Properties

Label 185.2.l.a
Level $185$
Weight $2$
Character orbit 185.l
Analytic conductor $1.477$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [185,2,Mod(64,185)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(185, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("185.64");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.47723243739\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q - 14 q^{4} + 3 q^{5} + 4 q^{9} + 6 q^{10} + 12 q^{11} + 12 q^{15} - 10 q^{16} - 33 q^{20} - 18 q^{21} - 42 q^{24} + 3 q^{25} - 12 q^{26} + 34 q^{30} + 28 q^{34} - 42 q^{35} + 20 q^{36} - 18 q^{39}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1 −1.37455 + 2.38079i 0.585119 0.337819i −2.77877 4.81298i 1.58452 1.57775i 1.85740i 0.330820 0.190999i 9.78006 −1.27176 + 2.20275i 1.57828 + 5.94111i
64.2 −1.09063 + 1.88903i −1.99551 + 1.15211i −1.37896 2.38842i −1.98654 1.02647i 5.02610i 2.14000 1.23553i 1.65321 1.15471 2.00001i 4.10562 2.63314i
64.3 −1.04773 + 1.81473i −0.704687 + 0.406851i −1.19549 2.07065i 0.539667 + 2.16997i 1.70509i −0.576485 + 0.332834i 0.819287 −1.16894 + 2.02467i −4.50333 1.29420i
64.4 −0.812617 + 1.40749i 2.85067 1.64584i −0.320694 0.555458i 2.21638 + 0.296090i 5.34974i −2.57876 + 1.48885i −2.20806 3.91756 6.78541i −2.21781 + 2.87893i
64.5 −0.651283 + 1.12805i 1.59141 0.918801i 0.151662 + 0.262686i −0.706929 2.12138i 2.39360i 3.85136 2.22358i −3.00023 0.188392 0.326304i 2.85344 + 0.584163i
64.6 −0.584022 + 1.01156i 0.699972 0.404129i 0.317836 + 0.550508i −2.20281 + 0.384248i 0.944081i −3.36550 + 1.94307i −3.07858 −1.17336 + 2.03232i 0.897799 2.45267i
64.7 −0.348901 + 0.604314i −1.12874 + 0.651678i 0.756536 + 1.31036i 2.23270 0.122667i 0.909484i 1.73221 1.00009i −2.45143 −0.650633 + 1.12693i −0.704862 + 1.39205i
64.8 −0.161429 + 0.279603i 1.50202 0.867191i 0.947881 + 1.64178i −0.584385 + 2.15835i 0.559959i 1.63357 0.943142i −1.25778 0.00403875 0.00699531i −0.509146 0.511817i
64.9 0.161429 0.279603i −1.50202 + 0.867191i 0.947881 + 1.64178i −2.16138 0.573085i 0.559959i −1.63357 + 0.943142i 1.25778 0.00403875 0.00699531i −0.509146 + 0.511817i
64.10 0.348901 0.604314i 1.12874 0.651678i 0.756536 + 1.31036i 1.22258 1.87224i 0.909484i −1.73221 + 1.00009i 2.45143 −0.650633 + 1.12693i −0.704862 1.39205i
64.11 0.584022 1.01156i −0.699972 + 0.404129i 0.317836 + 0.550508i −1.43417 + 1.71556i 0.944081i 3.36550 1.94307i 3.07858 −1.17336 + 2.03232i 0.897799 + 2.45267i
64.12 0.651283 1.12805i −1.59141 + 0.918801i 0.151662 + 0.262686i 1.48370 + 1.67291i 2.39360i −3.85136 + 2.22358i 3.00023 0.188392 0.326304i 2.85344 0.584163i
64.13 0.812617 1.40749i −2.85067 + 1.64584i −0.320694 0.555458i 0.851767 2.06748i 5.34974i 2.57876 1.48885i 2.20806 3.91756 6.78541i −2.21781 2.87893i
64.14 1.04773 1.81473i 0.704687 0.406851i −1.19549 2.07065i −1.60941 1.55235i 1.70509i 0.576485 0.332834i −0.819287 −1.16894 + 2.02467i −4.50333 + 1.29420i
64.15 1.09063 1.88903i 1.99551 1.15211i −1.37896 2.38842i −0.104323 + 2.23363i 5.02610i −2.14000 + 1.23553i −1.65321 1.15471 2.00001i 4.10562 + 2.63314i
64.16 1.37455 2.38079i −0.585119 + 0.337819i −2.77877 4.81298i 2.15863 0.583362i 1.85740i −0.330820 + 0.190999i −9.78006 −1.27176 + 2.20275i 1.57828 5.94111i
159.1 −1.37455 2.38079i 0.585119 + 0.337819i −2.77877 + 4.81298i 1.58452 + 1.57775i 1.85740i 0.330820 + 0.190999i 9.78006 −1.27176 2.20275i 1.57828 5.94111i
159.2 −1.09063 1.88903i −1.99551 1.15211i −1.37896 + 2.38842i −1.98654 + 1.02647i 5.02610i 2.14000 + 1.23553i 1.65321 1.15471 + 2.00001i 4.10562 + 2.63314i
159.3 −1.04773 1.81473i −0.704687 0.406851i −1.19549 + 2.07065i 0.539667 2.16997i 1.70509i −0.576485 0.332834i 0.819287 −1.16894 2.02467i −4.50333 + 1.29420i
159.4 −0.812617 1.40749i 2.85067 + 1.64584i −0.320694 + 0.555458i 2.21638 0.296090i 5.34974i −2.57876 1.48885i −2.20806 3.91756 + 6.78541i −2.21781 2.87893i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 64.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
37.e even 6 1 inner
185.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 185.2.l.a 32
5.b even 2 1 inner 185.2.l.a 32
5.c odd 4 2 925.2.n.e 32
37.e even 6 1 inner 185.2.l.a 32
185.l even 6 1 inner 185.2.l.a 32
185.r odd 12 2 925.2.n.e 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
185.2.l.a 32 1.a even 1 1 trivial
185.2.l.a 32 5.b even 2 1 inner
185.2.l.a 32 37.e even 6 1 inner
185.2.l.a 32 185.l even 6 1 inner
925.2.n.e 32 5.c odd 4 2
925.2.n.e 32 185.r odd 12 2

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).