Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [185,2,Mod(64,185)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(185, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("185.64");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 185 = 5 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 185.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.47723243739\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 | −1.37455 | + | 2.38079i | 0.585119 | − | 0.337819i | −2.77877 | − | 4.81298i | 1.58452 | − | 1.57775i | 1.85740i | 0.330820 | − | 0.190999i | 9.78006 | −1.27176 | + | 2.20275i | 1.57828 | + | 5.94111i | ||||
64.2 | −1.09063 | + | 1.88903i | −1.99551 | + | 1.15211i | −1.37896 | − | 2.38842i | −1.98654 | − | 1.02647i | − | 5.02610i | 2.14000 | − | 1.23553i | 1.65321 | 1.15471 | − | 2.00001i | 4.10562 | − | 2.63314i | |||
64.3 | −1.04773 | + | 1.81473i | −0.704687 | + | 0.406851i | −1.19549 | − | 2.07065i | 0.539667 | + | 2.16997i | − | 1.70509i | −0.576485 | + | 0.332834i | 0.819287 | −1.16894 | + | 2.02467i | −4.50333 | − | 1.29420i | |||
64.4 | −0.812617 | + | 1.40749i | 2.85067 | − | 1.64584i | −0.320694 | − | 0.555458i | 2.21638 | + | 0.296090i | 5.34974i | −2.57876 | + | 1.48885i | −2.20806 | 3.91756 | − | 6.78541i | −2.21781 | + | 2.87893i | ||||
64.5 | −0.651283 | + | 1.12805i | 1.59141 | − | 0.918801i | 0.151662 | + | 0.262686i | −0.706929 | − | 2.12138i | 2.39360i | 3.85136 | − | 2.22358i | −3.00023 | 0.188392 | − | 0.326304i | 2.85344 | + | 0.584163i | ||||
64.6 | −0.584022 | + | 1.01156i | 0.699972 | − | 0.404129i | 0.317836 | + | 0.550508i | −2.20281 | + | 0.384248i | 0.944081i | −3.36550 | + | 1.94307i | −3.07858 | −1.17336 | + | 2.03232i | 0.897799 | − | 2.45267i | ||||
64.7 | −0.348901 | + | 0.604314i | −1.12874 | + | 0.651678i | 0.756536 | + | 1.31036i | 2.23270 | − | 0.122667i | − | 0.909484i | 1.73221 | − | 1.00009i | −2.45143 | −0.650633 | + | 1.12693i | −0.704862 | + | 1.39205i | |||
64.8 | −0.161429 | + | 0.279603i | 1.50202 | − | 0.867191i | 0.947881 | + | 1.64178i | −0.584385 | + | 2.15835i | 0.559959i | 1.63357 | − | 0.943142i | −1.25778 | 0.00403875 | − | 0.00699531i | −0.509146 | − | 0.511817i | ||||
64.9 | 0.161429 | − | 0.279603i | −1.50202 | + | 0.867191i | 0.947881 | + | 1.64178i | −2.16138 | − | 0.573085i | 0.559959i | −1.63357 | + | 0.943142i | 1.25778 | 0.00403875 | − | 0.00699531i | −0.509146 | + | 0.511817i | ||||
64.10 | 0.348901 | − | 0.604314i | 1.12874 | − | 0.651678i | 0.756536 | + | 1.31036i | 1.22258 | − | 1.87224i | − | 0.909484i | −1.73221 | + | 1.00009i | 2.45143 | −0.650633 | + | 1.12693i | −0.704862 | − | 1.39205i | |||
64.11 | 0.584022 | − | 1.01156i | −0.699972 | + | 0.404129i | 0.317836 | + | 0.550508i | −1.43417 | + | 1.71556i | 0.944081i | 3.36550 | − | 1.94307i | 3.07858 | −1.17336 | + | 2.03232i | 0.897799 | + | 2.45267i | ||||
64.12 | 0.651283 | − | 1.12805i | −1.59141 | + | 0.918801i | 0.151662 | + | 0.262686i | 1.48370 | + | 1.67291i | 2.39360i | −3.85136 | + | 2.22358i | 3.00023 | 0.188392 | − | 0.326304i | 2.85344 | − | 0.584163i | ||||
64.13 | 0.812617 | − | 1.40749i | −2.85067 | + | 1.64584i | −0.320694 | − | 0.555458i | 0.851767 | − | 2.06748i | 5.34974i | 2.57876 | − | 1.48885i | 2.20806 | 3.91756 | − | 6.78541i | −2.21781 | − | 2.87893i | ||||
64.14 | 1.04773 | − | 1.81473i | 0.704687 | − | 0.406851i | −1.19549 | − | 2.07065i | −1.60941 | − | 1.55235i | − | 1.70509i | 0.576485 | − | 0.332834i | −0.819287 | −1.16894 | + | 2.02467i | −4.50333 | + | 1.29420i | |||
64.15 | 1.09063 | − | 1.88903i | 1.99551 | − | 1.15211i | −1.37896 | − | 2.38842i | −0.104323 | + | 2.23363i | − | 5.02610i | −2.14000 | + | 1.23553i | −1.65321 | 1.15471 | − | 2.00001i | 4.10562 | + | 2.63314i | |||
64.16 | 1.37455 | − | 2.38079i | −0.585119 | + | 0.337819i | −2.77877 | − | 4.81298i | 2.15863 | − | 0.583362i | 1.85740i | −0.330820 | + | 0.190999i | −9.78006 | −1.27176 | + | 2.20275i | 1.57828 | − | 5.94111i | ||||
159.1 | −1.37455 | − | 2.38079i | 0.585119 | + | 0.337819i | −2.77877 | + | 4.81298i | 1.58452 | + | 1.57775i | − | 1.85740i | 0.330820 | + | 0.190999i | 9.78006 | −1.27176 | − | 2.20275i | 1.57828 | − | 5.94111i | |||
159.2 | −1.09063 | − | 1.88903i | −1.99551 | − | 1.15211i | −1.37896 | + | 2.38842i | −1.98654 | + | 1.02647i | 5.02610i | 2.14000 | + | 1.23553i | 1.65321 | 1.15471 | + | 2.00001i | 4.10562 | + | 2.63314i | ||||
159.3 | −1.04773 | − | 1.81473i | −0.704687 | − | 0.406851i | −1.19549 | + | 2.07065i | 0.539667 | − | 2.16997i | 1.70509i | −0.576485 | − | 0.332834i | 0.819287 | −1.16894 | − | 2.02467i | −4.50333 | + | 1.29420i | ||||
159.4 | −0.812617 | − | 1.40749i | 2.85067 | + | 1.64584i | −0.320694 | + | 0.555458i | 2.21638 | − | 0.296090i | − | 5.34974i | −2.57876 | − | 1.48885i | −2.20806 | 3.91756 | + | 6.78541i | −2.21781 | − | 2.87893i | |||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
37.e | even | 6 | 1 | inner |
185.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 185.2.l.a | ✓ | 32 |
5.b | even | 2 | 1 | inner | 185.2.l.a | ✓ | 32 |
5.c | odd | 4 | 2 | 925.2.n.e | 32 | ||
37.e | even | 6 | 1 | inner | 185.2.l.a | ✓ | 32 |
185.l | even | 6 | 1 | inner | 185.2.l.a | ✓ | 32 |
185.r | odd | 12 | 2 | 925.2.n.e | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
185.2.l.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
185.2.l.a | ✓ | 32 | 5.b | even | 2 | 1 | inner |
185.2.l.a | ✓ | 32 | 37.e | even | 6 | 1 | inner |
185.2.l.a | ✓ | 32 | 185.l | even | 6 | 1 | inner |
925.2.n.e | 32 | 5.c | odd | 4 | 2 | ||
925.2.n.e | 32 | 185.r | odd | 12 | 2 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(185, [\chi])\).