Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(21,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 11]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.21");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.w (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(72\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
21.1 | −0.912722 | + | 2.50768i | −2.54963 | + | 0.927988i | −3.92332 | − | 3.29206i | −0.984808 | − | 0.173648i | − | 7.24065i | −0.681286 | + | 3.86376i | 7.21416 | − | 4.16510i | 3.34130 | − | 2.80368i | 1.33431 | − | 2.31109i | |
21.2 | −0.707909 | + | 1.94497i | −0.121836 | + | 0.0443448i | −1.74967 | − | 1.46814i | 0.984808 | + | 0.173648i | − | 0.268359i | −0.426398 | + | 2.41822i | 0.509113 | − | 0.293937i | −2.28526 | + | 1.91756i | −1.03489 | + | 1.79249i | |
21.3 | −0.350159 | + | 0.962054i | 2.03239 | − | 0.739729i | 0.729153 | + | 0.611832i | 0.984808 | + | 0.173648i | 2.21429i | 0.426620 | − | 2.41948i | −2.61720 | + | 1.51104i | 1.28527 | − | 1.07847i | −0.511898 | + | 0.886634i | ||
21.4 | −0.302982 | + | 0.832436i | 2.30523 | − | 0.839035i | 0.930937 | + | 0.781149i | −0.984808 | − | 0.173648i | 2.17317i | −0.623850 | + | 3.53803i | −2.46667 | + | 1.42413i | 2.31198 | − | 1.93998i | 0.442930 | − | 0.767177i | ||
21.5 | −0.106080 | + | 0.291452i | −1.76040 | + | 0.640734i | 1.45840 | + | 1.22374i | −0.984808 | − | 0.173648i | − | 0.581042i | −0.295101 | + | 1.67360i | −1.04858 | + | 0.605396i | 0.390342 | − | 0.327536i | 0.155078 | − | 0.268604i | |
21.6 | −0.0584921 | + | 0.160706i | −0.624082 | + | 0.227147i | 1.50968 | + | 1.26678i | 0.984808 | + | 0.173648i | − | 0.113580i | −0.0729992 | + | 0.413999i | −0.588097 | + | 0.339538i | −1.96025 | + | 1.64485i | −0.0855097 | + | 0.148107i | |
21.7 | 0.0874964 | − | 0.240394i | 1.14636 | − | 0.417243i | 1.48196 | + | 1.24351i | −0.984808 | − | 0.173648i | − | 0.312087i | 0.829933 | − | 4.70679i | 0.871695 | − | 0.503274i | −1.15807 | + | 0.971738i | −0.127911 | + | 0.221549i | |
21.8 | 0.544164 | − | 1.49508i | −3.11875 | + | 1.13513i | −0.407055 | − | 0.341560i | 0.984808 | + | 0.173648i | 5.28047i | −0.619542 | + | 3.51360i | 2.02358 | − | 1.16831i | 6.13994 | − | 5.15202i | 0.795514 | − | 1.37787i | ||
21.9 | 0.643934 | − | 1.76920i | 1.84845 | − | 0.672780i | −1.18331 | − | 0.992917i | −0.984808 | − | 0.173648i | − | 3.70349i | −0.303772 | + | 1.72278i | 0.742360 | − | 0.428602i | 0.665996 | − | 0.558837i | −0.941369 | + | 1.63050i | |
21.10 | 0.684008 | − | 1.87930i | −0.691854 | + | 0.251814i | −1.53180 | − | 1.28533i | 0.984808 | + | 0.173648i | 1.47244i | 0.818589 | − | 4.64245i | 0.000650079 | 0 | 0.000375323i | −1.88288 | + | 1.57993i | 0.999953 | − | 1.73197i | ||
21.11 | 0.904057 | − | 2.48388i | 1.58444 | − | 0.576689i | −3.82023 | − | 3.20555i | 0.984808 | + | 0.173648i | − | 4.45691i | −0.275913 | + | 1.56478i | −6.83760 | + | 3.94769i | −0.120255 | + | 0.100906i | 1.32164 | − | 2.28915i | |
21.12 | 0.921981 | − | 2.53312i | −1.92971 | + | 0.702356i | −4.03457 | − | 3.38541i | −0.984808 | − | 0.173648i | 5.53575i | −0.123578 | + | 0.700845i | −7.62637 | + | 4.40308i | 0.932337 | − | 0.782323i | −1.34785 | + | 2.33454i | ||
41.1 | −2.37605 | − | 0.418962i | −0.261904 | − | 1.48533i | 3.59070 | + | 1.30691i | −0.642788 | − | 0.766044i | 3.63895i | 2.36937 | − | 1.98814i | −3.80522 | − | 2.19695i | 0.681459 | − | 0.248031i | 1.20635 | + | 2.08946i | ||
41.2 | −1.82036 | − | 0.320979i | −0.118478 | − | 0.671921i | 1.33130 | + | 0.484554i | 0.642788 | + | 0.766044i | 1.26117i | −1.02434 | + | 0.859519i | 0.933680 | + | 0.539060i | 2.38164 | − | 0.866845i | −0.924221 | − | 1.60080i | ||
41.3 | −1.49156 | − | 0.263002i | 0.406811 | + | 2.30714i | 0.276189 | + | 0.100525i | 0.642788 | + | 0.766044i | − | 3.54822i | 2.32391 | − | 1.94999i | 2.23779 | + | 1.29199i | −2.33831 | + | 0.851075i | −0.757284 | − | 1.31165i | |
41.4 | −1.43188 | − | 0.252480i | −0.0435088 | − | 0.246751i | 0.107162 | + | 0.0390040i | −0.642788 | − | 0.766044i | 0.364304i | −3.65531 | + | 3.06717i | 2.37476 | + | 1.37107i | 2.76008 | − | 1.00459i | 0.726987 | + | 1.25918i | ||
41.5 | −0.540933 | − | 0.0953810i | 0.128393 | + | 0.728150i | −1.59587 | − | 0.580851i | −0.642788 | − | 0.766044i | − | 0.406126i | 1.81619 | − | 1.52397i | 1.75924 | + | 1.01569i | 2.30536 | − | 0.839082i | 0.274639 | + | 0.475688i | |
41.6 | 0.105693 | + | 0.0186364i | 0.492384 | + | 2.79245i | −1.86856 | − | 0.680101i | 0.642788 | + | 0.766044i | 0.304317i | −3.01176 | + | 2.52717i | −0.370707 | − | 0.214028i | −4.73626 | + | 1.72386i | 0.0536615 | + | 0.0929444i | ||
41.7 | 0.772863 | + | 0.136277i | −0.381820 | − | 2.16541i | −1.30064 | − | 0.473394i | −0.642788 | − | 0.766044i | − | 1.72560i | −0.668410 | + | 0.560863i | −2.29999 | − | 1.32790i | −1.72413 | + | 0.627533i | −0.392393 | − | 0.679644i | |
41.8 | 1.24400 | + | 0.219350i | −0.234364 | − | 1.32915i | −0.379974 | − | 0.138299i | 0.642788 | + | 0.766044i | − | 1.70486i | 2.83337 | − | 2.37748i | −2.63025 | − | 1.51858i | 1.10737 | − | 0.403051i | 0.631593 | + | 1.09395i | |
See all 72 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.h | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.w.a | ✓ | 72 |
5.b | even | 2 | 1 | 925.2.bb.b | 72 | ||
5.c | odd | 4 | 1 | 925.2.ba.b | 72 | ||
5.c | odd | 4 | 1 | 925.2.ba.c | 72 | ||
37.h | even | 18 | 1 | inner | 185.2.w.a | ✓ | 72 |
37.i | odd | 36 | 1 | 6845.2.a.t | 36 | ||
37.i | odd | 36 | 1 | 6845.2.a.u | 36 | ||
185.v | even | 18 | 1 | 925.2.bb.b | 72 | ||
185.y | odd | 36 | 1 | 925.2.ba.b | 72 | ||
185.y | odd | 36 | 1 | 925.2.ba.c | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.w.a | ✓ | 72 | 1.a | even | 1 | 1 | trivial |
185.2.w.a | ✓ | 72 | 37.h | even | 18 | 1 | inner |
925.2.ba.b | 72 | 5.c | odd | 4 | 1 | ||
925.2.ba.b | 72 | 185.y | odd | 36 | 1 | ||
925.2.ba.c | 72 | 5.c | odd | 4 | 1 | ||
925.2.ba.c | 72 | 185.y | odd | 36 | 1 | ||
925.2.bb.b | 72 | 5.b | even | 2 | 1 | ||
925.2.bb.b | 72 | 185.v | even | 18 | 1 | ||
6845.2.a.t | 36 | 37.i | odd | 36 | 1 | ||
6845.2.a.u | 36 | 37.i | odd | 36 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).