Properties

Label 185.2.m
Level $185$
Weight $2$
Character orbit 185.m
Rep. character $\chi_{185}(11,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 37 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 44 28 16
Cusp forms 36 28 8
Eisenstein series 8 0 8

Trace form

\( 28 q - 6 q^{2} - 4 q^{3} + 20 q^{4} - 2 q^{7} - 18 q^{9} - 4 q^{10} + 4 q^{11} + 2 q^{12} - 30 q^{13} - 20 q^{16} + 30 q^{18} - 2 q^{21} - 30 q^{22} + 30 q^{24} + 14 q^{25} + 12 q^{26} + 32 q^{27} + 2 q^{28}+ \cdots - 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.m.a 185.m 37.e $28$ $1.477$ None 185.2.m.a \(-6\) \(-4\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(185, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(185, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)