Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(84,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.84");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(36\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
84.1 | −2.33663 | − | 1.34906i | 2.35586 | − | 1.36016i | 2.63990 | + | 4.57244i | 0.261363 | − | 2.22074i | −7.33972 | −1.64348 | + | 0.948866i | − | 8.84926i | 2.20006 | − | 3.81062i | −3.60661 | + | 4.83646i | |||
84.2 | −1.99875 | − | 1.15398i | −1.81123 | + | 1.04571i | 1.66334 | + | 2.88098i | −0.0902553 | − | 2.23425i | 4.82692 | 3.28655 | − | 1.89749i | − | 3.06190i | 0.687027 | − | 1.18997i | −2.39787 | + | 4.56985i | |||
84.3 | −1.85494 | − | 1.07095i | 0.858786 | − | 0.495820i | 1.29387 | + | 2.24104i | −1.59352 | + | 1.56866i | −2.12399 | −1.20076 | + | 0.693262i | − | 1.25887i | −1.00832 | + | 1.74647i | 4.63584 | − | 1.20318i | |||
84.4 | −1.64422 | − | 0.949293i | 1.16436 | − | 0.672243i | 0.802314 | + | 1.38965i | 1.62372 | + | 1.53738i | −2.55262 | 2.34261 | − | 1.35251i | 0.750648i | −0.596178 | + | 1.03261i | −1.21033 | − | 4.06918i | ||||
84.5 | −1.58456 | − | 0.914845i | −1.14999 | + | 0.663947i | 0.673882 | + | 1.16720i | 2.12799 | − | 0.686767i | 2.42963 | −2.49908 | + | 1.44285i | 1.19339i | −0.618348 | + | 1.07101i | −4.00021 | − | 0.858562i | ||||
84.6 | −0.843193 | − | 0.486818i | −1.64972 | + | 0.952467i | −0.526017 | − | 0.911089i | −1.79344 | + | 1.33551i | 1.85471 | 3.89368 | − | 2.24802i | 2.97157i | 0.314386 | − | 0.544533i | 2.16236 | − | 0.253015i | ||||
84.7 | −0.704704 | − | 0.406861i | −0.142682 | + | 0.0823772i | −0.668928 | − | 1.15862i | −1.50396 | − | 1.65472i | 0.134064 | −2.76887 | + | 1.59861i | 2.71609i | −1.48643 | + | 2.57457i | 0.386605 | + | 1.77799i | ||||
84.8 | −0.398514 | − | 0.230082i | 2.88437 | − | 1.66529i | −0.894124 | − | 1.54867i | −2.18772 | + | 0.462462i | −1.53262 | −0.0944407 | + | 0.0545254i | 1.74322i | 4.04641 | − | 7.00858i | 0.978243 | + | 0.319058i | ||||
84.9 | −0.153805 | − | 0.0887996i | −1.48057 | + | 0.854808i | −0.984229 | − | 1.70474i | 0.854987 | + | 2.06616i | 0.303627 | −1.21910 | + | 0.703845i | 0.704795i | −0.0386059 | + | 0.0668674i | 0.0519722 | − | 0.393709i | ||||
84.10 | 0.153805 | + | 0.0887996i | 1.48057 | − | 0.854808i | −0.984229 | − | 1.70474i | 1.36185 | + | 1.77352i | 0.303627 | 1.21910 | − | 0.703845i | − | 0.704795i | −0.0386059 | + | 0.0668674i | 0.0519722 | + | 0.393709i | |||
84.11 | 0.398514 | + | 0.230082i | −2.88437 | + | 1.66529i | −0.894124 | − | 1.54867i | 1.49437 | − | 1.66339i | −1.53262 | 0.0944407 | − | 0.0545254i | − | 1.74322i | 4.04641 | − | 7.00858i | 0.978243 | − | 0.319058i | |||
84.12 | 0.704704 | + | 0.406861i | 0.142682 | − | 0.0823772i | −0.668928 | − | 1.15862i | −0.681051 | − | 2.12983i | 0.134064 | 2.76887 | − | 1.59861i | − | 2.71609i | −1.48643 | + | 2.57457i | 0.386605 | − | 1.77799i | |||
84.13 | 0.843193 | + | 0.486818i | 1.64972 | − | 0.952467i | −0.526017 | − | 0.911089i | 2.05330 | − | 0.885408i | 1.85471 | −3.89368 | + | 2.24802i | − | 2.97157i | 0.314386 | − | 0.544533i | 2.16236 | + | 0.253015i | |||
84.14 | 1.58456 | + | 0.914845i | 1.14999 | − | 0.663947i | 0.673882 | + | 1.16720i | −1.65875 | + | 1.49951i | 2.42963 | 2.49908 | − | 1.44285i | − | 1.19339i | −0.618348 | + | 1.07101i | −4.00021 | + | 0.858562i | |||
84.15 | 1.64422 | + | 0.949293i | −1.16436 | + | 0.672243i | 0.802314 | + | 1.38965i | 0.519553 | + | 2.17487i | −2.55262 | −2.34261 | + | 1.35251i | − | 0.750648i | −0.596178 | + | 1.03261i | −1.21033 | + | 4.06918i | |||
84.16 | 1.85494 | + | 1.07095i | −0.858786 | + | 0.495820i | 1.29387 | + | 2.24104i | 2.15526 | − | 0.595704i | −2.12399 | 1.20076 | − | 0.693262i | 1.25887i | −1.00832 | + | 1.74647i | 4.63584 | + | 1.20318i | ||||
84.17 | 1.99875 | + | 1.15398i | 1.81123 | − | 1.04571i | 1.66334 | + | 2.88098i | −1.88979 | − | 1.19529i | 4.82692 | −3.28655 | + | 1.89749i | 3.06190i | 0.687027 | − | 1.18997i | −2.39787 | − | 4.56985i | ||||
84.18 | 2.33663 | + | 1.34906i | −2.35586 | + | 1.36016i | 2.63990 | + | 4.57244i | −2.05390 | − | 0.884024i | −7.33972 | 1.64348 | − | 0.948866i | 8.84926i | 2.20006 | − | 3.81062i | −3.60661 | − | 4.83646i | ||||
174.1 | −2.33663 | + | 1.34906i | 2.35586 | + | 1.36016i | 2.63990 | − | 4.57244i | 0.261363 | + | 2.22074i | −7.33972 | −1.64348 | − | 0.948866i | 8.84926i | 2.20006 | + | 3.81062i | −3.60661 | − | 4.83646i | ||||
174.2 | −1.99875 | + | 1.15398i | −1.81123 | − | 1.04571i | 1.66334 | − | 2.88098i | −0.0902553 | + | 2.23425i | 4.82692 | 3.28655 | + | 1.89749i | 3.06190i | 0.687027 | + | 1.18997i | −2.39787 | − | 4.56985i | ||||
See all 36 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
37.c | even | 3 | 1 | inner |
185.n | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.n.a | ✓ | 36 |
5.b | even | 2 | 1 | inner | 185.2.n.a | ✓ | 36 |
5.c | odd | 4 | 2 | 925.2.e.f | 36 | ||
37.c | even | 3 | 1 | inner | 185.2.n.a | ✓ | 36 |
185.n | even | 6 | 1 | inner | 185.2.n.a | ✓ | 36 |
185.s | odd | 12 | 2 | 925.2.e.f | 36 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.n.a | ✓ | 36 | 1.a | even | 1 | 1 | trivial |
185.2.n.a | ✓ | 36 | 5.b | even | 2 | 1 | inner |
185.2.n.a | ✓ | 36 | 37.c | even | 3 | 1 | inner |
185.2.n.a | ✓ | 36 | 185.n | even | 6 | 1 | inner |
925.2.e.f | 36 | 5.c | odd | 4 | 2 | ||
925.2.e.f | 36 | 185.s | odd | 12 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).