Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(17,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([9, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.17");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.z (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(204\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
17.1 | −0.469713 | − | 2.66388i | −1.96091 | + | 1.37304i | −4.99622 | + | 1.81848i | −0.175517 | − | 2.22917i | 4.57868 | + | 4.57868i | 0.315692 | + | 3.60837i | 4.48602 | + | 7.77001i | 0.933852 | − | 2.56574i | −5.85579 | + | 1.51463i |
17.2 | −0.433198 | − | 2.45679i | 1.24169 | − | 0.869438i | −3.96876 | + | 1.44451i | 2.20276 | − | 0.384486i | −2.67392 | − | 2.67392i | −0.255866 | − | 2.92456i | 2.77342 | + | 4.80370i | −0.240199 | + | 0.659941i | −1.89883 | − | 5.24516i |
17.3 | −0.321176 | − | 1.82148i | −2.27797 | + | 1.59505i | −1.33525 | + | 0.485992i | 1.54034 | + | 1.62091i | 3.63698 | + | 3.63698i | −0.309940 | − | 3.54263i | −0.535504 | − | 0.927519i | 1.61890 | − | 4.44788i | 2.45773 | − | 3.32630i |
17.4 | −0.301161 | − | 1.70797i | 2.59563 | − | 1.81748i | −0.947076 | + | 0.344707i | −0.204668 | + | 2.22668i | −3.88590 | − | 3.88590i | 0.191282 | + | 2.18636i | −0.860345 | − | 1.49016i | 2.40801 | − | 6.61594i | 3.86474 | − | 0.321023i |
17.5 | −0.284025 | − | 1.61078i | 1.15722 | − | 0.810292i | −0.634568 | + | 0.230964i | −1.17293 | − | 1.90374i | −1.63388 | − | 1.63388i | 0.0979711 | + | 1.11982i | −1.08337 | − | 1.87645i | −0.343483 | + | 0.943711i | −2.73337 | + | 2.43005i |
17.6 | −0.264015 | − | 1.49730i | −1.51227 | + | 1.05890i | −0.292825 | + | 0.106580i | −2.21300 | − | 0.320340i | 1.98476 | + | 1.98476i | −0.177838 | − | 2.03269i | −1.28351 | − | 2.22310i | 0.139628 | − | 0.383625i | 0.104619 | + | 3.39811i |
17.7 | −0.176891 | − | 1.00320i | −0.0575614 | + | 0.0403049i | 0.904265 | − | 0.329126i | 2.12084 | − | 0.708554i | 0.0506160 | + | 0.0506160i | 0.159768 | + | 1.82615i | −1.50881 | − | 2.61334i | −1.02437 | + | 2.81444i | −1.08598 | − | 2.00229i |
17.8 | −0.0435497 | − | 0.246983i | 0.942704 | − | 0.660089i | 1.82028 | − | 0.662528i | 1.09022 | + | 1.95228i | −0.204085 | − | 0.204085i | −0.194050 | − | 2.21800i | −0.493699 | − | 0.855111i | −0.573086 | + | 1.57454i | 0.434701 | − | 0.354288i |
17.9 | −0.0371751 | − | 0.210830i | −1.08293 | + | 0.758277i | 1.83632 | − | 0.668365i | −1.35134 | + | 1.78154i | 0.200126 | + | 0.200126i | 0.262998 | + | 3.00608i | −0.423260 | − | 0.733108i | −0.428304 | + | 1.17675i | 0.425839 | + | 0.218675i |
17.10 | 0.0705497 | + | 0.400107i | −0.765944 | + | 0.536320i | 1.72428 | − | 0.627585i | 0.310406 | − | 2.21442i | −0.268623 | − | 0.268623i | −0.428931 | − | 4.90270i | 0.779029 | + | 1.34932i | −0.727029 | + | 1.99750i | 0.907904 | − | 0.0320308i |
17.11 | 0.125030 | + | 0.709080i | 1.92078 | − | 1.34494i | 1.39222 | − | 0.506728i | −2.19797 | − | 0.411008i | 1.19383 | + | 1.19383i | 0.00129848 | + | 0.0148417i | 1.25340 | + | 2.17095i | 0.854452 | − | 2.34759i | 0.0166256 | − | 1.60993i |
17.12 | 0.129279 | + | 0.733177i | −2.44076 | + | 1.70904i | 1.35855 | − | 0.494472i | 2.21527 | + | 0.304255i | −1.56857 | − | 1.56857i | 0.170584 | + | 1.94978i | 1.28265 | + | 2.22162i | 2.01044 | − | 5.52363i | 0.0633153 | + | 1.66352i |
17.13 | 0.268354 | + | 1.52191i | −0.402831 | + | 0.282066i | −0.364808 | + | 0.132779i | −0.00459685 | − | 2.23606i | −0.537379 | − | 0.537379i | 0.387671 | + | 4.43110i | 1.24541 | + | 2.15712i | −0.943348 | + | 2.59183i | 3.40185 | − | 0.607052i |
17.14 | 0.324760 | + | 1.84181i | 0.372392 | − | 0.260752i | −1.40740 | + | 0.512251i | −0.590023 | + | 2.15682i | 0.601193 | + | 0.601193i | −0.113451 | − | 1.29675i | 0.469686 | + | 0.813520i | −0.955376 | + | 2.62487i | −4.16406 | − | 0.386258i |
17.15 | 0.337973 | + | 1.91674i | −2.14225 | + | 1.50002i | −1.68029 | + | 0.611575i | −2.23000 | − | 0.164667i | −3.59918 | − | 3.59918i | −0.0824997 | − | 0.942976i | 0.206187 | + | 0.357126i | 1.31312 | − | 3.60778i | −0.438056 | − | 4.32998i |
17.16 | 0.382399 | + | 2.16869i | 1.71987 | − | 1.20426i | −2.67761 | + | 0.974572i | 1.60324 | − | 1.55873i | 3.26935 | + | 3.26935i | −0.142598 | − | 1.62991i | −0.935317 | − | 1.62002i | 0.481630 | − | 1.32327i | 3.99348 | + | 2.88087i |
17.17 | 0.463880 | + | 2.63079i | −1.36341 | + | 0.954671i | −4.82650 | + | 1.75670i | 1.95555 | + | 1.08435i | −3.14400 | − | 3.14400i | −0.0709307 | − | 0.810742i | −4.18905 | − | 7.25565i | −0.0785653 | + | 0.215857i | −1.94555 | + | 5.64766i |
18.1 | −1.98709 | − | 1.66737i | 0.135184 | − | 1.54516i | 0.821120 | + | 4.65681i | 1.41577 | + | 1.73078i | −2.84498 | + | 2.84498i | 3.63042 | − | 1.69289i | 3.53900 | − | 6.12973i | 0.585164 | + | 0.103180i | 0.0725704 | − | 5.79982i |
18.2 | −1.95495 | − | 1.64040i | −0.0617260 | + | 0.705532i | 0.783627 | + | 4.44417i | −1.89600 | − | 1.18540i | 1.27802 | − | 1.27802i | −1.75899 | + | 0.820228i | 3.20625 | − | 5.55338i | 2.46046 | + | 0.433845i | 1.76206 | + | 5.42760i |
18.3 | −1.39978 | − | 1.17455i | −0.0319999 | + | 0.365761i | 0.232506 | + | 1.31861i | 0.831127 | − | 2.07587i | 0.474398 | − | 0.474398i | 1.06911 | − | 0.498533i | −0.603963 | + | 1.04610i | 2.82167 | + | 0.497536i | −3.60161 | + | 1.92955i |
See next 80 embeddings (of 204 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.z | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.z.a | ✓ | 204 |
5.b | even | 2 | 1 | 925.2.bn.b | 204 | ||
5.c | odd | 4 | 1 | 185.2.bc.a | yes | 204 | |
5.c | odd | 4 | 1 | 925.2.bq.b | 204 | ||
37.i | odd | 36 | 1 | 185.2.bc.a | yes | 204 | |
185.z | even | 36 | 1 | inner | 185.2.z.a | ✓ | 204 |
185.ba | odd | 36 | 1 | 925.2.bq.b | 204 | ||
185.bc | even | 36 | 1 | 925.2.bn.b | 204 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.z.a | ✓ | 204 | 1.a | even | 1 | 1 | trivial |
185.2.z.a | ✓ | 204 | 185.z | even | 36 | 1 | inner |
185.2.bc.a | yes | 204 | 5.c | odd | 4 | 1 | |
185.2.bc.a | yes | 204 | 37.i | odd | 36 | 1 | |
925.2.bn.b | 204 | 5.b | even | 2 | 1 | ||
925.2.bn.b | 204 | 185.bc | even | 36 | 1 | ||
925.2.bq.b | 204 | 5.c | odd | 4 | 1 | ||
925.2.bq.b | 204 | 185.ba | odd | 36 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).