Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(82,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.82");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.p (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(68\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
82.1 | −1.37559 | − | 2.38259i | 0.692973 | − | 0.185681i | −2.78450 | + | 4.82289i | −0.638688 | + | 2.14291i | −1.39565 | − | 1.39565i | −1.87540 | + | 0.502511i | 9.81895 | −2.15234 | + | 1.24266i | 5.98426 | − | 1.42604i | ||
82.2 | −1.21425 | − | 2.10315i | 0.672498 | − | 0.180195i | −1.94883 | + | 3.37547i | 1.55471 | − | 1.60713i | −1.19556 | − | 1.19556i | 4.47423 | − | 1.19887i | 4.60849 | −2.17829 | + | 1.25764i | −5.26786 | − | 1.31832i | ||
82.3 | −1.10225 | − | 1.90916i | −3.05050 | + | 0.817378i | −1.42993 | + | 2.47671i | 1.99367 | + | 1.01257i | 4.92293 | + | 4.92293i | −0.147229 | + | 0.0394498i | 1.89556 | 6.03934 | − | 3.48681i | −0.264372 | − | 4.92234i | ||
82.4 | −0.993536 | − | 1.72086i | 2.35179 | − | 0.630160i | −0.974229 | + | 1.68741i | −1.49861 | − | 1.65957i | −3.42100 | − | 3.42100i | −2.62941 | + | 0.704548i | −0.102418 | 2.53574 | − | 1.46401i | −1.36695 | + | 4.22774i | ||
82.5 | −0.892058 | − | 1.54509i | −1.76128 | + | 0.471934i | −0.591534 | + | 1.02457i | −1.38296 | − | 1.75711i | 2.30034 | + | 2.30034i | 0.500724 | − | 0.134169i | −1.45750 | 0.281310 | − | 0.162414i | −1.48121 | + | 3.70424i | ||
82.6 | −0.723320 | − | 1.25283i | −0.791482 | + | 0.212077i | −0.0463849 | + | 0.0803411i | −1.65059 | + | 1.50849i | 0.838191 | + | 0.838191i | −1.58905 | + | 0.425785i | −2.75908 | −2.01661 | + | 1.16429i | 3.08379 | + | 0.976784i | ||
82.7 | −0.412077 | − | 0.713738i | 1.77336 | − | 0.475172i | 0.660386 | − | 1.14382i | 1.99238 | − | 1.01510i | −1.06991 | − | 1.06991i | −1.19739 | + | 0.320840i | −2.73682 | 0.320958 | − | 0.185305i | −1.54553 | − | 1.00374i | ||
82.8 | −0.354544 | − | 0.614089i | −0.280512 | + | 0.0751630i | 0.748597 | − | 1.29661i | 1.19547 | + | 1.88967i | 0.145611 | + | 0.145611i | 3.64653 | − | 0.977086i | −2.47982 | −2.52504 | + | 1.45783i | 0.736577 | − | 1.40410i | ||
82.9 | −0.122725 | − | 0.212566i | −1.83492 | + | 0.491666i | 0.969877 | − | 1.67988i | 1.28977 | − | 1.82661i | 0.329702 | + | 0.329702i | −3.76446 | + | 1.00868i | −0.967013 | 0.527123 | − | 0.304334i | −0.546561 | − | 0.0499898i | ||
82.10 | −0.0797909 | − | 0.138202i | 2.26850 | − | 0.607844i | 0.987267 | − | 1.71000i | −2.00255 | + | 0.994886i | −0.265011 | − | 0.265011i | 1.28763 | − | 0.345018i | −0.634263 | 2.17856 | − | 1.25779i | 0.297280 | + | 0.197373i | ||
82.11 | 0.235037 | + | 0.407096i | −3.12752 | + | 0.838017i | 0.889515 | − | 1.54069i | −2.22812 | + | 0.188382i | −1.07624 | − | 1.07624i | 3.61347 | − | 0.968227i | 1.77643 | 6.48105 | − | 3.74183i | −0.600381 | − | 0.862782i | ||
82.12 | 0.506716 | + | 0.877658i | 1.71192 | − | 0.458707i | 0.486478 | − | 0.842604i | 0.902808 | + | 2.04571i | 1.27004 | + | 1.27004i | −4.18129 | + | 1.12037i | 3.01289 | 0.122169 | − | 0.0705344i | −1.33797 | + | 1.82895i | ||
82.13 | 0.560713 | + | 0.971183i | 0.628874 | − | 0.168506i | 0.371203 | − | 0.642942i | −0.606686 | − | 2.15219i | 0.516268 | + | 0.516268i | 1.40791 | − | 0.377247i | 3.07540 | −2.23099 | + | 1.28806i | 1.75000 | − | 1.79596i | ||
82.14 | 0.643846 | + | 1.11517i | −1.31376 | + | 0.352022i | 0.170924 | − | 0.296050i | 2.23601 | − | 0.0164393i | −1.23843 | − | 1.23843i | 1.71395 | − | 0.459253i | 3.01558 | −0.996020 | + | 0.575052i | 1.45798 | + | 2.48295i | ||
82.15 | 1.04034 | + | 1.80193i | −1.09812 | + | 0.294240i | −1.16463 | + | 2.01721i | −1.05057 | + | 1.97391i | −1.67262 | − | 1.67262i | 0.0769563 | − | 0.0206204i | −0.685107 | −1.47879 | + | 0.853779i | −4.64979 | + | 0.160500i | ||
82.16 | 1.20502 | + | 2.08716i | −2.76431 | + | 0.740695i | −1.90415 | + | 3.29809i | −0.404091 | − | 2.19925i | −4.87700 | − | 4.87700i | −3.19584 | + | 0.856324i | −4.35808 | 4.49471 | − | 2.59502i | 4.10325 | − | 3.49355i | ||
82.17 | 1.21245 | + | 2.10002i | 2.19044 | − | 0.586925i | −1.94006 | + | 3.36028i | −2.20194 | − | 0.389154i | 3.88834 | + | 3.88834i | 0.492639 | − | 0.132002i | −4.55908 | 1.85545 | − | 1.07124i | −1.85251 | − | 5.09596i | ||
88.1 | −1.37559 | + | 2.38259i | 0.692973 | + | 0.185681i | −2.78450 | − | 4.82289i | −0.638688 | − | 2.14291i | −1.39565 | + | 1.39565i | −1.87540 | − | 0.502511i | 9.81895 | −2.15234 | − | 1.24266i | 5.98426 | + | 1.42604i | ||
88.2 | −1.21425 | + | 2.10315i | 0.672498 | + | 0.180195i | −1.94883 | − | 3.37547i | 1.55471 | + | 1.60713i | −1.19556 | + | 1.19556i | 4.47423 | + | 1.19887i | 4.60849 | −2.17829 | − | 1.25764i | −5.26786 | + | 1.31832i | ||
88.3 | −1.10225 | + | 1.90916i | −3.05050 | − | 0.817378i | −1.42993 | − | 2.47671i | 1.99367 | − | 1.01257i | 4.92293 | − | 4.92293i | −0.147229 | − | 0.0394498i | 1.89556 | 6.03934 | + | 3.48681i | −0.264372 | + | 4.92234i | ||
See all 68 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
185.p | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.p.a | ✓ | 68 |
5.b | even | 2 | 1 | 925.2.t.b | 68 | ||
5.c | odd | 4 | 1 | 185.2.u.a | yes | 68 | |
5.c | odd | 4 | 1 | 925.2.y.b | 68 | ||
37.g | odd | 12 | 1 | 185.2.u.a | yes | 68 | |
185.p | even | 12 | 1 | inner | 185.2.p.a | ✓ | 68 |
185.q | odd | 12 | 1 | 925.2.y.b | 68 | ||
185.u | even | 12 | 1 | 925.2.t.b | 68 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.p.a | ✓ | 68 | 1.a | even | 1 | 1 | trivial |
185.2.p.a | ✓ | 68 | 185.p | even | 12 | 1 | inner |
185.2.u.a | yes | 68 | 5.c | odd | 4 | 1 | |
185.2.u.a | yes | 68 | 37.g | odd | 12 | 1 | |
925.2.t.b | 68 | 5.b | even | 2 | 1 | ||
925.2.t.b | 68 | 185.u | even | 12 | 1 | ||
925.2.y.b | 68 | 5.c | odd | 4 | 1 | ||
925.2.y.b | 68 | 185.q | odd | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).