Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(9,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([9, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.9");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.x (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(108\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
9.1 | −2.70414 | + | 0.476813i | 0.681311 | + | 0.120134i | 5.20564 | − | 1.89470i | 1.78608 | − | 1.34533i | −1.89964 | 1.56904 | − | 1.86991i | −8.41740 | + | 4.85979i | −2.36932 | − | 0.862364i | −4.18833 | + | 4.48960i | ||
9.2 | −2.13305 | + | 0.376114i | 0.0170209 | + | 0.00300124i | 2.52906 | − | 0.920501i | −2.09924 | + | 0.770188i | −0.0374352 | 0.867316 | − | 1.03363i | −1.29685 | + | 0.748734i | −2.81880 | − | 1.02596i | 4.18811 | − | 2.43240i | ||
9.3 | −2.03761 | + | 0.359285i | 2.44602 | + | 0.431299i | 2.14338 | − | 0.780126i | 0.903819 | + | 2.04527i | −5.13899 | −2.95638 | + | 3.52328i | −0.503391 | + | 0.290633i | 2.97792 | + | 1.08387i | −2.57646 | − | 3.84272i | ||
9.4 | −1.84318 | + | 0.325002i | −1.77654 | − | 0.313251i | 1.41229 | − | 0.514030i | −0.338687 | − | 2.21027i | 3.37627 | −1.05947 | + | 1.26263i | 0.805692 | − | 0.465167i | 0.238873 | + | 0.0869425i | 1.34260 | + | 3.96384i | ||
9.5 | −1.58777 | + | 0.279967i | 3.16824 | + | 0.558645i | 0.563255 | − | 0.205008i | −1.77194 | − | 1.36391i | −5.18684 | 2.30998 | − | 2.75293i | 1.95560 | − | 1.12907i | 6.90655 | + | 2.51378i | 3.19528 | + | 1.66949i | ||
9.6 | −1.09159 | + | 0.192477i | −1.78492 | − | 0.314730i | −0.724866 | + | 0.263830i | 2.19145 | + | 0.444452i | 2.00898 | −1.23613 | + | 1.47317i | 2.66033 | − | 1.53594i | 0.267820 | + | 0.0974786i | −2.47771 | − | 0.0633562i | ||
9.7 | −0.810383 | + | 0.142892i | −2.83792 | − | 0.500402i | −1.24308 | + | 0.452445i | −1.67020 | + | 1.48675i | 2.37131 | 1.94700 | − | 2.32035i | 2.36800 | − | 1.36717i | 4.98430 | + | 1.81414i | 1.14106 | − | 1.44350i | ||
9.8 | −0.691512 | + | 0.121932i | 1.39170 | + | 0.245395i | −1.41606 | + | 0.515405i | 2.23160 | − | 0.141256i | −0.992300 | 1.18536 | − | 1.41266i | 2.13259 | − | 1.23125i | −0.942462 | − | 0.343028i | −1.52596 | + | 0.369785i | ||
9.9 | −0.322818 | + | 0.0569215i | 0.781488 | + | 0.137797i | −1.77841 | + | 0.647290i | −2.22706 | − | 0.200546i | −0.260122 | −2.76435 | + | 3.29442i | 1.10502 | − | 0.637985i | −2.22734 | − | 0.810686i | 0.730349 | − | 0.0620274i | ||
9.10 | 0.322818 | − | 0.0569215i | −0.781488 | − | 0.137797i | −1.77841 | + | 0.647290i | −0.584224 | − | 2.15840i | −0.260122 | 2.76435 | − | 3.29442i | −1.10502 | + | 0.637985i | −2.22734 | − | 0.810686i | −0.311457 | − | 0.663515i | ||
9.11 | 0.691512 | − | 0.121932i | −1.39170 | − | 0.245395i | −1.41606 | + | 0.515405i | 0.248403 | + | 2.22223i | −0.992300 | −1.18536 | + | 1.41266i | −2.13259 | + | 1.23125i | −0.942462 | − | 0.343028i | 0.442735 | + | 1.50641i | ||
9.12 | 0.810383 | − | 0.142892i | 2.83792 | + | 0.500402i | −1.24308 | + | 0.452445i | 1.17413 | − | 1.90300i | 2.37131 | −1.94700 | + | 2.32035i | −2.36800 | + | 1.36717i | 4.98430 | + | 1.81414i | 0.679575 | − | 1.70993i | ||
9.13 | 1.09159 | − | 0.192477i | 1.78492 | + | 0.314730i | −0.724866 | + | 0.263830i | 0.818242 | + | 2.08098i | 2.00898 | 1.23613 | − | 1.47317i | −2.66033 | + | 1.53594i | 0.267820 | + | 0.0974786i | 1.29372 | + | 2.11408i | ||
9.14 | 1.58777 | − | 0.279967i | −3.16824 | − | 0.558645i | 0.563255 | − | 0.205008i | −1.65088 | − | 1.50818i | −5.18684 | −2.30998 | + | 2.75293i | −1.95560 | + | 1.12907i | 6.90655 | + | 2.51378i | −3.04346 | − | 1.93245i | ||
9.15 | 1.84318 | − | 0.325002i | 1.77654 | + | 0.313251i | 1.41229 | − | 0.514030i | −2.23550 | + | 0.0502676i | 3.37627 | 1.05947 | − | 1.26263i | −0.805692 | + | 0.465167i | 0.238873 | + | 0.0869425i | −4.10409 | + | 0.819194i | ||
9.16 | 2.03761 | − | 0.359285i | −2.44602 | − | 0.431299i | 2.14338 | − | 0.780126i | 2.17114 | + | 0.534931i | −5.13899 | 2.95638 | − | 3.52328i | 0.503391 | − | 0.290633i | 2.97792 | + | 1.08387i | 4.61613 | + | 0.309922i | ||
9.17 | 2.13305 | − | 0.376114i | −0.0170209 | − | 0.00300124i | 2.52906 | − | 0.920501i | 0.393958 | − | 2.20109i | −0.0374352 | −0.867316 | + | 1.03363i | 1.29685 | − | 0.748734i | −2.81880 | − | 1.02596i | 0.0124705 | − | 4.84321i | ||
9.18 | 2.70414 | − | 0.476813i | −0.681311 | − | 0.120134i | 5.20564 | − | 1.89470i | −1.01475 | + | 1.99256i | −1.89964 | −1.56904 | + | 1.86991i | 8.41740 | − | 4.85979i | −2.36932 | − | 0.862364i | −1.79394 | + | 5.87200i | ||
34.1 | −1.65342 | + | 1.97047i | −2.05477 | − | 2.44877i | −0.801655 | − | 4.54641i | −2.03941 | − | 0.916960i | 8.22263 | −0.255705 | + | 0.702544i | 5.82875 | + | 3.36523i | −1.25349 | + | 7.10889i | 5.17884 | − | 2.50247i | ||
34.2 | −1.63794 | + | 1.95202i | −0.119452 | − | 0.142357i | −0.780243 | − | 4.42498i | 1.73311 | + | 1.41292i | 0.473538 | 1.61021 | − | 4.42403i | 5.50206 | + | 3.17662i | 0.514948 | − | 2.92041i | −5.59677 | + | 1.06879i | ||
See next 80 embeddings (of 108 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
37.f | even | 9 | 1 | inner |
185.x | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.x.a | ✓ | 108 |
5.b | even | 2 | 1 | inner | 185.2.x.a | ✓ | 108 |
5.c | odd | 4 | 2 | 925.2.p.g | 108 | ||
37.f | even | 9 | 1 | inner | 185.2.x.a | ✓ | 108 |
185.x | even | 18 | 1 | inner | 185.2.x.a | ✓ | 108 |
185.bd | odd | 36 | 2 | 925.2.p.g | 108 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.x.a | ✓ | 108 | 1.a | even | 1 | 1 | trivial |
185.2.x.a | ✓ | 108 | 5.b | even | 2 | 1 | inner |
185.2.x.a | ✓ | 108 | 37.f | even | 9 | 1 | inner |
185.2.x.a | ✓ | 108 | 185.x | even | 18 | 1 | inner |
925.2.p.g | 108 | 5.c | odd | 4 | 2 | ||
925.2.p.g | 108 | 185.bd | odd | 36 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).