Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(16,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.o (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −2.48953 | − | 0.906116i | −1.62029 | + | 0.589737i | 3.84464 | + | 3.22604i | 0.173648 | − | 0.984808i | 4.56813 | 0.167591 | − | 0.950454i | −3.99889 | − | 6.92629i | −0.0205879 | + | 0.0172753i | −1.32465 | + | 2.29437i | ||
16.2 | −1.13382 | − | 0.412676i | 0.157473 | − | 0.0573154i | −0.416848 | − | 0.349777i | 0.173648 | − | 0.984808i | −0.202198 | 0.426285 | − | 2.41758i | 1.53487 | + | 2.65847i | −2.27662 | + | 1.91031i | −0.603292 | + | 1.04493i | ||
16.3 | −0.783255 | − | 0.285081i | −2.83432 | + | 1.03161i | −0.999872 | − | 0.838992i | 0.173648 | − | 0.984808i | 2.51409 | −0.135029 | + | 0.765789i | 1.37750 | + | 2.38589i | 4.67101 | − | 3.91944i | −0.416761 | + | 0.721852i | ||
16.4 | 0.348967 | + | 0.127014i | 2.66743 | − | 0.970864i | −1.42644 | − | 1.19693i | 0.173648 | − | 0.984808i | 1.05416 | −0.536342 | + | 3.04175i | −0.717119 | − | 1.24209i | 3.87446 | − | 3.25106i | 0.185682 | − | 0.321610i | ||
16.5 | 0.609428 | + | 0.221814i | 0.848369 | − | 0.308781i | −1.20989 | − | 1.01522i | 0.173648 | − | 0.984808i | 0.585512 | 0.858109 | − | 4.86658i | −1.16069 | − | 2.01037i | −1.67375 | + | 1.40444i | 0.324270 | − | 0.561652i | ||
16.6 | 2.18217 | + | 0.794244i | −0.158355 | + | 0.0576365i | 2.59894 | + | 2.18077i | 0.173648 | − | 0.984808i | −0.391334 | −0.0145685 | + | 0.0826222i | 1.61704 | + | 2.80080i | −2.27638 | + | 1.91011i | 1.16111 | − | 2.01110i | ||
46.1 | −0.310905 | − | 1.76323i | 0.454814 | − | 2.57938i | −1.13294 | + | 0.412356i | 0.766044 | + | 0.642788i | −4.68945 | −0.610054 | − | 0.511896i | −0.711117 | − | 1.23169i | −3.62727 | − | 1.32022i | 0.895216 | − | 1.55056i | ||
46.2 | −0.278096 | − | 1.57716i | −0.0897561 | + | 0.509032i | −0.530708 | + | 0.193162i | 0.766044 | + | 0.642788i | 0.827785 | 3.59511 | + | 3.01666i | −1.14925 | − | 1.99057i | 2.56802 | + | 0.934683i | 0.800745 | − | 1.38693i | ||
46.3 | 0.0656119 | + | 0.372104i | 0.213620 | − | 1.21150i | 1.74523 | − | 0.635211i | 0.766044 | + | 0.642788i | 0.464821 | −2.22367 | − | 1.86588i | 0.728717 | + | 1.26217i | 1.39697 | + | 0.508457i | −0.188922 | + | 0.327223i | ||
46.4 | 0.167121 | + | 0.947790i | −0.437162 | + | 2.47927i | 1.00901 | − | 0.367249i | 0.766044 | + | 0.642788i | −2.42289 | 0.186820 | + | 0.156761i | 1.47911 | + | 2.56190i | −3.13658 | − | 1.14162i | −0.481206 | + | 0.833473i | ||
46.5 | 0.391872 | + | 2.22242i | 0.316944 | − | 1.79748i | −2.90619 | + | 1.05777i | 0.766044 | + | 0.642788i | 4.11894 | 1.93485 | + | 1.62353i | −1.23295 | − | 2.13553i | −0.311389 | − | 0.113336i | −1.12835 | + | 1.95436i | ||
46.6 | 0.404089 | + | 2.29170i | −0.284812 | + | 1.61525i | −3.20922 | + | 1.16806i | 0.766044 | + | 0.642788i | −3.81676 | −3.82275 | − | 3.20767i | −1.64660 | − | 2.85199i | 0.291164 | + | 0.105975i | −1.16353 | + | 2.01529i | ||
71.1 | −1.96919 | − | 1.65234i | −1.28474 | + | 1.07802i | 0.800158 | + | 4.53792i | −0.939693 | − | 0.342020i | 4.31115 | 0.159622 | + | 0.0580977i | 3.35195 | − | 5.80576i | −0.0325280 | + | 0.184476i | 1.28529 | + | 2.22620i | ||
71.2 | −1.23720 | − | 1.03813i | 1.98766 | − | 1.66785i | 0.105645 | + | 0.599145i | −0.939693 | − | 0.342020i | −4.19058 | −3.65454 | − | 1.33014i | −1.12376 | + | 1.94641i | 0.648143 | − | 3.67580i | 0.807525 | + | 1.39867i | ||
71.3 | −0.805595 | − | 0.675975i | −1.52876 | + | 1.28278i | −0.155255 | − | 0.880492i | −0.939693 | − | 0.342020i | 2.09868 | 2.07226 | + | 0.754242i | −1.52175 | + | 2.63574i | 0.170629 | − | 0.967684i | 0.525815 | + | 0.910738i | ||
71.4 | 0.332294 | + | 0.278827i | 0.766533 | − | 0.643198i | −0.314622 | − | 1.78431i | −0.939693 | − | 0.342020i | 0.434055 | 1.57472 | + | 0.573152i | 0.826746 | − | 1.43197i | −0.347075 | + | 1.96836i | −0.216889 | − | 0.375663i | ||
71.5 | 1.19546 | + | 1.00311i | 1.72734 | − | 1.44941i | 0.0756004 | + | 0.428751i | −0.939693 | − | 0.342020i | 3.51889 | −0.978838 | − | 0.356268i | 1.22086 | − | 2.11459i | 0.361967 | − | 2.05282i | −0.780283 | − | 1.35149i | ||
71.6 | 1.81058 | + | 1.51925i | −0.901996 | + | 0.756865i | 0.622758 | + | 3.53183i | −0.939693 | − | 0.342020i | −2.78300 | 1.00042 | + | 0.364122i | −1.87466 | + | 3.24701i | −0.280191 | + | 1.58904i | −1.18177 | − | 2.04689i | ||
81.1 | −2.48953 | + | 0.906116i | −1.62029 | − | 0.589737i | 3.84464 | − | 3.22604i | 0.173648 | + | 0.984808i | 4.56813 | 0.167591 | + | 0.950454i | −3.99889 | + | 6.92629i | −0.0205879 | − | 0.0172753i | −1.32465 | − | 2.29437i | ||
81.2 | −1.13382 | + | 0.412676i | 0.157473 | + | 0.0573154i | −0.416848 | + | 0.349777i | 0.173648 | + | 0.984808i | −0.202198 | 0.426285 | + | 2.41758i | 1.53487 | − | 2.65847i | −2.27662 | − | 1.91031i | −0.603292 | − | 1.04493i | ||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.f | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.o.b | ✓ | 36 |
5.b | even | 2 | 1 | 925.2.p.d | 36 | ||
5.c | odd | 4 | 2 | 925.2.bc.d | 72 | ||
37.f | even | 9 | 1 | inner | 185.2.o.b | ✓ | 36 |
37.f | even | 9 | 1 | 6845.2.a.r | 18 | ||
37.h | even | 18 | 1 | 6845.2.a.p | 18 | ||
185.x | even | 18 | 1 | 925.2.p.d | 36 | ||
185.bd | odd | 36 | 2 | 925.2.bc.d | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.o.b | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
185.2.o.b | ✓ | 36 | 37.f | even | 9 | 1 | inner |
925.2.p.d | 36 | 5.b | even | 2 | 1 | ||
925.2.p.d | 36 | 185.x | even | 18 | 1 | ||
925.2.bc.d | 72 | 5.c | odd | 4 | 2 | ||
925.2.bc.d | 72 | 185.bd | odd | 36 | 2 | ||
6845.2.a.p | 18 | 37.h | even | 18 | 1 | ||
6845.2.a.r | 18 | 37.f | even | 9 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{36} + 3 T_{2}^{35} + 6 T_{2}^{34} + 15 T_{2}^{33} + 36 T_{2}^{32} + 18 T_{2}^{31} + 197 T_{2}^{30} + \cdots + 3249 \)
acting on \(S_{2}^{\mathrm{new}}(185, [\chi])\).