Properties

Label 185.2.x.a
Level $185$
Weight $2$
Character orbit 185.x
Analytic conductor $1.477$
Analytic rank $0$
Dimension $108$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [185,2,Mod(9,185)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(185, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("185.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.x (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(108\)
Relative dimension: \(18\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 108 q - 12 q^{4} - 9 q^{5} - 24 q^{6} - 6 q^{9} - 3 q^{10} - 30 q^{11} + 3 q^{15} - 24 q^{16} - 18 q^{19} + 36 q^{20} - 36 q^{24} - 27 q^{25} - 54 q^{26} - 6 q^{29} - 90 q^{30} + 84 q^{31} - 24 q^{34} - 18 q^{35}+ \cdots + 168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
9.1 −2.70414 + 0.476813i 0.681311 + 0.120134i 5.20564 1.89470i 1.78608 1.34533i −1.89964 1.56904 1.86991i −8.41740 + 4.85979i −2.36932 0.862364i −4.18833 + 4.48960i
9.2 −2.13305 + 0.376114i 0.0170209 + 0.00300124i 2.52906 0.920501i −2.09924 + 0.770188i −0.0374352 0.867316 1.03363i −1.29685 + 0.748734i −2.81880 1.02596i 4.18811 2.43240i
9.3 −2.03761 + 0.359285i 2.44602 + 0.431299i 2.14338 0.780126i 0.903819 + 2.04527i −5.13899 −2.95638 + 3.52328i −0.503391 + 0.290633i 2.97792 + 1.08387i −2.57646 3.84272i
9.4 −1.84318 + 0.325002i −1.77654 0.313251i 1.41229 0.514030i −0.338687 2.21027i 3.37627 −1.05947 + 1.26263i 0.805692 0.465167i 0.238873 + 0.0869425i 1.34260 + 3.96384i
9.5 −1.58777 + 0.279967i 3.16824 + 0.558645i 0.563255 0.205008i −1.77194 1.36391i −5.18684 2.30998 2.75293i 1.95560 1.12907i 6.90655 + 2.51378i 3.19528 + 1.66949i
9.6 −1.09159 + 0.192477i −1.78492 0.314730i −0.724866 + 0.263830i 2.19145 + 0.444452i 2.00898 −1.23613 + 1.47317i 2.66033 1.53594i 0.267820 + 0.0974786i −2.47771 0.0633562i
9.7 −0.810383 + 0.142892i −2.83792 0.500402i −1.24308 + 0.452445i −1.67020 + 1.48675i 2.37131 1.94700 2.32035i 2.36800 1.36717i 4.98430 + 1.81414i 1.14106 1.44350i
9.8 −0.691512 + 0.121932i 1.39170 + 0.245395i −1.41606 + 0.515405i 2.23160 0.141256i −0.992300 1.18536 1.41266i 2.13259 1.23125i −0.942462 0.343028i −1.52596 + 0.369785i
9.9 −0.322818 + 0.0569215i 0.781488 + 0.137797i −1.77841 + 0.647290i −2.22706 0.200546i −0.260122 −2.76435 + 3.29442i 1.10502 0.637985i −2.22734 0.810686i 0.730349 0.0620274i
9.10 0.322818 0.0569215i −0.781488 0.137797i −1.77841 + 0.647290i −0.584224 2.15840i −0.260122 2.76435 3.29442i −1.10502 + 0.637985i −2.22734 0.810686i −0.311457 0.663515i
9.11 0.691512 0.121932i −1.39170 0.245395i −1.41606 + 0.515405i 0.248403 + 2.22223i −0.992300 −1.18536 + 1.41266i −2.13259 + 1.23125i −0.942462 0.343028i 0.442735 + 1.50641i
9.12 0.810383 0.142892i 2.83792 + 0.500402i −1.24308 + 0.452445i 1.17413 1.90300i 2.37131 −1.94700 + 2.32035i −2.36800 + 1.36717i 4.98430 + 1.81414i 0.679575 1.70993i
9.13 1.09159 0.192477i 1.78492 + 0.314730i −0.724866 + 0.263830i 0.818242 + 2.08098i 2.00898 1.23613 1.47317i −2.66033 + 1.53594i 0.267820 + 0.0974786i 1.29372 + 2.11408i
9.14 1.58777 0.279967i −3.16824 0.558645i 0.563255 0.205008i −1.65088 1.50818i −5.18684 −2.30998 + 2.75293i −1.95560 + 1.12907i 6.90655 + 2.51378i −3.04346 1.93245i
9.15 1.84318 0.325002i 1.77654 + 0.313251i 1.41229 0.514030i −2.23550 + 0.0502676i 3.37627 1.05947 1.26263i −0.805692 + 0.465167i 0.238873 + 0.0869425i −4.10409 + 0.819194i
9.16 2.03761 0.359285i −2.44602 0.431299i 2.14338 0.780126i 2.17114 + 0.534931i −5.13899 2.95638 3.52328i 0.503391 0.290633i 2.97792 + 1.08387i 4.61613 + 0.309922i
9.17 2.13305 0.376114i −0.0170209 0.00300124i 2.52906 0.920501i 0.393958 2.20109i −0.0374352 −0.867316 + 1.03363i 1.29685 0.748734i −2.81880 1.02596i 0.0124705 4.84321i
9.18 2.70414 0.476813i −0.681311 0.120134i 5.20564 1.89470i −1.01475 + 1.99256i −1.89964 −1.56904 + 1.86991i 8.41740 4.85979i −2.36932 0.862364i −1.79394 + 5.87200i
34.1 −1.65342 + 1.97047i −2.05477 2.44877i −0.801655 4.54641i −2.03941 0.916960i 8.22263 −0.255705 + 0.702544i 5.82875 + 3.36523i −1.25349 + 7.10889i 5.17884 2.50247i
34.2 −1.63794 + 1.95202i −0.119452 0.142357i −0.780243 4.42498i 1.73311 + 1.41292i 0.473538 1.61021 4.42403i 5.50206 + 3.17662i 0.514948 2.92041i −5.59677 + 1.06879i
See next 80 embeddings (of 108 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 9.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
37.f even 9 1 inner
185.x even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 185.2.x.a 108
5.b even 2 1 inner 185.2.x.a 108
5.c odd 4 2 925.2.p.g 108
37.f even 9 1 inner 185.2.x.a 108
185.x even 18 1 inner 185.2.x.a 108
185.bd odd 36 2 925.2.p.g 108
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
185.2.x.a 108 1.a even 1 1 trivial
185.2.x.a 108 5.b even 2 1 inner
185.2.x.a 108 37.f even 9 1 inner
185.2.x.a 108 185.x even 18 1 inner
925.2.p.g 108 5.c odd 4 2
925.2.p.g 108 185.bd odd 36 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).