Properties

Label 185.2.o
Level $185$
Weight $2$
Character orbit 185.o
Rep. character $\chi_{185}(16,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $72$
Newform subspaces $2$
Sturm bound $38$
Trace bound $6$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.o (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 2 \)
Sturm bound: \(38\)
Trace bound: \(6\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 120 72 48
Cusp forms 96 72 24
Eisenstein series 24 0 24

Trace form

\( 72 q - 6 q^{2} - 6 q^{4} + 6 q^{7} + 6 q^{8} - 6 q^{10} - 30 q^{12} + 30 q^{13} + 6 q^{14} - 42 q^{16} - 30 q^{18} + 6 q^{19} - 36 q^{21} - 30 q^{22} - 36 q^{23} - 30 q^{24} - 24 q^{27} - 30 q^{28} + 6 q^{29}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.o.a 185.o 37.f $36$ $1.477$ None 185.2.o.a \(-3\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$
185.2.o.b 185.o 37.f $36$ $1.477$ None 185.2.o.b \(-3\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(185, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(185, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)