Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(16,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.o (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −2.08136 | − | 0.757553i | −0.0387037 | + | 0.0140870i | 2.22608 | + | 1.86791i | −0.173648 | + | 0.984808i | 0.0912280 | 0.444852 | − | 2.52288i | −1.00331 | − | 1.73778i | −2.29683 | + | 1.92727i | 1.10747 | − | 1.91819i | ||
16.2 | −1.04995 | − | 0.382151i | 2.82629 | − | 1.02868i | −0.575729 | − | 0.483094i | −0.173648 | + | 0.984808i | −3.36058 | 0.418871 | − | 2.37554i | 1.53721 | + | 2.66252i | 4.63157 | − | 3.88635i | 0.558668 | − | 0.967641i | ||
16.3 | −0.503620 | − | 0.183303i | −0.599885 | + | 0.218340i | −1.31206 | − | 1.10095i | −0.173648 | + | 0.984808i | 0.342137 | −0.460639 | + | 2.61241i | 0.994913 | + | 1.72324i | −1.98594 | + | 1.66640i | 0.267971 | − | 0.464139i | ||
16.4 | 0.451449 | + | 0.164314i | −1.97862 | + | 0.720158i | −1.35528 | − | 1.13722i | −0.173648 | + | 0.984808i | −1.01158 | 0.642947 | − | 3.64633i | −0.905403 | − | 1.56820i | 1.09816 | − | 0.921470i | −0.240211 | + | 0.416058i | ||
16.5 | 1.54344 | + | 0.561767i | 1.56472 | − | 0.569510i | 0.534543 | + | 0.448535i | −0.173648 | + | 0.984808i | 2.73498 | −0.133213 | + | 0.755490i | −1.06943 | − | 1.85231i | −0.174136 | + | 0.146117i | −0.821249 | + | 1.42244i | ||
16.6 | 2.25338 | + | 0.820164i | −2.71349 | + | 0.987630i | 2.87297 | + | 2.41071i | −0.173648 | + | 0.984808i | −6.92455 | −0.331566 | + | 1.88040i | 2.09872 | + | 3.63509i | 4.08949 | − | 3.43149i | −1.19900 | + | 2.07673i | ||
46.1 | −0.419337 | − | 2.37818i | −0.428005 | + | 2.42734i | −3.60050 | + | 1.31047i | −0.766044 | − | 0.642788i | 5.95212 | 3.16379 | + | 2.65474i | 2.21149 | + | 3.83042i | −2.88970 | − | 1.05176i | −1.20743 | + | 2.09133i | ||
46.2 | −0.235743 | − | 1.33697i | −0.0334057 | + | 0.189453i | 0.147483 | − | 0.0536795i | −0.766044 | − | 0.642788i | 0.261167 | −2.49840 | − | 2.09640i | −1.46413 | − | 2.53594i | 2.78430 | + | 1.01340i | −0.678795 | + | 1.17571i | ||
46.3 | −0.123274 | − | 0.699122i | 0.365137 | − | 2.07079i | 1.40581 | − | 0.511673i | −0.766044 | − | 0.642788i | −1.49275 | 2.22647 | + | 1.86823i | −1.24093 | − | 2.14935i | −1.33578 | − | 0.486185i | −0.354954 | + | 0.614798i | ||
46.4 | 0.198087 | + | 1.12341i | 0.00283048 | − | 0.0160525i | 0.656575 | − | 0.238974i | −0.766044 | − | 0.642788i | 0.0185942 | 0.374673 | + | 0.314388i | 1.53926 | + | 2.66608i | 2.81883 | + | 1.02597i | 0.570370 | − | 0.987910i | ||
46.5 | 0.262189 | + | 1.48695i | 0.581059 | − | 3.29535i | −0.262887 | + | 0.0956832i | −0.766044 | − | 0.642788i | 5.05236 | −1.39315 | − | 1.16899i | 1.29868 | + | 2.24939i | −7.70262 | − | 2.80353i | 0.754944 | − | 1.30760i | ||
46.6 | 0.410474 | + | 2.32791i | −0.313967 | + | 1.78060i | −3.37130 | + | 1.22705i | −0.766044 | − | 0.642788i | −4.27395 | 1.59840 | + | 1.34121i | −1.87648 | − | 3.25015i | −0.252874 | − | 0.0920385i | 1.18191 | − | 2.04713i | ||
71.1 | −2.08409 | − | 1.74876i | 2.15734 | − | 1.81023i | 0.937973 | + | 5.31951i | 0.939693 | + | 0.342020i | −7.66173 | 2.64249 | + | 0.961786i | 4.62713 | − | 8.01442i | 0.856266 | − | 4.85613i | −1.36029 | − | 2.35609i | ||
71.2 | −1.65139 | − | 1.38568i | −0.532186 | + | 0.446557i | 0.459683 | + | 2.60699i | 0.939693 | + | 0.342020i | 1.49763 | −3.30199 | − | 1.20182i | 0.697607 | − | 1.20829i | −0.437136 | + | 2.47912i | −1.07787 | − | 1.86692i | ||
71.3 | −0.634662 | − | 0.532544i | −2.38372 | + | 2.00018i | −0.228104 | − | 1.29364i | 0.939693 | + | 0.342020i | 2.57804 | −0.820213 | − | 0.298533i | −1.37265 | + | 2.37749i | 1.16046 | − | 6.58132i | −0.414246 | − | 0.717495i | ||
71.4 | −0.231115 | − | 0.193929i | 1.70862 | − | 1.43370i | −0.331490 | − | 1.87998i | 0.939693 | + | 0.342020i | −0.672925 | −0.211021 | − | 0.0768055i | −0.589669 | + | 1.02134i | 0.342937 | − | 1.94489i | −0.150850 | − | 0.261280i | ||
71.5 | 0.708323 | + | 0.594353i | −0.838601 | + | 0.703670i | −0.198831 | − | 1.12763i | 0.939693 | + | 0.342020i | −1.01223 | 3.72635 | + | 1.35628i | 1.45402 | − | 2.51844i | −0.312844 | + | 1.77423i | 0.462325 | + | 0.800770i | ||
71.6 | 1.68720 | + | 1.41573i | 0.654588 | − | 0.549265i | 0.495055 | + | 2.80760i | 0.939693 | + | 0.342020i | 1.88203 | −3.08865 | − | 1.12418i | −0.937056 | + | 1.62303i | −0.394150 | + | 2.23534i | 1.10124 | + | 1.90740i | ||
81.1 | −2.08136 | + | 0.757553i | −0.0387037 | − | 0.0140870i | 2.22608 | − | 1.86791i | −0.173648 | − | 0.984808i | 0.0912280 | 0.444852 | + | 2.52288i | −1.00331 | + | 1.73778i | −2.29683 | − | 1.92727i | 1.10747 | + | 1.91819i | ||
81.2 | −1.04995 | + | 0.382151i | 2.82629 | + | 1.02868i | −0.575729 | + | 0.483094i | −0.173648 | − | 0.984808i | −3.36058 | 0.418871 | + | 2.37554i | 1.53721 | − | 2.66252i | 4.63157 | + | 3.88635i | 0.558668 | + | 0.967641i | ||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
37.f | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.o.a | ✓ | 36 |
5.b | even | 2 | 1 | 925.2.p.c | 36 | ||
5.c | odd | 4 | 2 | 925.2.bc.c | 72 | ||
37.f | even | 9 | 1 | inner | 185.2.o.a | ✓ | 36 |
37.f | even | 9 | 1 | 6845.2.a.q | 18 | ||
37.h | even | 18 | 1 | 6845.2.a.s | 18 | ||
185.x | even | 18 | 1 | 925.2.p.c | 36 | ||
185.bd | odd | 36 | 2 | 925.2.bc.c | 72 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.o.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
185.2.o.a | ✓ | 36 | 37.f | even | 9 | 1 | inner |
925.2.p.c | 36 | 5.b | even | 2 | 1 | ||
925.2.p.c | 36 | 185.x | even | 18 | 1 | ||
925.2.bc.c | 72 | 5.c | odd | 4 | 2 | ||
925.2.bc.c | 72 | 185.bd | odd | 36 | 2 | ||
6845.2.a.q | 18 | 37.f | even | 9 | 1 | ||
6845.2.a.s | 18 | 37.h | even | 18 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{36} + 3 T_{2}^{35} + 6 T_{2}^{34} + T_{2}^{33} - 48 T_{2}^{31} + 121 T_{2}^{30} + 486 T_{2}^{29} + \cdots + 5041 \)
acting on \(S_{2}^{\mathrm{new}}(185, [\chi])\).