Properties

Label 185.2.l
Level $185$
Weight $2$
Character orbit 185.l
Rep. character $\chi_{185}(64,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $32$
Newform subspaces $1$
Sturm bound $38$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 185 = 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 185.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 185 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(38\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(185, [\chi])\).

Total New Old
Modular forms 40 40 0
Cusp forms 32 32 0
Eisenstein series 8 8 0

Trace form

\( 32 q - 14 q^{4} + 3 q^{5} + 4 q^{9} + 6 q^{10} + 12 q^{11} + 12 q^{15} - 10 q^{16} - 33 q^{20} - 18 q^{21} - 42 q^{24} + 3 q^{25} - 12 q^{26} + 34 q^{30} + 28 q^{34} - 42 q^{35} + 20 q^{36} - 18 q^{39}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(185, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
185.2.l.a 185.l 185.l $32$ $1.477$ None 185.2.l.a \(0\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{6}]$