Properties

Label 185.2.n
Level $185$
Weight $2$
Character orbit 185.n
Rep. character $\chi_{185}(84,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.n (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 44 44 0
Cusp forms 36 36 0
Eisenstein series 8 8 0

Trace form

\( 36 q + 16 q^{4} - 2 q^{5} - 16 q^{6} + 14 q^{9} - 12 q^{10} + 12 q^{11} - 8 q^{14} - 10 q^{15} - 16 q^{16} - 8 q^{19} + 22 q^{20} - 26 q^{21} - 42 q^{24} + 12 q^{26} - 16 q^{29} + 18 q^{34} - 16 q^{35}+ \cdots + 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.n.a 185.n 185.n $36$ $1.477$ None 185.2.n.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{6}]$