\) −8.00000 −0.326056
\(603\) 24.0000 0.977356
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) 36.0000 1.46119 0.730597 0.682808i \(-0.239242\pi\)
0.730597 + 0.682808i \(0.239242\pi\)
\(608\) 6.00000 0.243332
\(609\) 0 0
\(610\) 0 0
\(611\) −4.00000 −0.161823
\(612\) −18.0000 −0.727607
\(613\) 30.0000 1.21169 0.605844 0.795583i \(-0.292835\pi\)
0.605844 + 0.795583i \(0.292835\pi\)
\(614\) 4.00000 0.161427
\(615\) 0 0
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) 0 0
\(626\) −14.0000 −0.559553
\(627\) 0 0
\(628\) −22.0000 −0.877896
\(629\) 6.00000 0.239236
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) −4.00000 −0.159111
\(633\) 0 0
\(634\) −6.00000 −0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 14.0000 0.552967 0.276483 0.961019i \(-0.410831\pi\)
0.276483 + 0.961019i \(0.410831\pi\)
\(642\) 0 0
\(643\) 44.0000 1.73519 0.867595 0.497271i \(-0.165665\pi\)
0.867595 + 0.497271i \(0.165665\pi\)
\(644\) −8.00000 −0.315244
\(645\) 0 0
\(646\) 36.0000 1.41640
\(647\) 16.0000 0.629025 0.314512 0.949253i \(-0.398159\pi\)
0.314512 + 0.949253i \(0.398159\pi\)
\(648\) −9.00000 −0.353553
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 12.0000 0.469956
\(653\) −14.0000 −0.547862 −0.273931 0.961749i \(-0.588324\pi\)
−0.273931 + 0.961749i \(0.588324\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −10.0000 −0.390434
\(657\) 24.0000 0.936329
\(658\) −4.00000 −0.155936
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −28.0000 −1.08907 −0.544537 0.838737i \(-0.683295\pi\)
−0.544537 + 0.838737i \(0.683295\pi\)
\(662\) 34.0000 1.32145
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 3.00000 0.116248
\(667\) 0 0
\(668\) −16.0000 −0.619059
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 36.0000 1.38770 0.693849 0.720121i \(-0.255914\pi\)
0.693849 + 0.720121i \(0.255914\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 20.0000 0.767530
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 20.0000 0.765279 0.382639 0.923898i \(-0.375015\pi\)
0.382639 + 0.923898i \(0.375015\pi\)
\(684\) 18.0000 0.688247
\(685\) 0 0
\(686\) 20.0000 0.763604
\(687\) 0 0
\(688\) 4.00000 0.152499
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) −2.00000 −0.0760286
\(693\) 0 0
\(694\) 36.0000 1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) −60.0000 −2.27266
\(698\) −30.0000 −1.13552
\(699\) 0 0
\(700\) 0 0
\(701\) −4.00000 −0.151078 −0.0755390 0.997143i \(-0.524068\pi\)
−0.0755390 + 0.997143i \(0.524068\pi\)
\(702\) 0 0
\(703\) −6.00000 −0.226294
\(704\) 0 0
\(705\) 0 0
\(706\) −18.0000 −0.677439
\(707\) −20.0000 −0.752177
\(708\) 0 0
\(709\) −40.0000 −1.50223 −0.751116 0.660171i \(-0.770484\pi\)
−0.751116 + 0.660171i \(0.770484\pi\)
\(710\) 0 0
\(711\) −12.0000 −0.450035
\(712\) −6.00000 −0.224860
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 0 0
\(716\) −14.0000 −0.523205
\(717\) 0 0
\(718\) 8.00000 0.298557
\(719\) −16.0000 −0.596699 −0.298350 0.954457i \(-0.596436\pi\)
−0.298350 + 0.954457i \(0.596436\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −17.0000 −0.632674
\(723\) 0 0
\(724\) 2.00000 0.0743294
\(725\) 0 0
\(726\) 0 0
\(727\) −28.0000 −1.03846 −0.519231 0.854634i \(-0.673782\pi\)
−0.519231 + 0.854634i \(0.673782\pi\)
\(728\) 4.00000 0.148250
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 24.0000 0.887672
\(732\) 0 0
\(733\) 38.0000 1.40356 0.701781 0.712393i \(-0.252388\pi\)
0.701781 + 0.712393i \(0.252388\pi\)
\(734\) −26.0000 −0.959678
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 0 0
\(738\) −30.0000 −1.10432
\(739\) −36.0000 −1.32428 −0.662141 0.749380i \(-0.730352\pi\)
−0.662141 + 0.749380i \(0.730352\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 4.00000 0.146845
\(743\) −26.0000 −0.953847 −0.476924 0.878945i \(-0.658248\pi\)
−0.476924 + 0.878945i \(0.658248\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −34.0000 −1.24483
\(747\) −36.0000 −1.31717
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 2.00000 0.0729325
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −14.0000 −0.508839 −0.254419 0.967094i \(-0.581884\pi\)
−0.254419 + 0.967094i \(0.581884\pi\)
\(758\) −12.0000 −0.435860
\(759\) 0 0
\(760\) 0 0
\(761\) 34.0000 1.23250 0.616250 0.787551i \(-0.288651\pi\)
0.616250 + 0.787551i \(0.288651\pi\)
\(762\) 0 0
\(763\) −40.0000 −1.44810
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) −28.0000 −1.01168
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 −0.359908
\(773\) 54.0000 1.94225 0.971123 0.238581i \(-0.0766824\pi\)
0.971123 + 0.238581i \(0.0766824\pi\)
\(774\) 12.0000 0.431331
\(775\) 0 0
\(776\) −10.0000 −0.358979
\(777\) 0 0
\(778\) 16.0000 0.573628
\(779\) 60.0000 2.14972
\(780\) 0 0
\(781\) 0 0
\(782\) 24.0000 0.858238
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) −40.0000 −1.42585 −0.712923 0.701242i \(-0.752629\pi\)
−0.712923 + 0.701242i \(0.752629\pi\)
\(788\) 10.0000 0.356235
\(789\) 0 0
\(790\) 0 0
\(791\) −4.00000 −0.142224
\(792\) 0 0
\(793\) 0 0
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) −20.0000 −0.708881
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 12.0000 0.424529
\(800\) 0 0
\(801\) −18.0000 −0.635999
\(802\) 2.00000 0.0706225
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −8.00000 −0.281788
\(807\) 0 0
\(808\) 10.0000 0.351799
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −36.0000 −1.26413 −0.632065 0.774915i \(-0.717793\pi\)
−0.632065 + 0.774915i \(0.717793\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −24.0000 −0.839654
\(818\) −14.0000 −0.489499
\(819\) 12.0000 0.419314
\(820\) 0 0
\(821\) −50.0000 −1.74501 −0.872506 0.488603i \(-0.837507\pi\)
−0.872506 + 0.488603i \(0.837507\pi\)
\(822\) 0 0
\(823\) 26.0000 0.906303 0.453152 0.891434i \(-0.350300\pi\)
0.453152 + 0.891434i \(0.350300\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 12.0000 0.417533
\(827\) −36.0000 −1.25184 −0.625921 0.779886i \(-0.715277\pi\)
−0.625921 + 0.779886i \(0.715277\pi\)
\(828\) 12.0000 0.417029
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −2.00000 −0.0693375
\(833\) −18.0000 −0.623663
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −20.0000 −0.690889
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −36.0000 −1.24064
\(843\) 0 0
\(844\) −16.0000 −0.550743
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) −22.0000 −0.755929
\(848\) −2.00000 −0.0686803
\(849\) 0 0
\(850\) 0 0
\(851\) −4.00000 −0.137118
\(852\) 0 0
\(853\) −30.0000 −1.02718 −0.513590 0.858036i \(-0.671685\pi\)
−0.513590 + 0.858036i \(0.671685\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 8.00000 0.273434
\(857\) 2.00000 0.0683187 0.0341593 0.999416i \(-0.489125\pi\)
0.0341593 + 0.999416i \(0.489125\pi\)
\(858\) 0 0
\(859\) 10.0000 0.341196 0.170598 0.985341i \(-0.445430\pi\)
0.170598 + 0.985341i \(0.445430\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −20.0000 −0.681203
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) −8.00000 −0.271538
\(869\) 0 0
\(870\) 0 0
\(871\) 16.0000 0.542139
\(872\) 20.0000 0.677285
\(873\) −30.0000 −1.01535
\(874\) −24.0000 −0.811812
\(875\) 0 0
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) −4.00000 −0.134993
\(879\) 0 0
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) −9.00000 −0.303046
\(883\) −20.0000 −0.673054 −0.336527 0.941674i \(-0.609252\pi\)
−0.336527 + 0.941674i \(0.609252\pi\)
\(884\) −12.0000 −0.403604
\(885\) 0 0
\(886\) 16.0000 0.537531
\(887\) 50.0000 1.67884 0.839418 0.543487i \(-0.182896\pi\)
0.839418 + 0.543487i \(0.182896\pi\)
\(888\) 0 0
\(889\) −44.0000 −1.47571
\(890\) 0 0
\(891\) 0 0
\(892\) −14.0000 −0.468755
\(893\) −12.0000 −0.401565
\(894\) 0 0
\(895\) 0 0
\(896\) −2.00000 −0.0668153
\(897\) 0 0
\(898\) −30.0000 −1.00111
\(899\) 0 0
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 2.00000 0.0665190
\(905\) 0 0
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) −20.0000 −0.663723
\(909\) 30.0000 0.995037
\(910\) 0 0
\(911\) −48.0000 −1.59031 −0.795155 0.606406i \(-0.792611\pi\)
−0.795155 + 0.606406i \(0.792611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −10.0000 −0.330771
\(915\) 0 0
\(916\) 2.00000 0.0660819
\(917\) 28.0000 0.924641
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) −4.00000 −0.131448
\(927\) 0 0
\(928\) 0 0
\(929\) −18.0000 −0.590561 −0.295280 0.955411i \(-0.595413\pi\)
−0.295280 + 0.955411i \(0.595413\pi\)
\(930\) 0 0
\(931\) 18.0000 0.589926
\(932\) 24.0000 0.786146
\(933\) 0 0
\(934\) −36.0000 −1.17796
\(935\) 0 0
\(936\) −6.00000 −0.196116
\(937\) −4.00000 −0.130674 −0.0653372 0.997863i \(-0.520812\pi\)
−0.0653372 + 0.997863i \(0.520812\pi\)
\(938\) 16.0000 0.522419
\(939\) 0 0
\(940\) 0 0
\(941\) −22.0000 −0.717180 −0.358590 0.933495i \(-0.616742\pi\)
−0.358590 + 0.933495i \(0.616742\pi\)
\(942\) 0 0
\(943\) 40.0000 1.30258
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 0 0
\(947\) −28.0000 −0.909878 −0.454939 0.890523i \(-0.650339\pi\)
−0.454939 + 0.890523i \(0.650339\pi\)
\(948\) 0 0
\(949\) 16.0000 0.519382
\(950\) 0 0
\(951\) 0 0
\(952\) −12.0000 −0.388922
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 28.0000 0.905585
\(957\) 0 0
\(958\) −12.0000 −0.387702
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 2.00000 0.0644826
\(963\) 24.0000 0.773389
\(964\) 10.0000 0.322078
\(965\) 0 0
\(966\) 0 0
\(967\) 28.0000 0.900419 0.450210 0.892923i \(-0.351349\pi\)
0.450210 + 0.892923i \(0.351349\pi\)
\(968\) 11.0000 0.353553
\(969\) 0 0
\(970\) 0 0
\(971\) 32.0000 1.02693 0.513464 0.858111i \(-0.328362\pi\)
0.513464 + 0.858111i \(0.328362\pi\)
\(972\) 0 0
\(973\) −40.0000 −1.28234
\(974\) 24.0000 0.769010
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 60.0000 1.91565
\(982\) −24.0000 −0.765871
\(983\) 38.0000 1.21201 0.606006 0.795460i \(-0.292771\pi\)
0.606006 + 0.795460i \(0.292771\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 12.0000 0.381771
\(989\) −16.0000 −0.508770
\(990\) 0 0
\(991\) 48.0000 1.52477 0.762385 0.647124i \(-0.224028\pi\)
0.762385 + 0.647124i \(0.224028\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) −30.0000 −0.949633
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1850.2.a.e.1.1 1
5.2 odd 4 370.2.b.a.149.1 2
5.3 odd 4 370.2.b.a.149.2 yes 2
5.4 even 2 1850.2.a.j.1.1 1
15.2 even 4 3330.2.d.f.1999.2 2
15.8 even 4 3330.2.d.f.1999.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.b.a.149.1 2 5.2 odd 4
370.2.b.a.149.2 yes 2 5.3 odd 4
1850.2.a.e.1.1 1 1.1 even 1 trivial
1850.2.a.j.1.1 1 5.4 even 2
3330.2.d.f.1999.1 2 15.8 even 4
3330.2.d.f.1999.2 2 15.2 even 4